1
|
Roze E, Dubacq C, Welniarz Q. Corticospinal Tract Development, Evolution, and Skilled Movements. Mov Disord 2025. [PMID: 40277091 DOI: 10.1002/mds.30199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The evolution of the corticospinal tract (CST) is closely linked to the development of skilled voluntary movements in mammals. The main evolutionary divergence concerns the position of the CST within the spinal cord white matter and its postsynaptic targets in the grey matter. Here, we examine the developmental steps contributing to the CST projection pattern from an evolutionary point of view. Recent studies have highlighted the molecular mechanisms involved in these processes and how they relate to the acquisition of skilled movements. Comparison of the evolution of the CST in different species offers a new perspective on manual dexterity. In particular, it adds a new level of complexity to the classic view linking the evolution of the CST and the sequential improvement of skilled hand movements from rodents to primates. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emmanuel Roze
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Dubacq
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
| | - Quentin Welniarz
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute Institut du Cerveau, Paris, France
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
3
|
Wildenberg G, Li H, Sampathkumar V, Sorokina A, Kasthuri N. Isochronic development of cortical synapses in primates and mice. Nat Commun 2023; 14:8018. [PMID: 38049416 PMCID: PMC10695974 DOI: 10.1038/s41467-023-43088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit-would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the male Mus musculus (mouse) and Rhesus macaque (primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Anastasia Sorokina
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| |
Collapse
|
4
|
Kogan E, Lu J, Zuo Y. Cortical circuit dynamics underlying motor skill learning: from rodents to humans. Front Mol Neurosci 2023; 16:1292685. [PMID: 37965043 PMCID: PMC10641381 DOI: 10.3389/fnmol.2023.1292685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Motor learning is crucial for the survival of many animals. Acquiring a new motor skill involves complex alterations in both local neural circuits in many brain regions and long-range connections between them. Such changes can be observed anatomically and functionally. The primary motor cortex (M1) integrates information from diverse brain regions and plays a pivotal role in the acquisition and refinement of new motor skills. In this review, we discuss how motor learning affects the M1 at synaptic, cellular, and circuit levels. Wherever applicable, we attempt to relate and compare findings in humans, non-human primates, and rodents. Understanding the underlying principles shared by different species will deepen our understanding of the neurobiological and computational basis of motor learning.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
5
|
Wildenberg G, Li H, Kasthuri N. The Development of Synapses in Mouse and Macaque Primary Sensory Cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528564. [PMID: 36824798 PMCID: PMC9949058 DOI: 10.1101/2023.02.15.528564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report that the rate of synapse development in primary sensory cortices of mice and macaques is unrelated to lifespan, as was previously thought. We analyzed 28,084 synapses over multiple developmental time points in both species and find, instead, that net excitatory synapse development of mouse and macaque neurons primarily increased at similar rates in the first few postnatal months, and then decreased over a span of 1-1.5 years of age. The development of inhibitory synapses differed qualitatively across species. In macaques, net inhibitory synapses first increase and then decrease on excitatory soma at similar ages as excitatory synapses. In mice, however, such synapses are added throughout life. These findings contradict the long-held belief that the cycle of synapse formation and pruning occurs earlier in shorter-lived animals. Instead, our results suggest more nuanced rules, with the development of different types of synapses following different timing rules or different trajectories across species.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| |
Collapse
|
6
|
Wang J, Cai Y, Sun J, Feng H, Zhu X, Chen Q, Gao F, Ni Q, Mao L, Yang M, Sun B. Administration of intramuscular AAV-BDNF and intranasal AAV-TrkB promotes neurological recovery via enhancing corticospinal synaptic connections in stroke rats. Exp Neurol 2023; 359:114236. [PMID: 36183811 DOI: 10.1016/j.expneurol.2022.114236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022]
Abstract
Stroke causes long-term disability in survivors. BDNF/TrkB plays an important role in synaptic plasticity and synaptic transmission in the central nervous system (CNS), promoting neurological recovery. In this study, we performed non-invasive treatment methods focused on intramuscular injection into stroke-injured forelimb muscles, or intranasal administration using adeno-associated virus (AAV) vectors carrying genes encoding BDNF or TrkB. In a permanent rat middle cerebral artery occlusion (MCAO) model, we assessed the effects of combination therapy with AAV-BDNF and AAV-TrkB on motor functional recovery and synaptic plasticity of the corticospinal connections. Our results showed that BDNF or TrkB gene transduced in the spinal anterior horn neurons and cerebral cortical neurons. Compared to AAV vector treatment alone, behavioral and electrophysiological results showed that the combination therapy significantly improved upper limb motor functional recovery and neurotransmission efficiency after stroke. BDA tracing, immunofluorescence staining, qRT-PCR, and transmission electron microscopy of synaptic ultrastructure results revealed that the combination therapy not only potently increased the expression of Synapsin I, PSD-95, and GAP-43, but also promoted the axonal remodeling and restoration of abnormal synaptic structures. These findings provide a new strategy for enhancing neural plasticity and a potential means to treat stroke clinically.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Yichen Cai
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hua Feng
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Xiaoyu Zhu
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qian Chen
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Feng Gao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian 271000, Shandong, China
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao 266021, Shandong, China; Institute for Neurological Research, The Second Affiliated Hospital; School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
7
|
Ohno T, Fukuda S, Murabe N, Niido M, Sakurai M. Temporal Course of Transient Direct Corticomotoneuronal Connections during Development in Rodents. Neuroscience 2021; 478:89-99. [PMID: 34534634 DOI: 10.1016/j.neuroscience.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
We previously observed in rodents that during the 2nd postnatal week corticospinal axons make monosynaptic connections with motoneurons. Prior to that finding, it had been believed that such contacts only occur in higher primates. Although an in vitro electrophysiological study is prerequisite for studying the developmental time course of synaptic connections, the technical difficulty of reliably recording synaptic responses from spinal motoneurons in animals over 2 weeks old hampered the study. Instead, we used retrograde transsynaptic labeling with a genetically modified rabies virus to confirm the presence of direct corticomotoneuronal connections at an early developmental stage and to show that these connections were subsequently eliminated. However, determination of an accurate elimination time course and quantitative evaluation of synaptic connectivity cannot be achieved through viral-tracing experiments. For the present study, we improved the slice preparation procedure and maintenance of slice viability, which enabled us to record postsynaptic responses using the whole cell patch-clamp technique from retrogradely labeled forearm motoneurons up until postnatal week 7. We examined the extent of corticomotoneuronal monosynaptic connections and studied the time course of their accumulation and loss. Positive ratios of monosynaptic corticomotoneuronal EPSCs increased from P6 to P8 and then plateaued (P8-P13: 65%). Thereafter, the monosynaptic connections declined until P21, at which time they were no longer detected. The time course of the falling phase and elimination was confirmed by experiments using optogenetic stimulation. The timing of the elimination fell within the same range (P18-22) estimated in our earlier study using retrograde transsynaptic labeling.
Collapse
Affiliation(s)
- Takae Ohno
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Mizuho Niido
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
8
|
Guo W, Fan S, Xiao D, Dong H, Xu G, Wan Z, Ma Y, Wang Z, Xue T, Zhou Y, Li Y, Xiong W. A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes. Nat Commun 2021; 12:6403. [PMID: 34737329 PMCID: PMC8568936 DOI: 10.1038/s41467-021-26723-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
The reticulotegmental nucleus (RtTg) has long been recognized as a crucial component of brainstem reticular formation (RF). However, the function of RtTg and its related circuits remain elusive. Here, we report a role of the RtTg in startle reflex, a highly conserved innate defensive behaviour. Optogenetic activation of RtTg neurons evokes robust startle responses in mice. The glutamatergic neurons in the RtTg are significantly activated during acoustic startle reflexes (ASR). Chemogenetic inhibition of the RtTg glutamatergic neurons decreases the ASR amplitudes. Viral tracing reveals an ASR neural circuit that the cochlear nucleus carrying auditory information sends direct excitatory innervations to the RtTg glutamatergic neurons, which in turn project to spinal motor neurons. Together, our findings describe a functional role of RtTg and its related neural circuit in startle reflexes, and demonstrate how the RF connects auditory system with motor functions.
Collapse
Affiliation(s)
- Weiwei Guo
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Sijia Fan
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Dan Xiao
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Hui Dong
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871 China
| | - Guangwei Xu
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Zhikun Wan
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Yuqian Ma
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Zhen Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tian Xue
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China ,grid.9227.e0000000119573309Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yifeng Zhou
- grid.59053.3a0000000121679639Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-IDG–McGovern Institute for Brain Research, Beijing, 100871 China
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
10
|
Ribeiro Gomes AR, Olivier E, Killackey HP, Giroud P, Berland M, Knoblauch K, Dehay C, Kennedy H. Refinement of the Primate Corticospinal Pathway During Prenatal Development. Cereb Cortex 2021; 30:656-671. [PMID: 31343065 DOI: 10.1093/cercor/bhz116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/14/2022] Open
Abstract
Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.
Collapse
Affiliation(s)
- Ana Rita Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Etienne Olivier
- Institute of Neuroscience, Université Catholique de Louvain, Belgium
| | - Herbert P Killackey
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Pascale Giroud
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Michel Berland
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France.,Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Mostajo-Radji MA, Schmitz MT, Montoya ST, Pollen AA. Reverse engineering human brain evolution using organoid models. Brain Res 2020; 1729:146582. [PMID: 31809699 PMCID: PMC7058376 DOI: 10.1016/j.brainres.2019.146582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Primate brains vary dramatically in size and organization, but the genetic and developmental basis for these differences has been difficult to study due to lack of experimental models. Pluripotent stem cells and brain organoids provide a potential opportunity for comparative and functional studies of evolutionary differences, particularly during the early stages of neurogenesis. However, many challenges remain, including isolating stem cell lines from additional great ape individuals and species to capture the breadth of ape genetic diversity, improving the reproducibility of organoid models to study evolved differences in cell composition and combining multiple brain regions to capture connectivity relationships. Here, we describe strategies for identifying evolved developmental differences between humans and non-human primates and for isolating the underlying cellular and genetic mechanisms using comparative analyses, chimeric organoid culture, and genome engineering. In particular, we focus on how organoid models could ultimately be applied beyond studies of progenitor cell evolution to decode the origin of recent changes in cellular organization, connectivity patterns, myelination, synaptic development, and physiology that have been implicated in human cognition.
Collapse
Affiliation(s)
- Mohammed A Mostajo-Radji
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew T Schmitz
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sebastian Torres Montoya
- Health Co-creation Laboratory, Medellin General Hospital, Medellin, Antioquia, Colombia; Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex A Pollen
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|