1
|
Shanmugasundaram E, Vellaisamy K, Ganesan V, Narayanan V, Saleh N, Thambusamy S. Dual Applications of Cobalt-Oxide-Grafted Carbon Quantum Dot Nanocomposite for Two Electrode Asymmetric Supercapacitors and Photocatalytic Behavior. ACS OMEGA 2024; 9:14101-14117. [PMID: 38559980 PMCID: PMC10976396 DOI: 10.1021/acsomega.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Carbon materials, such as graphene, carbon nanotubes, and quantum-dot-doped metal oxides, are highly attractive for energy storage and environmental applications. This is due to their large surface area and efficient optical and electrochemical activity. In this particular study, a composite material of cobalt oxide and carbon quantum dots (Co3O4-CQD) was prepared using cobalt nitrate and ascorbic acid (carbon source) through a simple one-pot hydrothermal method. The properties of the composite material, including the functional groups, composition, surface area, and surface morphology, were evaluated by using various methods such as ultraviolet, Fourier transform infrared, X-ray diffraction, Raman, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical performance of the Co3O4-CQD composite has been studied using a three-electrode system. The results show that at 1 A g-1, the composite delivers a higher capacitance of 1209 F g-1. The asymmetric supercapacitor (Co3O4-CQD//AC) provided 13.88 W h kg-1 energy and 684.65 W kg-1 power density with a 96% capacitance retention. The Co3O4-CQD composite also demonstrated excellent photocatalytic activity (90% in 60 min) for the degradation of methylene blue dye under UV irradiation, which is higher than that of pristine Co3O4 and CQD. This demonstrates that the Co3O4-CQD composite is a promising material for commercial energy storage and environmental applications.
Collapse
Affiliation(s)
| | - Kannan Vellaisamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vigneshkumar Ganesan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vimalasruthi Narayanan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Stalin Thambusamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
2
|
Waqas M, Shahzadi A, Haider A, Hamid AU, Algaradah MM, Abd-Rabboh HSM, Ikram M. Chitosan grafted polyacrylic acid doped MnO 2 nanocomposite an efficient dye degrader and antimicrobial agent. Int J Biol Macromol 2023; 251:126343. [PMID: 37586627 DOI: 10.1016/j.ijbiomac.2023.126343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Manganese dioxide (MnO2) nanorods and (3, 6, and 9 mL) chitosan grafted polyacrylic acid (CS-g-PAA) doped MnO2 were prepared hydrothermally. The study objective is to decrease the recombination rate of MnO2 upon doping to enhance the dye degradation efficiency and antimicrobial activity. The doping-dependent properties of CS-g-PAA on phase identification, functional groups, optical characteristics, elemental compositions, and morphological analyses of MnO2 nanorods were conducted using systematic characterization techniques. XRD pattern shows that MnO2 has a tetragonal structure, with increased crystallite size (15.87 to 29.36 nm) upon doping. The TEM analysis showed that MnO2 has nanorods and that CS-g-PAA doped MnO2 displayed nanoflakes-like structures. The decrease in electron-hole pair recombination rate on doping was verified by PL spectroscopy, demonstrating the enhanced catalytic activity. Moreover, adding grafted binary polymers to MnO2 inhibits bacterial cell growth by binding with the negatively charged cell wall and preventing biofilm formation. The 9 mL doped sample displayed a maximum degradation (99.27 %) in a neutral medium and 85.84 % antimicrobial efficiency against E. coli. The enoyl-acyl carrier protein reductase (FabIE. coli) and DNA gyrase(E. coli) were inhibited by these CS-g-PAA doped MnO2 nanostructures (NSs), as shown by in silico molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Waqas
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anwar Ul Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
3
|
Kitchamsetti N, Samtham M, Singh D, Choudhary E, Rondiya SR, Ma YR, Cross RW, Dzade NY, Devan RS. Hierarchical 2D MnO2@1D mesoporous NiTiO3 core-shell hybrid structures for high-performance supercapattery electrodes: Theoretical and experimental investigations. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Alem AF, Worku AK, Ayele DW, Habtu NG, Ambaw MD, Yemata TA. Enhancing pseudocapacitive properties of cobalt oxide hierarchical nanostructures via iron doping. Heliyon 2023; 9:e13817. [PMID: 36873468 PMCID: PMC9976307 DOI: 10.1016/j.heliyon.2023.e13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Through co-precipitation and post-heat processing, nanostructured Fe-doped Co3O4 nanoparticles (NPs) were developed. Using the SEM, XRD, BET, FTIR, TGA/DTA, UV-Vis, and techniques were examined. The XRD analysis presented that Co3O4 and Co3O4 nanoparticles that had been doped with 0.25 M Fe formed single cubic phase Co3O4 NPs with average crystallite sizes of 19.37 nm and 14.09 nm, respectively. The as prepared NPs have porous architectures via SEM analyses. The BET surface areas of Co3O4 and 0.25 M Fe-doped Co3O4 NPs were 53.06 m2/g and 351.56 m2/g, respectively. Co3O4 NPs have a band gap energy of 2.96 eV and an extra sub-band gap energy of 1.95 eV. Fe-doped Co3O4 NPs were also found to have band gap energies between 2.54 and 1.46 eV. FTIR spectroscopy was used to determine whether M-O bonds (M = Co, Fe) were present. The doping impact of iron results in the doped Co3O4 samples having better thermal characteristics. The highest specific capacitance was achieved using 0.25 M Fe-doped Co3O4 NPs at 5 mV/s, which corresponding to 588.5 F/g via CV analysis. Additionally, 0.25 M Fe-doped Co3O4 NPs had energy and power densities of 9.17 W h/kg and 472.1 W/kg, correspondingly.
Collapse
Affiliation(s)
- Asab Fetene Alem
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
| | - Ababay Ketema Worku
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Corresponding author.
| | - Delele Worku Ayele
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
- Corresponding author. Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| | - Nigus Gabbiye Habtu
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology-Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
| | - Mehary Dagnew Ambaw
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Temesgen Atnafu Yemata
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology-Bahir Dar University, Bahir Dar, P.O. Box 26, Ethiopia
- Corresponding author.
| |
Collapse
|
5
|
Rajaji U, Raghu MS, Yogesh Kumar K, Almutairi TM, Mohammed AA, Juang RS, Liu TY. A sonochemical synthesis of SrTiO 3 supported N-doped graphene oxide as a highly efficient electrocatalyst for electrochemical reduction of a chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2023; 93:106293. [PMID: 36638650 PMCID: PMC9852652 DOI: 10.1016/j.ultsonch.2023.106293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/03/2023]
Abstract
A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore 560103, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Cheonan-si, Republic of Korea
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - AbdallahA A Mohammed
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University 259 Wenhua First Road Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 243303, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
6
|
Worku AK, Ayele DW, Habtu NG, Ambaw MD. Engineering nanostructured Ag doped α-MnO 2 electrocatalyst for highly efficient rechargeable zinc-air batteries. Heliyon 2022; 8:e10960. [PMID: 36254283 PMCID: PMC9568855 DOI: 10.1016/j.heliyon.2022.e10960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Engineering of highly active, and non-precious electrocatalysts are vital to enhance the air-electrodes of rechargeable zinc-air batteries (ZABs). We report a facile co-precipitation technique to develop Ag doped α-MnO2 nanoparticles (NPs) and investigate their application as cathode materials for ZABs. The electrochemical and physical characteristics of α-MnO2 and Ag doped α-MnO2 NPs were compared and examined via CP, CV, TGA/DTA, FT-IR, EIS, and XRD analysis. CV result displayed higher potential and current for ORR in Ag doped α-MnO2 NPs than α-MnO2; but, ORR performance decreased when the Ag doping was raised from 7.5 to10 mmol. Moreover, α-MnO2 and Ag doped α-MnO2 NPs showed 2.1 and 3.8 electron transfer pathway, respectively, showing Ag doped α-MnO2 performance to act as an active ORR electrocatalyst for ZABs. The EIS investigation exhibited that charge-transfer resistance for Ag doped α-MnO2 was extremely lower associated to the MnO2 demonstrating that the successful loading of Ag in α-MnO2. A homemade ZAB based on Ag–MnO2-7.5 showed a high open circuit potential, low ohmic resistances, and excellent discharge profile at a constant current density of 1 mA/g. Moreover, Ag–MnO2-7.5 show a specific capacity of 795 mA h g−1 with corresponding high energy density ∼875 Wh kg−1 at 1 mA cm−2 discharging conditions. Ag doped α-MnO2 electrode for rechargeable zinc–air battery was prepared via a facile co-precipitation technique. Ag doped α-MnO2 electrode shows lower charge transfer resistance associated to un-doped MnO2 electrode. Ag doped α-MnO2 shows enhanced ORR kinetics in oxygen electrode potential. The capacitance performance of Ag doped α-MnO2 electrodes was highly improved. Ag doped α-MnO2 electrode showed energy density of 69.3 W h kg−1 and power density of 722.9 W kg−1.
Collapse
Affiliation(s)
- Ababay Ketema Worku
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia
| | - Delele Worku Ayele
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia,Department of Chemistry, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia,Corresponding author.
| | - Nigus Gabbiye Habtu
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia,Faculty of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia,Corresponding author.
| | - Mehary Dagnew Ambaw
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
7
|
Hydrothermal synthesis of CuO@MnO 2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications. Sci Rep 2022; 12:12951. [PMID: 36127493 PMCID: PMC9489798 DOI: 10.1038/s41598-022-16863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been used to fabricate nanostructured materials for various energy devices, such as supercapacitors, sensors, batteries, and electrocatalysts. Nitrogen-doped carbon-based electrodes have been widely used to improve supercapacitor applications via various chemical approaches. Based on previous studies, CuO@MnO2 and CuO@MnO2/N-MWCNT composites were synthesized using a sonication-supported hydrothermal reaction process to evaluate their supercapacitor properties. The structural and morphological properties of the synthesized composite materials were characterized via Raman spectroscopy, XRD, SEM, and SEM–EDX, and the morphological properties of the composite materials were confirmed by the nanostructured composite at the nanometer scale. The CuO@MnO2 and CuO@MnO2/N-MWCNT composite electrodes were fabricated in a three-electrode configuration, and electrochemical analysis was performed via CV, GCD, and EIS. The composite electrodes exhibited the specific capacitance of ~ 184 F g−1 at 0.5 A g−1 in the presence of a 5 M KOH electrolyte for the three-electrode supercapacitor application. Furthermore, it exhibited significantly improved specific capacitances and excellent cycling stability up to 5000 GCD cycles, with a 98.5% capacity retention.
Collapse
|
8
|
Trimetallic Oxides/GO Composites Optimized with Carbon Ions Radiations for Supercapacitive Electrodes. CRYSTALS 2022. [DOI: 10.3390/cryst12060874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrothermally synthesized electrodes of Co3O4@MnO2@NiO/GO were produced for use in supercapacitors. Graphene oxide (GO) was incorporated into the nanocomposites used for electrode synthesis due to its great surface area and electrical conductivity. The synergistic alliance among these composites and GO enhances electrode performance, life span, and stability. The structural properties obtained from the X-ray diffraction (XRD) results suggest that nanocomposites are crystalline in nature. The synergistic alliance among these composites and GO enhances electrode performance, life span, and stability. Performance assessment of these electrodes indicates that their characteristic performance was enhanced by C2+ radiation, with the uttermost performance witnessed for electrodes radiated with 5.0 × 1015 ions/cm2.
Collapse
|
9
|
Hu Z, Hao L, Quan F, Guo R. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for the development of clean and efficient energy is becoming increasingly pressing due to depleting fossil fuels and environmental concerns.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Engineering Co 3O 4/MnO 2 nanocomposite materials for oxygen reduction electrocatalysis. Heliyon 2021; 7:e08076. [PMID: 34632143 PMCID: PMC8488498 DOI: 10.1016/j.heliyon.2021.e08076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Stable and active electrocatalysts preparation for the oxygen reduction reaction (ORR) is essential for an energy storage and conversion materials (e.g. metal-air batteries). Herein, we prepared a highly-active MnO2 and Co3O4/MnO2 nanocomposite electrocatalysts using a facial co-precipitation approach. The electrocatalytic activity was examined in alkaline media with LSV and CV. Additionally, the physicochemical characteristics of the MnO2 and Co3O4/MnO2 composite materials were studied via SEM, XRD, BET, UV-Vis, TGA/DTA, ICP-OES and FTIR. Morphological studies indicated that a pure MnO2 has a spherical flower-like architecture, whereas Co3O4/MnO2 nanocomposites have an aggregated needle-like structure. Moreover, from the XRD investigation parameters such as the dislocation density, micro-strain, and crystallite size were analyzed. The calculated energy bandgaps for the MnO2, Co3O4/MnO2-1-5, and Co3O4/MnO2-1-1 nanocomposites were 3.07, 2.6, and 2.3 eV, correspondingly. The FTIR spectroscopy was also employed to study the presence of M-O bonds (M = Mn, Co). The thermal gravimetric investigation showed that the Co3O4/MnO2 nanocomposite materials exhibited improved thermal stability, confirming an enhanced catalytic activity of ORR for MnO2/Co3O4-1-1 composite materials for ORR. These results confirm that the prepared Co3O4/MnO2 composite materials are promising air electrode candidates for the energy storage and conversion technologies.
Collapse
|
11
|
Arshadi Rastabi S, Sarraf-Mamoory R, Razaz G, Blomquist N, Hummelgård M, Olin H. Treatment of NiMoO4/nanographite nanocomposite electrodes using flexible graphite substrate for aqueous hybrid supercapacitors. PLoS One 2021; 16:e0254023. [PMID: 34214111 PMCID: PMC8253413 DOI: 10.1371/journal.pone.0254023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
The cycling performance of supercapacitors sometimes becomes limited when electrode materials slough off during frequent charge-discharge cycles, due to weak bonding between the active material and the current collector. In this work, a flexible graphite foil substrate was successfully used as the current collector for supercapacitor electrodes. Graphite foil substrates were treated in different ways with different acid concentrations and temperatures before being coated with an active material (NiMoO4/nanographite). The electrode treated with HNO3 (65%) and H2SO4 (95%) in a 1:1 ratio at 24°C gave better electrochemical performance than did electrodes treated in other ways. This electrode had capacitances of 441 and 184 Fg-1 at current densities of 0.5 and 10 Ag-1, respectively, with a good rate capability over the current densities of the other treated electrodes. SEM observation of the electrodes revealed that NiMoO4 with a morphology of nanorods 100-120 nm long was properly accommodated on the graphite surface during the charge-discharge process. It also showed that treatment with high-concentration acid created an appropriately porous and rough surface on the graphite, enhancing the adhesion of NiMoO4/nanographite and boosting the electrochemical performance.
Collapse
Affiliation(s)
| | | | - Ghadir Razaz
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Nicklas Blomquist
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Magnus Hummelgård
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| |
Collapse
|
12
|
Pseudocapacitive Mn-Co mixed oxides obtained by thermal decomposition of manganese hexacyanocobaltate in presence of carbon structures. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Jadhav S, Kalubarme RS, Suzuki N, Terashima C, Mun J, Kale BB, Gosavi SW, Fujishima A. Cobalt-Doped Manganese Dioxide Hierarchical Nanostructures for Enhancing Pseudocapacitive Properties. ACS OMEGA 2021; 6:5717-5729. [PMID: 33681611 PMCID: PMC7931399 DOI: 10.1021/acsomega.0c06150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Herein, overall improvement in the electrochemical performance of manganese dioxide is achieved through fine-tuning the microstructure of partially Co-doped manganese dioxide nanomaterial using facile hydrothermal method with precise control of preparative parameters. The structural investigation exhibits formation of a multiphase compound accompanied by controlled reflections of α-MnO2 as well as γ-MnO2 crystalline phases. The morphological examination manifests the presence of MnO2 nanowires having a width of 70-80 nm and a length of several microns. The Co-doped manganese dioxide electrode displayed a particular capacitive behavior along with a rising order of capacitance concerning with increased cobalt ion concentration suitable for certain limits. The value of specific capacitance achieved by a 5% Co-doped manganese dioxide sample was 1050 F g-1 at 0.5 A g-1, which was nearly threefold greater than that achieved by a bare manganese dioxide electrode. Furthermore, Co-doped manganese dioxide nanocomposite electrode exhibits exceptional capacitance retention (92.7%) till 10,000 cycles. It shows the good cyclability as well as stability of the material. Furthermore, we have demonstrated the solid-state supercapacitor with good energy and power density.
Collapse
Affiliation(s)
- Sarika
M. Jadhav
- Department
of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Ramchandra S. Kalubarme
- Nanocrystalline
Materials, Centre for Materials for Electronic Technology, Panchavati, Opp. Dr. Homi Bhabha
Road, Pashan, Pune 411008, India
| | - Norihiro Suzuki
- Photocatalysis
International Research Center, Research Institute for Science &
Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chiaki Terashima
- Photocatalysis
International Research Center, Research Institute for Science &
Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Junyoung Mun
- Department
of Energy & Chemical Engineering, Incheon
National A University 119 Academy-ro Yeonsu-gu, Incheon 22012, S. Korea
| | - Bharat Bhanudas Kale
- Nanocrystalline
Materials, Centre for Materials for Electronic Technology, Panchavati, Opp. Dr. Homi Bhabha
Road, Pashan, Pune 411008, India
| | - Suresh W. Gosavi
- Department
of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Akira Fujishima
- Photocatalysis
International Research Center, Research Institute for Science &
Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO2-based asymmetric supercapacitors. J Colloid Interface Sci 2021; 582:543-551. [DOI: 10.1016/j.jcis.2020.08.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
15
|
Obodo RM, Onah EO, Nsude HE, Agbogu A, Nwanya AC, Ahmad I, Zhao T, Ejikeme PM, Maaza M, Ezema FI. Performance Evaluation of Graphene Oxide Based Co
3
O
4
@GO, MnO
2
@GO and Co
3
O
4
/MnO
2
@GO Electrodes for Supercapacitors. ELECTROANAL 2020. [DOI: 10.1002/elan.202060262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raphael M. Obodo
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
- National Center for Physics Islamabad 44000 Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Emmanuel O. Onah
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
| | - Hope E. Nsude
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
| | - Ada Agbogu
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
| | - Assumpta C. Nwanya
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation 1 Old Faure Road Cape Town, Somerset West 7129 P.O. Box 722, Somerset West Western Cape Province South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa (UNISA) Muckleneuk Ridge, P.O. Box 392 Pretoria South Africa
| | - Ishaq Ahmad
- National Center for Physics Islamabad 44000 Pakistan
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering Northwestern Polytechnical University Xi'an 710072 China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa (UNISA) Muckleneuk Ridge, P.O. Box 392 Pretoria South Africa
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering Northwestern Polytechnical University Xi'an 710072 China
- School of Materials Science & Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Paul M. Ejikeme
- Department of Pure and Industrial Chemistry University of Nigeria Nsukka 410001 Nigeria
| | - M. Maaza
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation 1 Old Faure Road Cape Town, Somerset West 7129 P.O. Box 722, Somerset West Western Cape Province South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa (UNISA) Muckleneuk Ridge, P.O. Box 392 Pretoria South Africa
| | - Fabian I. Ezema
- Department of Physics and Astronomy University of Nigeria Nsukka 410001 Enugu State Nigeria
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation 1 Old Faure Road Cape Town, Somerset West 7129 P.O. Box 722, Somerset West Western Cape Province South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa (UNISA) Muckleneuk Ridge, P.O. Box 392 Pretoria South Africa
| |
Collapse
|
16
|
Permalloy nanowires/graphene oxide composite with enhanced conductive properties. Sci Rep 2020; 10:13742. [PMID: 32792576 PMCID: PMC7426915 DOI: 10.1038/s41598-020-70512-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Carbon–metal-based composites arise as advanced materials in the frontiers with nanotechnology, since the properties inherent to each component are multiplexed into a new material with potential applications. In this work, a novel composite consisting of randomly oriented permalloy nanowires (Py NWs) intercalated among the sheets of multi-layered graphene oxide (GO) was performed. Py NWs were synthesized by electrodeposition inside mesoporous alumina templates, while GO sheets were separated by means of sonication. Sequential deposition steps of Py NWs and GO flakes allowed to reach a reproducible and stable graphene oxide-based magnetic assembly. Microscopic and spectroscopic results indicate that Py NWs are anchored on the surface as well as around the edges of the multi-layered GO, promoted by the presence of chemical groups, while magnetic characterization affords additional support to our hypothesis regarding the parallel orientation of the Py NWs with respect to the GO film, and also hints the parallel stacking of GO sheets with respect to the substrate. The most striking result remains on the electrochemical performance achieved by the composite that evidences an enhanced conductive behaviour compared to a standard electrode. Such effect provides an approach to the development of permalloy nanowires/graphene oxide-based electrodes as attractive candidates for molecular sensing devices.
Collapse
|
17
|
Karaman C, Bayram E, Karaman O, Aktaş Z. Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114197] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Kitchamsetti N, Choudhary RJ, Phase DM, Devan RS. Structural correlation of a nanoparticle-embedded mesoporous CoTiO 3 perovskite for an efficient electrochemical supercapacitor. RSC Adv 2020; 10:23446-23456. [PMID: 35520327 PMCID: PMC9054855 DOI: 10.1039/d0ra04052e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
We synthesized mesoporous cobalt titanate (CTO) microrods via the sol-gel method as an outstanding working electrode for the supercapacitor. The mesoporous CTO microrods were amassed in hexagonal shapes of an average width of ∼670 nm, and were composed of nanoparticles of average diameter ∼41 nm. The well crystalline CTO microrods of the hexagonal phase to the R3̄ space group possessed an average pore size distribution of 3.92 nm throughout the microrod. The mesoporous CTO microrods with increased textural boundaries played a vital role in the diffusion of ions, and they provided a specific capacitance of 608.4 F g-1 and a specific power of 4835.7 W kg-1 and a specific energy of 9.77 W h kg-1 in an aqueous 2 M KOH electrolyte, which was remarkably better than those of Ti, La, Cr, Fe, Ni, and Sr-based perovskites or their mixed heterostructures supplemented by metal oxides as an impurity. Furthermore, the diffusion-controlled access to the OH- ions (0.27 μs) deep inside the microrod conveyed high stability, a long life cycle for up to 1950 continuous charging-discharging cycles, and excellent capacitance retention of 82.3%. Overall, the mesoporous CTO shows its potential as an electrode for a long-cycle supercapacitor, and provides opportunities for additional enhancement after developing the core-shell hetero-architecture with other metal oxide materials such as MnO2, and TiO2.
Collapse
Affiliation(s)
- Narasimharao Kitchamsetti
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore Simrol Indore 453552 India
| | - Ram J Choudhary
- UGC-DAE Consortium for Scientific Research Khandwa Road Indore 452001 India
| | - Deodatta M Phase
- UGC-DAE Consortium for Scientific Research Khandwa Road Indore 452001 India
| | - Rupesh S Devan
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore Simrol Indore 453552 India
| |
Collapse
|
19
|
Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06010] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Chung-Hsiao East Road, Section 3, Taipei 10608, Taiwan
| | - Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, Zhongzheng Road, Xinzhuang District, New Taipei City 24205, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Vavilapalli DS, Banik S, Peri RG, B M, Miryala M, Murakami M, Alicja K, K A, M S RR, Singh S. Nitrogen Incorporated Photoactive Brownmillerite Ca 2Fe 2O 5 for Energy and Environmental Applications. Sci Rep 2020; 10:2713. [PMID: 32066759 PMCID: PMC7026084 DOI: 10.1038/s41598-020-59454-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Ca2Fe2O5 (CFO) is a potentially viable material for alternate energy applications. Incorporation of nitrogen in Ca2Fe2O5 (CFO-N) lattice modifies the optical and electronic properties to its advantage. Here, the electronic band structures of CFO and CFO-N were probed using Ultraviolet photoelectron spectroscopy (UPS) and UV-Visible spectroscopy. The optical bandgap of CFO reduces from 2.21 eV to 2.07 eV on post N incorporation along with a clear shift in the valence band of CFO indicating the occupation of N 2p levels over O 2p in the valence band. Similar effect is also observed in the bandgap of CFO, which is tailored upto 1.43 eV by N+ ion implantation. The theoretical bandgaps of CFO and CFO-N were also determined by using the Density functional theory (DFT) calculations. The photoactivity of these CFO and CFO-N was explored by organic effluent degradation under sunlight. The feasibility of utilizing CFO and CFO-N samples for energy storage applications were also investigated through specific capacitance measurements. The specific capacitance of CFO is found to increase to 224.67 Fg−1 upon N incorporation. CFO-N is thus found to exhibit superior optical, catalytic as well as supercapacitor properties over CFO expanding the scope of brownmillerites in energy and environmental applications.
Collapse
Affiliation(s)
| | - Soma Banik
- Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Raja Gopal Peri
- Department of Energy, University of Madras, Chennai, 600025, India
| | - Muthuraaman B
- Department of Energy, University of Madras, Chennai, 600025, India
| | - Muralidhar Miryala
- Graduate School of Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Masato Murakami
- Graduate School of Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Klimkowicz Alicja
- Graduate School of Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Asokan K
- Materials Science Division, Inter University Accelerator Centre, New Delhi, 110067, India
| | - Ramachandra Rao M S
- Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shubra Singh
- Crystal Growth Centre, Anna University, Chennai, 600025, India.
| |
Collapse
|
21
|
Synthesis of Au/SnO 2 nanostructures allowing process variable control. Sci Rep 2020; 10:346. [PMID: 31941987 PMCID: PMC6962171 DOI: 10.1038/s41598-019-57222-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
Theoretical advances in science are inherently time-consuming to realise in engineering, since their practical application is hindered by the inability to follow the theoretical essence. Herein, we propose a new method to freely control the time, cost, and process variables in the fabrication of a hybrid featuring Au nanoparticles on a pre-formed SnO2 nanostructure. The above advantages, which were divided into six categories, are proven to be superior to those achieved elsewhere, and the obtained results are found to be applicable to the synthesis and functionalisation of other nanostructures. Furthermore, the reduction of the time-gap between science and engineering is expected to promote the practical applications of numerous scientific theories.
Collapse
|
22
|
Fu X, Xu S, Luo Y, Li A, Yang H. Simultaneous Photoreduction and Nitrogen Doping of Graphene Oxide for Supercapacitors by Direct Laser Writing. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9060-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Yang X, Tian Y, Sarwar S, Zhang M, Zhang H, Luo J, Zhang X. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Samdani KJ, Kim SH, Park JH, Hong SH, Lee KT. Morphology-controlled synthesis of Co3O4 composites with bio-inspired carbons as high-performance supercapacitor electrode materials. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|