1
|
Cosenza G, Fulgione A, Albarella S, Ciotola F, Peretti V, Gallo D, Pauciullo A. Identification and Validation of Genus/Species-Specific Short InDels in Dairy Ruminants. BMC Vet Res 2025; 21:215. [PMID: 40155939 PMCID: PMC11951546 DOI: 10.1186/s12917-025-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Over the past thirty years, the identification of species-specific molecular markers has significantly advanced our understanding of genetic diversity in both plants and animals. Among these, short InDels have emerged as vital genomic features, contributing more to sequence divergence than single nucleotide polymorphisms do in closely related species. This study aimed to identify specific InDels for Bos taurus, Bubalus bubalis, Capra hircus, and Ovis aries via an in silico approach and validated them in 400 individuals (100 for each species). RESULTS We identified and characterized short, specific InDels in the sequences of the CSN1S1, CSN1S2, MSTN, and PRLR genes, which can be used for species identification of Capra hircus, Ovis aries, Bos taurus, and Bubalus bubalis, respectively. We developed a Tetraplex Specific PCR assay to enable efficient discrimination among these species. CONCLUSIONS This study highlights the utility of InDels as biallelic, codominant markers that are cost-effective and easy to analyse, providing valuable tools for genetic diversity analysis and species identification.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy.
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Daniela Gallo
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
2
|
Warburton CL, Costilla R, Engle BN, Moore SS, Corbet NJ, Fordyce G, McGowan MR, Burns BM, Hayes BJ. Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations. Heredity (Edinb) 2023; 131:350-360. [PMID: 37798326 PMCID: PMC10673866 DOI: 10.1038/s41437-023-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.
Collapse
Affiliation(s)
- Christie L Warburton
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia.
| | - Roy Costilla
- Agresearch Limited, Ruakura Research Centre, Hamilton, 3214, New Zealand
| | - Bailey N Engle
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Stephen S Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Corbet
- Formerly Central Queensland University, School of Health, Medical and Applied Sciences, Rockhampton, QLD, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Michael R McGowan
- The University of Queensland, School of Veterinary Science, St Lucia, QLD, Australia
| | - Brian M Burns
- Formerly Department of Agriculture and Fisheries, Rockhampton, QLD, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Powell J, Talenti A, Fisch A, Hemmink JD, Paxton E, Toye P, Santos I, Ferreira BR, Connelley TK, Morrison LJ, Prendergast JGD. Profiling the immune epigenome across global cattle breeds. Genome Biol 2023; 24:127. [PMID: 37218021 DOI: 10.1186/s13059-023-02964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.
Collapse
Affiliation(s)
- Jessica Powell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Andrea Talenti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Johanneke D Hemmink
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Philip Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, PO Box 30709, Nairobi, 00100, Kenya
| | - Isabel Santos
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Beatriz R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tim K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
4
|
Aldersey JE, Liu N, Tearle R, Low WY, Breen J, Williams JL, Bottema CDK. Topologically associating domains in the POLLED region are the same for Angus- and Brahman-specific Hi-C reads from F1 hybrid fetal tissue. Anim Genet 2023. [PMID: 36990727 DOI: 10.1111/age.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Horns, a form of headgear carried by Bovidae, have ethical and economic implications for ruminant production species such as cattle and goats. Hornless (polled) individuals are preferred. In cattle, four genetic variants (Celtic, Friesian, Mongolian and Guarani) are associated with the polled phenotype, which are clustered in a 300-kb region on chromosome 1. As the variants are intergenic, the functional effect is unknown. The aim of this study was to determine if the POLLED variants affect chromatin structure or disrupt enhancers using publicly available data. Topologically associating domains (TADs) were analyzed using Angus- and Brahman-specific Hi-C reads from lung tissue of an Angus (Celtic allele) cross Brahman (horned) fetus. Predicted bovine enhancers and chromatin immunoprecipitation sequencing peaks for histone modifications associated with enhancers (H3K27ac and H3K4me1) were mapped to the POLLED region. TADs analyzed from Angus- and Brahman-specific Hi-C reads were the same, therefore, the Celtic variant does not appear to affect this level of chromatin structure. The Celtic variant is located in a different TAD from the Friesian, Mongolian, and Guarani variants. Predicted enhancers and histone modifications overlapped with the Guarani and Friesian variants but not the Celtic or Mongolian variants. This study provides insight into the mechanisms of the POLLED variants for disrupting horn development. These results should be validated using data produced from the horn bud region of horned and polled bovine fetuses.
Collapse
Affiliation(s)
- J E Aldersey
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
| | - N Liu
- South Australian Health & Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - R Tearle
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
- Alkahest Inc, San Carlos, California, USA
| | - W Y Low
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
| | - J Breen
- South Australian Health & Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - J L Williams
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
- Department of Animal Science, Food and Technology, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - C D K Bottema
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
5
|
Solodneva E, Svishcheva G, Smolnikov R, Bazhenov S, Konorov E, Mukhina V, Stolpovsky Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle ( Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. Int J Mol Sci 2023; 24:5061. [PMID: 36902492 PMCID: PMC10003406 DOI: 10.3390/ijms24055061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/09/2023] Open
Abstract
Every week, 1-2 breeds of farm animals, including local cattle, disappear in the world. As the keepers of rare allelic variants, native breeds potentially expand the range of genetic solutions to possible problems of the future, which means that the study of the genetic structure of these breeds is an urgent task. Providing nomadic herders with valuable resources necessary for life, domestic yaks have also become an important object of study. In order to determine the population genetic characteristics, and clarify the phylogenetic relationships of modern representatives of 155 cattle populations from different regions of the world, we collected a large set of STR data (10,250 individuals), including unique native cattle, 12 yak populations from Russia, Mongolia and Kyrgyzstan, as well as zebu breeds. Estimation of main population genetic parameters, phylogenetic analysis, principal component analysis and Bayesian cluster analysis allowed us to refine genetic structure and provided insights in relationships of native populations, transboundary breeds and populations of domestic yak. Our results can find practical application in conservation programs of endangered breeds, as well as become the basis for future fundamental research.
Collapse
Affiliation(s)
- Evgenia Solodneva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulnara Svishcheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Rodion Smolnikov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Sergey Bazhenov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Evgenii Konorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Vera Mukhina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Yurii Stolpovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
6
|
Bruscadin JJ, Cardoso TF, da Silva Diniz WJ, Afonso J, de Souza MM, Petrini J, Nascimento Andrade BG, da Silva VH, Ferraz JBS, Zerlotini A, Mourão GB, Coutinho LL, de Almeida Regitano LC. Allele-specific expression reveals functional SNPs affecting muscle-related genes in bovine. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194886. [DOI: 10.1016/j.bbagrm.2022.194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
7
|
Olasege BS, Porto-Neto LR, Tahir MS, Gouveia GC, Cánovas A, Hayes BJ, Fortes MRS. Correlation scan: identifying genomic regions that affect genetic correlations applied to fertility traits. BMC Genomics 2022; 23:684. [PMID: 36195838 PMCID: PMC9533527 DOI: 10.1186/s12864-022-08898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia.,CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Gabriela C Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia. .,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
|
9
|
Genome-wide local ancestry and evidence for mitonuclear coadaptation in African hybrid cattle populations (Bos taurus/indicus). iScience 2022; 25:104672. [PMID: 35832892 PMCID: PMC9272374 DOI: 10.1016/j.isci.2022.104672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
The phenotypic diversity of African cattle reflects adaptation to a wide range of agroecological conditions, human-mediated selection preferences, and complex patterns of admixture between the humpless Bos taurus (taurine) and humped Bos indicus (zebu) subspecies, which diverged 150-500 thousand years ago. Despite extensive admixture, all African cattle possess taurine mitochondrial haplotypes, even populations with significant zebu biparental and male uniparental nuclear ancestry. This has been interpreted as the result of human-mediated dispersal ultimately stemming from zebu bulls imported from South Asia during the last three millennia. Here, we assess whether ancestry at mitochondrially targeted nuclear genes in African admixed cattle is impacted by mitonuclear functional interactions. Using high-density SNP data, we find evidence for mitonuclear coevolution across hybrid African cattle populations with a significant increase of taurine ancestry at mitochondrially targeted nuclear genes. Our results, therefore, support the hypothesis of incompatibility between the taurine mitochondrial genome and the zebu nuclear genome.
Collapse
|
10
|
Mulim HA, Brito LF, Pinto LFB, Ferraz JBS, Grigoletto L, Silva MR, Pedrosa VB. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics 2022; 23:209. [PMID: 35291953 PMCID: PMC8925140 DOI: 10.1186/s12864-022-08384-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023] Open
Abstract
Background A decline in the level of genetic diversity in livestock can result in reduced response to selection, greater incidence of genetic defects, and inbreeding depression. In this context, various metrics have been proposed to assess the level of genetic diversity in selected populations. Therefore, the main goals of this study were to: 1) investigate the population structure of 16 cattle populations from 15 different pure breeds or composite populations, which have been selected for different breeds goals; and, 2) identify and compare runs of homozygosity (ROH) and heterozygosity-enriched regions (HER) based on different single nucleotide polymorphism (SNP) panels and whole-genome sequence data (WGS), followed by functional genomic analyses. Results A total of 24,187 ROH were found across all cattle populations, with 55% classified in the 2-4 Mb size group. Fourteen homozygosity islands were found in five populations, where four ROH islands located on BTA1, BTA5, BTA16, and BTA19 overlapped between the Brahman (BRM) and Gyr (GIR) breeds. A functional analysis of the genes found in these islands revealed candidate genes known to play a role in the melanogenesis, prolactin signaling, and calcium signaling pathways. The correlations between inbreeding metrics ranged from 0.02 to 0.95, where the methods based on homozygous genotypes (FHOM), uniting of gametes (FUNI), and genotype additive variance (FGRM) showed strong correlations among them. All methods yielded low to moderate correlations with the inbreeding coefficients based on runs of homozygosity (FROH). For the HER, 3576 runs and 26 islands, distributed across all autosomal chromosomes, were found in regions containing genes mainly related to the immune system, indicating potential balancing selection. Although the analyses with WGS did not enable detection of the same island patterns, it unraveled novel regions not captured when using SNP panel data. Conclusions The cattle populations that showed the largest amount of ROH and HER were Senepol (SEN) and Montana (MON), respectively. Overlapping ROH islands were identified between GIR and BRM breeds, indicating a possible historical connection between the populations. The distribution and pattern of ROH and HER are population specific, indicating that different breeds have experienced divergent selection processes or different genetic processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08384-0.
Collapse
Affiliation(s)
| | - Luiz F Brito
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
| | | | - José Bento Sterman Ferraz
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Lais Grigoletto
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Victor Breno Pedrosa
- Department of Animal Science, Federal University of Bahia, Salvador, Bahia, Brazil. .,Department of Animal Science, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748 - Uvaranas, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
11
|
Engle BN, Hayes BJ. Genetic variation in PLAG1 is associated with early fertility in Australian Brahman cattle. J Anim Sci 2022; 100:6549654. [PMID: 35294025 PMCID: PMC9030205 DOI: 10.1093/jas/skac084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Variation in the genome region coding for PLAG1 has well-documented associations with skeletal growth and age at puberty in cattle. However, the influence of PLAG1 on other economically important traits such as cow stayability has not yet been explored. Here we investigate the effect of PLAG1 variation on early and later in life female fertility, as well as size and growth, in a well phenotyped Australian Brahman herd. Yearly pregnancy and productivity records were collected from 2,839 genotyped Brahman cows and used to generate fertility, growth, and weight phenotypes. A variant on chromosome 14 in PLAG1 (NC_037341.1:g.23338890G>T, rs109815800) was previously determined to be a putative causative mutation associated with variation in cattle stature. The imputed PLAG1 genotype at this variant was isolated for each animal and the effect of PLAG1 genotype on each trait was estimated using linear modelling. Regardless of how heifer fertility was measured, there was a significant (P < 0.05) and desirable relationship between the additive effects of PLAG1 genotype and successful heifer fertility. Heifers with two copies of the alternate allele (TT) conceived earlier and had higher pregnancy and calving rates. However, the effects of PLAG1 genotype on fertility began to diminish as cows aged and did not significantly influence stayability at later ages. While there was no effect of genotype on growth, PLAG1 had a negative effect on mature cow weight (P < 0.01), where females with two copies of the alternate allele (TT) were significantly smaller than those with either one or none. Selection emphasis on improved Brahman heifer fertility will likely increase the frequency of the T allele of rs109815800, which may also increase herd profitability and long-term sustainability through improved reproductive efficiency and reduced mature cow size.
Collapse
Affiliation(s)
- Bailey N Engle
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Kwon T, Kim K, Caetano-Anolles K, Sung S, Cho S, Jeong C, Hanotte O, Kim H. Mitonuclear incompatibility as a hidden driver behind the genome ancestry of African admixed cattle. BMC Biol 2022; 20:20. [PMID: 35039029 PMCID: PMC8764764 DOI: 10.1186/s12915-021-01206-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Africa is an important watershed in the genetic history of domestic cattle, as two lineages of modern cattle, Bos taurus and B. indicus, form distinct admixed cattle populations. Despite the predominant B. indicus nuclear ancestry of African admixed cattle, B. indicus mitochondria have not been found on the continent. This discrepancy between the mitochondrial and nuclear genomes has been previously hypothesized to be driven by male-biased introgression of Asian B. indicus into ancestral African B. taurus. Given that this hypothesis mandates extreme demographic assumptions relying on random genetic drift, we propose a novel hypothesis of selection induced by mitonuclear incompatibility and assess these hypotheses with regard to the current genomic status of African admixed cattle. Results By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of B. indicus mitochondria and the predominant B. indicus autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased B. indicus introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with B. indicus-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with B. taurus alleles, concurring with the key expectation of selection induced by mitonuclear incompatibility. Conclusions Our findings support the current genome status of African admixed cattle as a potential outcome of male-biased B. indicus introgression, where mitonuclear incompatibility exerted selection pressure against B. indicus mitochondria. This study provides a novel perspective on African cattle demography and supports the role of mitonuclear incompatibility in the hybridization of mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01206-x.
Collapse
Affiliation(s)
- Taehyung Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,eGnome, Inc, Seoul, South Korea
| | | | | | | | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, Nottingham, UK. .,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia. .,The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Edinburgh, UK.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea. .,eGnome, Inc, Seoul, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
Naji MM, Utsunomiya YT, Sölkner J, Rosen BD, Mészáros G. Assessing Bos taurus introgression in the UOA Bos indicus assembly. Genet Sel Evol 2021; 53:96. [PMID: 34922445 PMCID: PMC8684283 DOI: 10.1186/s12711-021-00688-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Reference genomes are essential in the analysis of genomic data. As the cost of sequencing decreases, multiple reference genomes are being produced within species to alleviate problems such as low mapping accuracy and reference allele bias in variant calling that can be associated with the alignment of divergent samples to a single reference individual. The latest reference sequence adopted by the scientific community for the analysis of cattle data is ARS_UCD1.2, built from the DNA of a Hereford cow (Bos taurus taurus—B. taurus). A complementary genome assembly, UOA_Brahman_1, was recently built to represent the other cattle subspecies (Bos taurus indicus—B. indicus) from a Brahman cow haplotype to further support analysis of B. indicus data. In this study, we aligned the sequence data of 15 B. taurus and B. indicus breeds to each of these references. Results The alignment of B. taurus individuals against UOA_Brahman_1 detected up to five million more single-nucleotide variants (SNVs) compared to that against ARS_UCD1.2. Similarly, the alignment of B. indicus individuals against ARS_UCD1.2 resulted in one and a half million more SNVs than that against UOA_Brahman_1. The number of SNVs with nearly fixed alternative alleles also increased in the alignments with cross-subspecies. Interestingly, the alignment of B. taurus cattle against UOA_Brahman_1 revealed regions with a smaller than expected number of counts of SNVs with nearly fixed alternative alleles. Since B. taurus introgression represents on average 10% of the genome of Brahman cattle, we suggest that these regions comprise taurine DNA as opposed to indicine DNA in the UOA_Brahman_1 reference genome. Principal component and admixture analyses using genotypes inferred from this region support these taurine-introgressed loci. Overall, the flagged taurine segments represent 13.7% of the UOA_Brahman_1 assembly. The genes located within these segments were previously reported to be under positive selection in Brahman cattle, and include functional candidate genes implicated in feed efficiency, development and immunity. Conclusions We report a list of taurine segments that are in the UOA_Brahman_1 assembly, which will be useful for the interpretation of interesting genomic features (e.g., signatures of selection, runs of homozygosity, increased mutation rate, etc.) that could appear in future re-sequencing analysis of indicine cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00688-1.
Collapse
Affiliation(s)
- Maulana M Naji
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Yuri T Utsunomiya
- AgroPartners Consulting, R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil.,Department of Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil.,International Atomic Energy Agency (IAEA) Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, São Paulo, Brazil
| | - Johann Sölkner
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA, ARS, Beltsville, MD, USA.
| | - Gábor Mészáros
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
14
|
Utsunomiya YT, Fortunato AAAD, Milanesi M, Trigo BB, Alves NF, Sonstegard TS, Garcia JF. Bos taurus haplotypes segregating in Nellore (Bos indicus) cattle. Anim Genet 2021; 53:58-67. [PMID: 34921423 DOI: 10.1111/age.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Brazil is the largest exporter of beef in the world, and most of that beef derives from Nellore cattle. Although considered a zebu breed (Bos indicus), the history of Nellore cattle in Brazil is marked by the importation of bulls from India, the use of a Creole taurine (Bos taurus) maternal lineage to quickly expand the herds and backcrossing to Nellore bulls to recover zebu ancestry. As a consequence, the current Brazilian Nellore population carries an average taurine ancestry of approximately 1%. Although that percentage seems small, some taurine variants deviate substantially from that average, with the better-known cases being the PLAG1-Q haplotype involved with body size variation and the Guarani (PG ) polled variant producing hornless animals. Here, we report taurine haplotypes in 9074 Nellore animals genotyped for 539 657 imputed SNP markers. Apart from PLAG1-Q and PG , our analysis further revealed common taurine haplotypes (>3%) spanning genes related to immunity, growth, reproduction and hair and skin phenotypes. Using data from 22 economically important traits, we showed that many of the major QTL previously reported in the breed are at least partially driven by taurine haplotypes. As B. taurus and B. indicus haplotypes are highly divergent, presenting widely different sets of functional variants, our results provide promising targets for future scrutiny in Nellore cattle.
Collapse
Affiliation(s)
- Y T Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil
| | - A A A D Fortunato
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,Personal-PEC. R. Sebastião Lima, 1336 - Centro, Campo Grande, MS, 79004-600, Brazil
| | - M Milanesi
- AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil.,Department for Innovation in Biological, Agro-Food and Forest Systems, Università Della Tuscia, Via S. Camillo de Lellis snc, Viterbo, 01100, Italy
| | - B B Trigo
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil
| | - N F Alves
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil
| | | | - J F Garcia
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University, 14884-900 Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Brazil
| |
Collapse
|
15
|
Lloret-Villas A, Bhati M, Kadri NK, Fries R, Pausch H. Investigating the impact of reference assembly choice on genomic analyses in a cattle breed. BMC Genomics 2021; 22:363. [PMID: 34011274 PMCID: PMC8132449 DOI: 10.1186/s12864-021-07554-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reference-guided read alignment and variant genotyping are prone to reference allele bias, particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly continuous Angus-based assembly (UOA_Angus_1). RESULTS Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance between sequence- and array-called genotypes was high and the number of variants deviating from Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step imputation approach. The accuracy of imputation (Beagle R2) was very high (0.87) for both assemblies. Genome-wide association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced almost identical results from both assemblies. CONCLUSIONS The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused to compare the impact of reference genomes on genome analyses in various breeds, populations and species.
Collapse
Affiliation(s)
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Lindau, 8315 Switzerland
| | | | - Ruedi Fries
- Chair of Animal Breeding, TU München, Freising-Weihenstephan, 85354 Germany
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, 8315 Switzerland
| |
Collapse
|
16
|
Novel functional sequences uncovered through a bovine multiassembly graph. Proc Natl Acad Sci U S A 2021; 118:2101056118. [PMID: 33972446 DOI: 10.1073/pnas.2101056118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many genomic analyses start by aligning sequencing reads to a linear reference genome. However, linear reference genomes are imperfect, lacking millions of bases of unknown relevance and are unable to reflect the genetic diversity of populations. This makes reference-guided methods susceptible to reference-allele bias. To overcome such limitations, we build a pangenome from six reference-quality assemblies from taurine and indicine cattle as well as yak. The pangenome contains an additional 70,329,827 bases compared to the Bos taurus reference genome. Our multiassembly approach reveals 30 and 10.1 million bases private to yak and indicine cattle, respectively, and between 3.3 and 4.4 million bases unique to each taurine assembly. Utilizing transcriptomes from 56 cattle, we show that these nonreference sequences encode transcripts that hitherto remained undetected from the B. taurus reference genome. We uncover genes, primarily encoding proteins contributing to immune response and pathogen-mediated immunomodulation, differentially expressed between Mycobacterium bovis-infected and noninfected cattle that are also undetectable in the B. taurus reference genome. Using whole-genome sequencing data of cattle from five breeds, we show that reads which were previously misaligned against the Bos taurus reference genome now align accurately to the pangenome sequences. This enables us to discover 83,250 polymorphic sites that segregate within and between breeds of cattle and capture genetic differentiation across breeds. Our work makes a so-far unused source of variation amenable to genetic investigations and provides methods and a framework for establishing and exploiting a more diverse reference genome.
Collapse
|
17
|
Fernandes Júnior GA, Carvalheiro R, de Oliveira HN, Sargolzaei M, Costilla R, Ventura RV, Fonseca LFS, Neves HHR, Hayes BJ, de Albuquerque LG. Imputation accuracy to whole-genome sequence in Nellore cattle. Genet Sel Evol 2021; 53:27. [PMID: 33711929 PMCID: PMC7953568 DOI: 10.1186/s12711-021-00622-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A cost-effective strategy to explore the complete DNA sequence in animals for genetic evaluation purposes is to sequence key ancestors of a population, followed by imputation mechanisms to infer marker genotypes that were not originally reported in a target population of animals genotyped with single nucleotide polymorphism (SNP) panels. The feasibility of this process relies on the accuracy of the genotype imputation in that population, particularly for potential causal mutations which may be at low frequency and either within genes or regulatory regions. The objective of the present study was to investigate the imputation accuracy to the sequence level in a Nellore beef cattle population, including that for variants in annotation classes which are more likely to be functional. METHODS Information of 151 key sequenced Nellore sires were used to assess the imputation accuracy from bovine HD BeadChip SNP (~ 777 k) to whole-genome sequence. The choice of the sires aimed at optimizing the imputation accuracy of a genotypic database, comprised of about 10,000 genotyped Nellore animals. Genotype imputation was performed using two computational approaches: FImpute3 and Minimac4 (after using Eagle for phasing). The accuracy of the imputation was evaluated using a fivefold cross-validation scheme and measured by the squared correlation between observed and imputed genotypes, calculated by individual and by SNP. SNPs were classified into a range of annotations, and the accuracy of imputation within each annotation classification was also evaluated. RESULTS High average imputation accuracies per animal were achieved using both FImpute3 (0.94) and Minimac4 (0.95). On average, common variants (minor allele frequency (MAF) > 0.03) were more accurately imputed by Minimac4 and low-frequency variants (MAF ≤ 0.03) were more accurately imputed by FImpute3. The inherent Minimac4 Rsq imputation quality statistic appears to be a good indicator of the empirical Minimac4 imputation accuracy. Both software provided high average SNP-wise imputation accuracy for all classes of biological annotations. CONCLUSIONS Our results indicate that imputation to whole-genome sequence is feasible in Nellore beef cattle since high imputation accuracies per individual are expected. SNP-wise imputation accuracy is software-dependent, especially for rare variants. The accuracy of imputation appears to be relatively independent of annotation classification.
Collapse
Affiliation(s)
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, UNESP, Jaboticabal, SP, 14884-900, Brazil.,National Council for Scientific and Technological Development, CNPq, Brasília, DF, 71605-001, Brazil
| | - Henrique N de Oliveira
- School of Agricultural and Veterinarian Sciences, UNESP, Jaboticabal, SP, 14884-900, Brazil.,National Council for Scientific and Technological Development, CNPq, Brasília, DF, 71605-001, Brazil
| | - Mehdi Sargolzaei
- Ontario Veterinary College, UG, Guelph, Canada.,Select Sires Inc., Plain City, OH, USA
| | - Roy Costilla
- Queensland Alliance for Agriculture and Food Innovation, UQ, Brisbane, QLD, 4072, Australia
| | - Ricardo V Ventura
- School of Veterinary Medicine and Animal Science, USP, Pirassununga, SP, 13635-900, Brazil
| | - Larissa F S Fonseca
- School of Agricultural and Veterinarian Sciences, UNESP, Jaboticabal, SP, 14884-900, Brazil
| | | | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, UQ, Brisbane, QLD, 4072, Australia
| | - Lucia G de Albuquerque
- School of Agricultural and Veterinarian Sciences, UNESP, Jaboticabal, SP, 14884-900, Brazil. .,National Council for Scientific and Technological Development, CNPq, Brasília, DF, 71605-001, Brazil.
| |
Collapse
|
18
|
Mueller ML, Cole JB, Connors NK, Johnston DJ, Randhawa IAS, Van Eenennaam AL. Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the Tropically Adapted Australian Beef Cattle Population. Front Genet 2021; 12:593154. [PMID: 33643378 PMCID: PMC7905321 DOI: 10.3389/fgene.2021.593154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Dehorning is the process of physically removing horns to protect animals and humans from injury, but the process is costly, unpleasant, and faces increasing public scrutiny. Genetic selection for polled (hornless), which is genetically dominant to horned, is a long-term solution to eliminate the need for dehorning. However, due to the limited number of polled Australian Brahman bulls, the northern Australian beef cattle population remains predominantly horned. The potential to use gene editing to produce high-genetic-merit polled cattle was recently demonstrated. To further explore the concept, this study simulated introgression of the POLLED allele into a tropically adapted Australian beef cattle population via conventional breeding or gene editing (top 1% or 10% of seedstock bulls/year) for 3 polled mating schemes and compared results to baseline selection on genetic merit (Japan Ox selection index, $JapOx) alone, over the course of 20 years. The baseline scenario did not significantly decrease the 20-year HORNED allele frequency (80%), but resulted in one of the fastest rates of genetic gain ($8.00/year). Compared to the baseline, the conventional breeding scenarios where polled bulls were preferentially used for breeding, regardless of their genetic merit, significantly decreased the 20-year HORNED allele frequency (30%), but resulted in a significantly slower rate of genetic gain ($6.70/year, P ≤ 0.05). The mating scheme that required the exclusive use of homozygous polled bulls, resulted in the lowest 20-year HORNED allele frequency (8%), but this conventional breeding scenario resulted in the slowest rate of genetic gain ($5.50/year). The addition of gene editing the top 1% or 10% of seedstock bull calves/year to each conventional breeding scenario resulted in significantly faster rates of genetic gain (up to $8.10/year, P ≤ 0.05). Overall, our study demonstrates that, due to the limited number of polled Australian Brahman bulls, strong selection pressure on polled will be necessary to meaningfully increase the number of polled animals in this population. Moreover, these scenarios illustrate how gene editing could be a tool for accelerating the development of high-genetic-merit homozygous polled sires to mitigate the current trade-off of slower genetic gain associated with decreasing HORNED allele frequency in the Australian Brahman population.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agricultural, Beltsville, MD, United States
| | - Natalie K. Connors
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | - David J. Johnston
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|
19
|
Ramírez-Ayala LC, Rocha D, Ramos-Onsins SE, Leno-Colorado J, Charles M, Bouchez O, Rodríguez-Valera Y, Pérez-Enciso M, Ramayo-Caldas Y. Whole-genome sequencing reveals insights into the adaptation of French Charolais cattle to Cuban tropical conditions. Genet Sel Evol 2021; 53:3. [PMID: 33397281 PMCID: PMC7784321 DOI: 10.1186/s12711-020-00597-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
Background In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. Results In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. Conclusions Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle.
Collapse
Affiliation(s)
- Lino C Ramírez-Ayala
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France
| | - Sebas E Ramos-Onsins
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Jordi Leno-Colorado
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Mathieu Charles
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France.,INRAE, SIGENAE, Jouy-En-Josas, 78350, France
| | - Olivier Bouchez
- INRAE, GeT-PlaGe, Genotoul, Castanet-Tolosan, US, 1426, France
| | | | - Miguel Pérez-Enciso
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain.,Institut Català de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France. .,Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes De Montbui, 08140, Spain.
| |
Collapse
|
20
|
Warburton CL, Costilla R, Engle BN, Corbet NJ, Allen JM, Fordyce G, McGowan MR, Burns BM, Hayes BJ. Breed-adjusted genomic relationship matrices as a method to account for population stratification in multibreed populations of tropically adapted beef heifers. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Beef cattle breeds in Australia can broadly be broken up into two subspecies, namely, Bos indicus and Bos taurus. Due to the time since divergence between the subspecies, it is likely that mutations affecting quantitative traits have developed independently in each.
Aims
We hypothesise that this will affect the prediction accuracy of genomic selection of admixed and composite populations that include both ancestral subspecies. Our study investigates methods to quantify population stratification in a multibreed population of tropically adapted heifers, with the aim of improving prediction accuracy of genomic selection for reproductive maturity score.
Methods
We used genotypes and reproductive maturity phenotypes from 3695 tropically adapted heifers from three purebred populations, namely, Brahman, Santa Gertrudis and Droughtmaster. Two of these breeds, Santa Gertrudis and Droughtmaster, are stabilised composites of varying B. indicus × B. taurus ancestry, and the third breed, Brahman, has predominately B. indicus ancestry. Genotypes were imputed to three marker-panel densities and population stratification was accounted for in genomic relationship matrices by using breed-specific allele frequencies when calculating the genomic relationships among animals. Prediction accuracy and bias were determined using a five-fold cross validation of randomly selected multibreed cohorts.
Key Results
Our results showed that the use of breed-adjusted genomic relationship matrices did not improve either prediction accuracy or bias for a lowly heritable trait such as reproductive maturity score. However, using breed-adjusted genomic relationship matrices allowed the capture of a higher proportion of additive genetic effects when estimating variance components.
Conclusions
These findings suggest that, despite seeing no improvement in prediction accuracy, it may still be beneficial to use breed-adjusted genomic relationship matrices in multibreed populations to improve the estimation of variance components.
Implications
As such, genomic evaluations using breed-adjusted genomic relationship matrices may be beneficial in multibreed populations.
Collapse
|
21
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nat Genet 2020; 52:1099-1110. [PMID: 32989325 DOI: 10.1038/s41588-020-0694-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750-1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.
Collapse
|
23
|
Senczuk G, Guerra L, Mastrangelo S, Campobasso C, Zoubeyda K, Imane M, Marletta D, Kusza S, Karsli T, Gaouar SBS, Pilla F, Ciani E. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color. Genes (Basel) 2020; 11:genes11080932. [PMID: 32823527 PMCID: PMC7464420 DOI: 10.3390/genes11080932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Coat color is among the most distinctive phenotypes in cattle. Worldwide, several breeds share peculiar coat color features such as the presence of a fawn pigmentation of the calf at birth, turning over time to grey, and sexual dichromatism. The aim of this study was to search for polymorphisms under differential selection by contrasting grey cattle breeds displaying the above phenotype with non-grey cattle breeds, and to identify the underlying genes. Using medium-density SNP array genotype data, a multi-cohort FST-outlier approach was adopted for a total of 60 pair-wise comparisons of the 15 grey with 4 non-grey cattle breeds (Angus, Limousin, Charolais, and Holstein), with the latter selected as representative of solid and piebald phenotypes, respectively. Overall, more than 50 candidate genes were detected; almost all were either directly or indirectly involved in pigmentation, and some of them were already known for their role in phenotypes related with hair graying in mammals. Notably, 17 relevant genes, including SDR16C5, MOS, SDCBP, and NSMAF, were located in a signal on BTA14 convergently observed in all the four considered scenarios. Overall, the key stages of pigmentation (melanocyte development, melanogenesis, and pigment trafficking/transfer) were all represented among the pleiotropic functions of the candidate genes, suggesting the complex nature of the grey phenotype in cattle.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy; (G.S.); (F.P.)
| | - Lorenzo Guerra
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, 70125 Bari, Italy; (L.G.); (C.C.)
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy;
| | - Claudia Campobasso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, 70125 Bari, Italy; (L.G.); (C.C.)
| | - Kaouadji Zoubeyda
- Department of Biology, University Abou Bekr Bélkaid, Tlemcen 13000, Algeria; (K.Z.); (M.I.); (S.B.S.G.)
| | - Meghelli Imane
- Department of Biology, University Abou Bekr Bélkaid, Tlemcen 13000, Algeria; (K.Z.); (M.I.); (S.B.S.G.)
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, 95123 Catania, Italy;
| | - Szilvia Kusza
- Animal Genetics Laboratory, University of Debrecen, 4032 Debrecen, Hungary;
| | - Taki Karsli
- Department of Animal Science, Akdeniz University, 07070 Antalya, Turkey;
| | | | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy; (G.S.); (F.P.)
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, 70125 Bari, Italy; (L.G.); (C.C.)
- Correspondence:
| | | |
Collapse
|
24
|
Crysnanto D, Pausch H. Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery. Genome Biol 2020; 21:184. [PMID: 32718320 PMCID: PMC7385871 DOI: 10.1186/s13059-020-02105-0%0a%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The current bovine genomic reference sequence was assembled from a Hereford cow. The resulting linear assembly lacks diversity because it does not contain allelic variation, a drawback of linear references that causes reference allele bias. High nucleotide diversity and the separation of individuals by hundreds of breeds make cattle ideally suited to investigate the optimal composition of variation-aware references. RESULTS We augment the bovine linear reference sequence (ARS-UCD1.2) with variants filtered for allele frequency in dairy (Brown Swiss, Holstein) and dual-purpose (Fleckvieh, Original Braunvieh) cattle breeds to construct either breed-specific or pan-genome reference graphs using the vg toolkit. We find that read mapping is more accurate to variation-aware than linear references if pre-selected variants are used to construct the genome graphs. Graphs that contain random variants do not improve read mapping over the linear reference sequence. Breed-specific augmented and pan-genome graphs enable almost similar mapping accuracy improvements over the linear reference. We construct a whole-genome graph that contains the Hereford-based reference sequence and 14 million alleles that have alternate allele frequency greater than 0.03 in the Brown Swiss cattle breed. Our novel variation-aware reference facilitates accurate read mapping and unbiased sequence variant genotyping for SNPs and Indels. CONCLUSIONS We develop the first variation-aware reference graph for an agricultural animal ( https://doi.org/10.5281/zenodo.3759712 ). Our novel reference structure improves sequence read mapping and variant genotyping over the linear reference. Our work is a first step towards the transition from linear to variation-aware reference structures in species with high genetic diversity and many sub-populations.
Collapse
|
25
|
Crysnanto D, Pausch H. Bovine breed-specific augmented reference graphs facilitate accurate sequence read mapping and unbiased variant discovery. Genome Biol 2020; 21:184. [PMID: 32718320 PMCID: PMC7385871 DOI: 10.1186/s13059-020-02105-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The current bovine genomic reference sequence was assembled from a Hereford cow. The resulting linear assembly lacks diversity because it does not contain allelic variation, a drawback of linear references that causes reference allele bias. High nucleotide diversity and the separation of individuals by hundreds of breeds make cattle ideally suited to investigate the optimal composition of variation-aware references. RESULTS We augment the bovine linear reference sequence (ARS-UCD1.2) with variants filtered for allele frequency in dairy (Brown Swiss, Holstein) and dual-purpose (Fleckvieh, Original Braunvieh) cattle breeds to construct either breed-specific or pan-genome reference graphs using the vg toolkit. We find that read mapping is more accurate to variation-aware than linear references if pre-selected variants are used to construct the genome graphs. Graphs that contain random variants do not improve read mapping over the linear reference sequence. Breed-specific augmented and pan-genome graphs enable almost similar mapping accuracy improvements over the linear reference. We construct a whole-genome graph that contains the Hereford-based reference sequence and 14 million alleles that have alternate allele frequency greater than 0.03 in the Brown Swiss cattle breed. Our novel variation-aware reference facilitates accurate read mapping and unbiased sequence variant genotyping for SNPs and Indels. CONCLUSIONS We develop the first variation-aware reference graph for an agricultural animal ( https://doi.org/10.5281/zenodo.3759712 ). Our novel reference structure improves sequence read mapping and variant genotyping over the linear reference. Our work is a first step towards the transition from linear to variation-aware reference structures in species with high genetic diversity and many sub-populations.
Collapse
|
26
|
Whole-genome sequencing provides new insights into genetic mechanisms of tropical adaptation in Nellore (Bos primigenius indicus). Sci Rep 2020; 10:9412. [PMID: 32523018 PMCID: PMC7287098 DOI: 10.1038/s41598-020-66272-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/12/2020] [Indexed: 11/22/2022] Open
Abstract
Most of the knowledge about genetic variants at the sequence level in cattle is for Bos primigenius taurus populations. Here, we presented a complete genomic characterization of 52 Nellore (Bos primigenius indicus) bulls, revealing specific zebu DNA variants with putative impact in tropical adaptation and productive traits. Single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) mutations were identified using the newest bovine reference genome ARS_UCD1.2, and variant functional consequences were predicted using the Ensembl VEP software. A total of 35,753,707 SNPs and 4,492,636 INDELs were detected and annotated to their functional effects. We identified 400 genes that comprised both, a SNP and an INDEL, of high functional impact on proteins (i.e. variants that cause protein truncation, loss of function or triggering nonsense-mediated decay). Among these, we highlight the following genes: BoLA, associated with cattle immune response to infections and reproduction aspects; HSPA8, DNAJC27, and DNAJC28, involved with thermoregulatory protective mechanisms in mammals; and many olfactory signaling pathway related genes that are important genetic factors in the evolution of mammalian species. All these functional aspects are directly related to cattle adaptability to tropical environments.
Collapse
|
27
|
Naval-Sánchez M, Porto-Neto LR, Cardoso DF, Hayes BJ, Daetwyler HD, Kijas J, Reverter A. Selection signatures in tropical cattle are enriched for promoter and coding regions and reveal missense mutations in the damage response gene HELB. Genet Sel Evol 2020; 52:27. [PMID: 32460767 PMCID: PMC7251699 DOI: 10.1186/s12711-020-00546-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
Background Distinct domestication events, adaptation to different climatic zones, and divergent selection in productive traits have shaped the genomic differences between taurine and indicine cattle. In this study, we assessed the impact of artificial selection and environmental adaptation by comparing whole-genome sequences from European taurine and Asian indicine breeds and from African cattle. Next, we studied the impact of divergent selection by exploiting predicted and experimental functional annotation of the bovine genome. Results We identified selective sweeps in beef cattle taurine and indicine populations, including a 430-kb selective sweep on indicine cattle chromosome 5 that is located between 47,670,001 and 48,100,000 bp and spans five genes, i.e. HELB, IRAK3, ENSBTAG00000026993, GRIP1 and part of HMGA2. Regions under selection in indicine cattle display significant enrichment for promoters and coding genes. At the nucleotide level, sites that show a strong divergence in allele frequency between European taurine and Asian indicine are enriched for the same functional categories. We identified nine single nucleotide polymorphisms (SNPs) in coding regions that are fixed for different alleles between subspecies, eight of which were located within the DNA helicase B (HELB) gene. By mining information from the 1000 Bull Genomes Project, we found that HELB carries mutations that are specific to indicine cattle but also found in taurine cattle, which are known to have been subject to indicine introgression from breeds, such as N’Dama, Anatolian Red, Marchigiana, Chianina, and Piedmontese. Based on in-house genome sequences, we proved that mutations in HELB segregate independently of the copy number variation HMGA2-CNV, which is located in the same region. Conclusions Major genomic sequence differences between Bos taurus and Bos indicus are enriched for promoter and coding regions. We identified a 430-kb selective sweep in Asian indicine cattle located on chromosome 5, which carries SNPs that are fixed in indicine populations and located in the coding sequences of the HELB gene. HELB is involved in the response to DNA damage including exposure to ultra-violet light and is associated with reproductive traits and yearling weight in tropical cattle. Thus, HELB likely contributed to the adaptation of tropical cattle to their harsh environment.
Collapse
Affiliation(s)
- Marina Naval-Sánchez
- CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia. .,Institute of Molecular Biosciences, The University of Queensland, 306 Carmody Road, St. Lucia, Brisbane, QLD, 4067, Australia.
| | - Laercio R Porto-Neto
- CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Diercles F Cardoso
- CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia.,Department of Animal Science, School of Agricultural and Veterinarian Sciences, Sao Paulo State University (UNESP), Jaboticabal, SP, Brazil.,Centre for Genetic Improvement of Livestock, University of Guelph, 50 Stone Road East, Guelph, ON, N1G2W1, Canada
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4067, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - James Kijas
- CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| |
Collapse
|
28
|
Lamb HJ, Ross EM, Nguyen LT, Lyons RE, Moore SS, Hayes BJ. Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing. J Anim Sci 2020; 98:5823688. [PMID: 32318708 DOI: 10.1093/jas/skaa127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Brahman cattle (Bos indicus) are well adapted to thrive in tropical environments. Since their introduction to Australia in 1933, Brahman's ability to grow and reproduce on marginal lands has proven their value in the tropical beef industry. The poll phenotype, which describes the absence of horns, has become desirable in the cattle industry for animal welfare and handler safety concerns. The poll locus has been mapped to chromosome one. Four alleles, each a copy number variant, have been reported across this locus in B. indicus and Bos taurus. However, the causative mutation in Brahman cattle has not been fully characterized. Oxford Nanopore Technologies' minION sequencer was used to sequence four homozygous poll (PcPc), four homozygous horned (pp), and three heterozygous (Pcp) Brahmans to characterize the poll allele in Brahman cattle. A total of 98 Gb were sequenced and an average coverage of 3.33X was achieved. Read N50 scores ranged from 9.9 to 19 kb. Examination of the mapped reads across the poll locus revealed insertions approximately 200 bp in length in the poll animals that were absent in the horned animals. These results are consistent with the Celtic poll allele, a 212-bp duplication that replaces 10 bp. This provides direct evidence that the Celtic poll allele is segregating in the Australian Brahman population.
Collapse
Affiliation(s)
- Harrison J Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Loan T Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Russell E Lyons
- Neogen Australasia, University of Queensland, Gatton, QLD, Australia
| | - Stephen S Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
29
|
Low WY, Tearle R, Liu R, Koren S, Rhie A, Bickhart DM, Rosen BD, Kronenberg ZN, Kingan SB, Tseng E, Thibaud-Nissen F, Martin FJ, Billis K, Ghurye J, Hastie AR, Lee J, Pang AWC, Heaton MP, Phillippy AM, Hiendleder S, Smith TPL, Williams JL. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle. Nat Commun 2020; 11:2071. [PMID: 32350247 PMCID: PMC7190621 DOI: 10.1038/s41467-020-15848-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Inbred animals were historically chosen for genome analysis to circumvent assembly issues caused by haplotype variation but this resulted in a composite of the two genomes. Here we report a haplotype-aware scaffolding and polishing pipeline which was used to create haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle subspecies from contigs generated by the trio binning method. These assemblies reveal structural and copy number variants that differentiate the subspecies and that variant detection is sensitive to the specific reference genome chosen. Six genes with immune related functions have additional copies in the indicine compared with taurine lineage and an indicus-specific extra copy of fatty acid desaturase is under positive selection. The haplotyped genomes also enable transcripts to be phased to detect allele-specific expression. This work exemplifies the value of haplotype-resolved genomes to better explore evolutionary and functional variations.
Collapse
Affiliation(s)
- Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Ruijie Liu
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD, USA
| | - Zev N Kronenberg
- Phase Genomics, 4000 Mason Road, Suite 225, Seattle, WA, 98195, USA
| | | | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jay Ghurye
- Center for Bioinformatics and Computational Biology, Lab 3104A, Biomolecular Science Building, University of Maryland, College Park, MD, 20742, USA
| | | | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | | | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
30
|
Utsunomiya YT, Milanesi M, Fortes MRS, Porto-Neto LR, Utsunomiya ATH, Silva MVGB, Garcia JF, Ajmone-Marsan P. Genomic clues of the evolutionary history of Bos indicus cattle. Anim Genet 2019; 50:557-568. [PMID: 31475748 DOI: 10.1111/age.12836] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Together with their sister subspecies Bos taurus, zebu cattle (Bos indicus) have contributed to important socioeconomic changes that have shaped modern civilizations. Zebu cattle were domesticated in the Indus Valley 8000 years before present (YBP). From the domestication site, they expanded to Africa, East Asia, southwestern Asia and Europe between 4000 and 1300 YBP, intercrossing with B. taurus to form clinal variations of zebu ancestry across the landmass of Afro-Eurasia. In the past 150 years, zebu cattle reached the Americas and Oceania, where they have contributed to the prosperity of emerging economies. The zebu genome is characterized by two mitochondrial haplogroups (I1 and I2), one Y chromosome haplogroup (Y3) and three major autosomal ancestral groups (Indian-Pakistani, African and Chinese). Phenotypically, zebu animals are recognized by their hump, large ears and excess skin. They are rustic, resilient to parasites and capable of bearing the hot and humid climates of the tropics. Many resources are available to study the zebu genome, including commercial arrays of SNP, reference assemblies and publicly available genotypes and whole-genome sequences. Nevertheless, many of these resources were initially developed to support research and subsidize industrial applications in B. taurus, and therefore they can produce bias in data analysis. The combination of genomics with precision agriculture holds great promise for the identification of genetic variants affecting economically important traits such as tick resistance and heat tolerance, which were naturally selected for millennia and played a major role in the evolution of B. indicus cattle.
Collapse
Affiliation(s)
- Y T Utsunomiya
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil
| | - M Milanesi
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil
| | - M R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane, 4072, Qld, Australia
| | - L R Porto-Neto
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia QLD, Brisbane, 4067, Qld, Australia
| | - A T H Utsunomiya
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil
| | - M V G B Silva
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite, Juiz de Fora, MG, 360381330, Brazil
| | - J F Garcia
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793-Dona Amelia, Araçatuba, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Brazil
| | - P Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA and BioDNA, Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, Piacenza, 29122, Italy
| |
Collapse
|