1
|
Schwartz M, Boichot V, Muradova M, Fournier P, Senet P, Nicolai A, Canon F, Lirussi F, Ladeira R, Maibeche M, Chertemps T, Aubert E, Didierjean C, Neiers F. Structure-activity analysis suggests an olfactory function for the unique antennal delta glutathione transferase of Apis mellifera. FEBS Lett 2023; 597:3038-3048. [PMID: 37933500 DOI: 10.1002/1873-3468.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Glutathione transferases (GST) are detoxification enzymes that conjugate glutathione to a wide array of molecules. In the honey bee Apis mellifera, AmGSTD1 is the sole member of the delta class of GSTs, with expression in antennae. Here, we structurally and biochemically characterized AmGSTD1 to elucidate its function. We showed that AmGSTD1 can efficiently catalyse the glutathione conjugation of classical GST substrates. Additionally, AmGSTD1 exhibits binding properties with a range of odorant compounds. AmGSTD1 has a peculiar interface with a structural motif we propose to call 'sulfur sandwich'. This motif consists of a cysteine disulfide bridge sandwiched between the sulfur atoms of two methionine residues and is stabilized by CH…S hydrogen bonds and S…S sigma-hole interactions. Thermal stability studies confirmed that this motif is important for AmGSTD1 stability and, thus, could facilitate its functions in olfaction.
Collapse
Affiliation(s)
- Mathieu Schwartz
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Valentin Boichot
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Mariam Muradova
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
- International Research Center "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russia
| | | | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Francis Canon
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| | - Frederic Lirussi
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Ruben Ladeira
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Bioinformatique & Big Data Au Service de La Santé 2B2S, UFR Santé, Université de Franche-Comté, INSERM U1231, Centre Hospitalier Universitaire, Besançon, France
| | - Martine Maibeche
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Thomas Chertemps
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | | | | | - Fabrice Neiers
- CSGA, Flavour Perception: Molecular Mechanisms (Flavours), Université de Bourgogne, INRAE, CNRS, Institut Agro, Dijon, France
| |
Collapse
|
2
|
Afrin W, Yamada N, Furuya S, Yamamoto K. Characterization of glutathione-specific gamma glutamyl cyclotransferase (ChaC) in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22027. [PMID: 37283485 DOI: 10.1002/arch.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Glutathione (GSH) contributes to redox maintenance and detoxification of various xenobiotic and endogenous substances. γ-glutamyl cyclotransferase (ChaC) is involved in GSH degradation. However, the molecular mechanism underlying GSH degradation in silkworms (Bombyx mori) remains unknown. Silkworms are lepidopteran insects that are considered to be an agricultural pest model. We aimed to examine the metabolic mechanism underlying GSH degradation mediated by B. mori ChaC and successfully identified a novel ChaC gene in silkworms (herein, bmChaC). The amino acid sequence and phylogenetic tree revealed that bmChaC was closely related to mammalian ChaC2. We overexpressed recombinant bmChaC in Escherichia coli, and the purified bmChaC showed specific activity toward GSH. Additionally, we examined the degradation of GSH to 5-oxoproline and cysteinyl glycine via liquid chromatography-tandem mass spectrometry. Quantitative real-time polymerase chain reaction revealed that bmChaC mRNA expression was observed in various tissues. Our results suggest that bmChaC participates in tissue protection via GSH homeostasis. This study provides new insights into the activities of ChaC and the underlying molecular mechanisms that can aid the development of insecticides to control agricultural pests.
Collapse
Affiliation(s)
- Wazifa Afrin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Afrin W, Furuya S, Yamamoto K. Characterization of a glutamate-cysteine ligase in Bombyx mori. Mol Biol Rep 2023; 50:2623-2631. [PMID: 36637620 DOI: 10.1007/s11033-022-08191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
Glutamate-cysteine ligase (GCL) is a crucial enzyme involved in the synthesis of glutathione (GSH). Despite various studies on glutathione transferase, and its essential role in detoxification and resistance to oxidative stress, GSH synthesis has not been described in Bombyx mori (silkworms) to date. Silkworms form part of the lepidopterans that are considered as a model of agricultural pests. This study aimed to understand the GSH synthesis by GCL in silkworms, which may help in developing insecticides to tackle agricultural pests. Based on the amino acid sequence and phylogenetic tree, the B. mori GCL belongs to group 2, and is designated bmGCL. Recombinant bmGCL was overexpressed and purified to ensure homogeneity. Biochemical studies revealed that bmGCL uses ATP and Mg2+ to ligate glutamate and cysteine. High expression levels of bmgcl mRNA and GSH were observed in the silkworm fat body after exposure to insecticides and UV-B irradiation. Moreover, we found an increase in bmgcl mRNA and GSH content during pupation in the silkworm fat body. In this study, we characterized the B. mori GCL and analyzed its biochemical properties. These observations indicate that bmGCL might play an important role in the resistance to oxidative stress in the silkworms.
Collapse
Affiliation(s)
- Wazifa Afrin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
5
|
Takarada WH, Ferreira JG, Riegel-Vidotti IC, Orth ES. Functionalization of gum arabic derivatives for catalytic neutralization of organophosphates. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Structural and Functional Characterization of One Unclassified Glutathione S-Transferase in Xenobiotic Adaptation of Leptinotarsa decemlineata. Int J Mol Sci 2021; 22:ijms222111921. [PMID: 34769352 PMCID: PMC8584303 DOI: 10.3390/ijms222111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. To date, the roles of GSTs in xenobiotic adaptation in the Colorado potato beetle (CPB), a notorious agricultural pest of plants within Solanaceae, have not been well studied. Here, we functionally expressed and characterized an unclassified-class GST, LdGSTu1. The three-dimensional structure of the LdGSTu1 was solved with a resolution up to 1.8 Å by X-ray crystallography. The signature motif VSDGPPSL was identified in the “G-site”, and it contains the catalytically active residue Ser14. Recombinant LdGSTu1 was used to determine enzyme activity and kinetic parameters using 1-chloro-2, 4-dinitrobenzene (CDNB), GSH, p-nitrophenyl acetate (PNA) as substrates. The enzyme kinetic parameters and enzyme-substrate interaction studies demonstrated that LdGSTu1 could catalyze the conjugation of GSH to both CDNB and PNA, with a higher turnover number for CDNB than PNA. The LdGSTu1 enzyme inhibition assays demonstrated that the enzymatic conjugation of GSH to CDNB was inhibited by multiple pesticides, suggesting a potential function of LdGSTu1 in xenobiotic adaptation.
Collapse
|
7
|
Transitioning from Oxime to the Next Potential Organophosphorus Poisoning Therapy Using Enzymes. J CHEM-NY 2021. [DOI: 10.1155/2021/7319588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For years, organophosphorus poisoning has been a major concern of health problems throughout the world. An estimated 200,000 acute pesticide poisoning deaths occur each year, many in developing countries. Apart from the agricultural pesticide poisoning, terrorists have used these organophosphorus compounds to attack civilian populations in some countries. Recent misuses of sarin in the Syrian conflict had been reported in 2018. Since the 1950s, the therapy to overcome this health problem is to utilize a reactivator to reactivate the inhibited acetylcholinesterase by these organophosphorus compounds. However, many questions remain unanswered regarding the efficacy and toxicity of this reactivator. Pralidoxime, MMB-4, TMB-4, obidoxime, and HI-6 are the examples of the established oximes, yet they are of insufficient effectiveness in some poisonings and only a limited spectrum of the different nerve agents and pesticides are being covered. Alternatively, an option in the treatment of organophosphorus poisoning that has been explored is through the use of enzyme therapy. Organophosphorus hydrolases are a group of enzymes that look promising for detoxifying organophosphorus compounds and have recently gained much interest. These enzymes have demonstrated remarkable protective and antidotal value against some different organophosphorus compounds in vivo in animal models. Apart from that, enzyme treatments have also been applied for decontamination purposes. In this review, the restrictions and obstacles in the therapeutic development of oximes, along with the new strategies to overcome the problems, are discussed. The emerging interest in enzyme treatment with its advantages and disadvantages is described as well.
Collapse
|
8
|
Yamamoto K, Hirowatari A. Investigation of the Substrate-Binding Site of a Prostaglandin E Synthase in Bombyx mori. Protein J 2021; 40:63-67. [PMID: 33403608 DOI: 10.1007/s10930-020-09956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 11/30/2022]
Abstract
Prostaglandin E synthase (PGES) catalyzes the conversion of prostaglandin H2 to prostaglandin E2 in the presence of glutathione (GSH) in mammals. Amid the limited knowledge on prostaglandin and its related enzymes in insects, we recently identified PGES from the silkworm Bombyx mori (bmPGES) and determined its crystal structure complexed with GSH. In the current study, we investigated the substrate-binding site of bmPGES by site-directed mutagenesis and X-ray crystallography. We found that the residues Tyr107, Val155, Met159, and Glu203 are located in the catalytic pockets of bmPGES, and mutagenesis of each residue reduced the bmPGES activity. Our results suggest that these four residues contribute to the catalytic activity of bmPGES. Overall, this structure-function study holds implications in controlling pests by designing rational and efficient pesticides.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819- 0395, Fukuoka, Japan.
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819- 0395, Fukuoka, Japan
| |
Collapse
|
9
|
Yamamoto K, Yamaguchi M, Yamada N. Investigation of the active site of an unclassified glutathione transferase in Bombyx mori by alanine scanning. JOURNAL OF PESTICIDE SCIENCE 2020; 45:238-240. [PMID: 33304193 PMCID: PMC7691559 DOI: 10.1584/jpestics.d20-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 06/12/2023]
Abstract
Glutathione transferase (GST) is an important class of detoxification enzymes that are vital for defense against various xenobiotics and cellular oxidative stress. Previously, we had reported an unclassified glutathione transferase 2 in Bombyx mori (bmGSTu2) to be responsible for detoxifying diazinon. In this study, we aimed to identify the amino acid residues that constitute a hydrogen-bonding network important for GST activity. Site-directed mutagenesis of bmGSTu2 suggested that residues Asn102, Pro162, and Ser166 contribute to its catalytic activity.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School
| | - Misuzu Yamaguchi
- Department of Bioscience and Biotechnology, Kyushu University Graduate School
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Kyushu University Graduate School
| |
Collapse
|
10
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|