1
|
Gan Y, Ping J, Liu X, Peng C. Repetitive Sequences, Codon Usage Bias and Phylogenetic Analysis of the Plastome of Miliusa glochidioides. Biochem Genet 2024:10.1007/s10528-024-10874-7. [PMID: 38954211 DOI: 10.1007/s10528-024-10874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.
Collapse
Affiliation(s)
- Yangying Gan
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jingyao Ping
- College of Life Sciences, Sun Yet-sen University, Guangzhou, 510275, China
| | - Xiaojing Liu
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Caixia Peng
- Horticulture Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
2
|
Mower JP. Raison d'être of the plastid repeat. NATURE PLANTS 2024; 10:838-839. [PMID: 38802560 DOI: 10.1038/s41477-024-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Jeffrey P Mower
- Department of Agronomy and Horticulture and the Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Maciszewski K, Fells A, Karnkowska A. Challenging the Importance of Plastid Genome Structure Conservation: New Insights From Euglenophytes. Mol Biol Evol 2022; 39:6834297. [PMID: 36403966 PMCID: PMC9728796 DOI: 10.1093/molbev/msac255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plastids, similar to mitochondria, are organelles of endosymbiotic origin, which retained their vestigial genomes (ptDNA). Their unique architecture, commonly referred to as the quadripartite (four-part) structure, is considered to be strictly conserved; however, the bulk of our knowledge on their variability and evolutionary transformations comes from studies of the primary plastids of green algae and land plants. To broaden our perspective, we obtained seven new ptDNA sequences from freshwater species of photosynthetic euglenids-a group that obtained secondary plastids, known to have dynamically evolving genome structure, via endosymbiosis with a green alga. Our analyses have demonstrated that the evolutionary history of euglenid plastid genome structure is exceptionally convoluted, with a patchy distribution of inverted ribosomal operon (rDNA) repeats, as well as several independent acquisitions of tandemly repeated rDNA copies. Moreover, we have shown that inverted repeats in euglenid ptDNA do not share their genome-stabilizing property documented in chlorophytes. We hypothesize that the degeneration of the quadripartite structure of euglenid plastid genomes is connected to the group II intron expansion. These findings challenge the current global paradigms of plastid genome architecture evolution and underscore the often-underestimated divergence between the functionality of shared traits in primary and complex plastid organelles.
Collapse
Affiliation(s)
| | - Alicja Fells
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | |
Collapse
|
4
|
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. FRONTIERS IN PLANT SCIENCE 2022; 13:918543. [PMID: 35898209 PMCID: PMC9309888 DOI: 10.3389/fpls.2022.918543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kounosuke Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Chihiro Sarai
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Maciszewski K, Dabbagh N, Preisfeld A, Karnkowska A. Maturyoshka: a maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes. Mol Phylogenet Evol 2022; 170:107441. [DOI: 10.1016/j.ympev.2022.107441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
|
6
|
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Mol Biol Evol 2022; 39:msab295. [PMID: 34613411 PMCID: PMC8763093 DOI: 10.1093/molbev/msab295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.
Collapse
Affiliation(s)
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sebastian Duchene
- Deptartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Ping J, Hao J, Li J, Yang Y, Su Y, Wang T. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. Ecol Evol 2022; 12:e8499. [PMID: 35136556 PMCID: PMC8809450 DOI: 10.1002/ece3.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yiqing Yang
- College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology. Sci Rep 2021; 11:13070. [PMID: 34158556 PMCID: PMC8219788 DOI: 10.1038/s41598-021-92174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata. The current genomic assembly length of 100 Mbp is 14× smaller than that of E. gracilis. Despite being too fragmented for comprehensive gene prediction it provided fragments of the mitochondrial genome and comparison of the transcriptomic and genomic data revealed features of its introns, including several candidates for nonconventional types. A set of 39,456 putative R. costata proteins was predicted from the transcriptome. Annotation of the mitochondrial core metabolism provides the first data on the facultatively anaerobic mitochondrion of R. costata, which in most respects resembles the mitochondrion of E. gracilis with a certain level of streamlining. R. costata can synthetise thiamine by enzymes of heterogenous provenances and haem by a mitochondrial-cytoplasmic C4 pathway with enzymes orthologous to those found in E. gracilis. The low percentage of green algae-affiliated genes supports the ancestrally osmotrophic status of this species.
Collapse
|
9
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
10
|
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) Are Retained for tRNA-Glu-Based Organellar Heme Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:602455. [PMID: 33329672 PMCID: PMC7728698 DOI: 10.3389/fpls.2020.602455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Organisms that have lost their photosynthetic capabilities are present in a variety of eukaryotic lineages, such as plants and disparate algal groups. Most of such non-photosynthetic eukaryotes still carry plastids, as these organelles retain essential biological functions. Most non-photosynthetic plastids possess genomes with varied protein-coding contents. Such remnant plastids are known to be present in the non-photosynthetic, bacteriovorous alga Pteridomonas danica (Dictyochophyceae, Ochrophyta), which, regardless of its obligatory heterotrophic lifestyle, has been reported to retain the typically plastid-encoded gene for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL). The presence of rbcL without photosynthetic activity suggests that investigating the function of plastids in Pteridomonas spp. would likely bring unique insights into understanding the reductive evolution of plastids, their genomes, and plastid functions retained after the loss of photosynthesis. In this study, we demonstrate that two newly established strains of the non-photosynthetic genus Pteridomonas possess highly reduced plastid genomes lacking rbcL gene, in contrast to the previous report. Interestingly, we discovered that all plastid-encoded proteins in Pteridomonas spp. are involved only in housekeeping processes (e.g., transcription, translation and protein degradation), indicating that all metabolite synthesis pathways in their plastids are supported fully by nuclear genome-encoded proteins. Moreover, through an in-depth survey of the available transcriptomic data of another strain of the genus, we detected no candidate sequences for nuclear-encoded, plastid-directed Fe-S cluster assembly pathway proteins, suggesting complete loss of this pathway in the organelle, despite its widespread conservation in non-photosynthetic plastids. Instead, the transcriptome contains plastid-targeted components of heme biosynthesis, glycolysis, and pentose phosphate pathways. The retention of the plastid genomes in Pteridomonas spp. is not explained by the Suf-mediated constraint against loss of plastid genomes, previously proposed for Alveolates, as they lack Suf genes. Bearing all these findings in mind, we propose the hypothesis that plastid DNA is retained in Pteridomonas spp. for the purpose of providing glutamyl-tRNA, encoded by trnE gene, as a substrate for the heme biosynthesis pathway.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Karnkowska,
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Ryoma Kamikawa,
| |
Collapse
|
11
|
Han KY, Maciszewski K, Graf L, Yang JH, Andersen RA, Karnkowska A, Yoon HS. Dictyochophyceae Plastid Genomes Reveal Unusual Variability in Their Organization. JOURNAL OF PHYCOLOGY 2019; 55:1166-1180. [PMID: 31325913 DOI: 10.1111/jpy.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Dictyochophyceae (silicoflagellates) are unicellular freshwater and marine algae (Heterokontophyta, stramenopiles). Despite their abundance in global oceans and potential ecological significance, discovered in recent years, neither nuclear nor organellar genomes of representatives of this group were sequenced until now. Here, we present the first complete plastid genome sequences of Dictyochophyceae, obtained from four species: Dictyocha speculum, Rhizochromulina marina, Florenciella parvula and Pseudopedinella elastica. Despite their comparable size and genetic content, these four plastid genomes exhibit variability in their organization: plastid genomes of F. parvula and P. elastica possess conventional quadripartite structure with a pair of inverted repeats, R. marina instead possesses two direct repeats with the same orientation and D. speculum possesses no repeats at all. We also observed a number of unusual traits in the plastid genome of D. speculum, including expansion of the intergenic regions, presence of an intron in the otherwise non-intron-bearing psaA gene, and an additional copy of the large subunit of RuBisCO gene (rbcL), the last of which has never been observed in any plastid genome. We conclude that despite noticeable gene content similarities between the plastid genomes of Dictyochophyceae and their relatives (pelagophytes, diatoms), the number of distinctive features observed in this lineage strongly suggests that additional taxa require further investigation.
Collapse
Affiliation(s)
- Kwi Young Han
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kacper Maciszewski
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Louis Graf
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Ji Hyun Yang
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|