1
|
Aldaleeli NY, Madani M, Al-Gahtany SA, Elhaes H, Badry R, Ibrahim MA. Evaluation of Different Concentrations of Graphene on the Structural and Optical Properties of Carboxymethyl Cellulose Sodium. Polymers (Basel) 2025; 17:391. [PMID: 39940593 PMCID: PMC11820774 DOI: 10.3390/polym17030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Developing sustainable and green packaging products that protect foods and preserve their unique properties from UV radiation, which causes photochemical damage, is one of the extensive challenges in the food-packaging industry. Accordingly, carboxymethyl cellulose sodium (CMC)/graphene (G) nanocomposites that contained different weight percentages were prepared by a mechanical milling method. The influence of the G on the chemical composition and optical properties of the nanocomposites were studied by different techniques. SEM and FT-IR analyses confirmed the interaction between the CMC and G. The XRD spectrum showed that the crystallite size of the CMC decreased with G addition. The findings showed that changing the G concentration modified the CMC's optical properties. The CMC's transmittance decreased to 52%, 49%, and 57% in the UV-C (200-280), UV-B (280-320 nm), and UV-A (320-400) regions, respectively, with the addition of 2 wt.% of G. Moreover, the optical band gap decreased to 4.80 eV, while the Urbach energy increased from 0.34 to 0.94 eV as the G content increased. The density functional theory (DFT) assumption was followed to establish the electronic properties and vibrational spectrum of the CMC/G model. The theoretically determined IR and experimental FT-IR spectra of the CMC/G nanocomposites showed good agreement. The obtained results show that these nanocomposites are good candidates for food packaging.
Collapse
Affiliation(s)
- Nadiah Y. Aldaleeli
- Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35811, Saudi Arabia
| | - Mohamed Madani
- Department of Physics, College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35811, Saudi Arabia
| | - Samera Ali Al-Gahtany
- Department of Physics, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hanan Elhaes
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt; (H.E.); (R.B.)
| | - Rania Badry
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt; (H.E.); (R.B.)
| | - Medhat A. Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
- Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Han A, Chang YH. Physicochemical, structural, and in-vitro release properties of carboxymethyl cellulose-based cryogel beads incorporating resveratrol-loaded microparticles for colon-targeted delivery system. Food Chem 2024; 457:140153. [PMID: 38908240 DOI: 10.1016/j.foodchem.2024.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.
Collapse
Affiliation(s)
- Areum Han
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Milligan G, Yao ZF, Cordova DLM, Tong B, Arguilla MQ. Single Quasi-1D Chains of Sb 2Se 3 Encapsulated within Carbon Nanotubes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:730-741. [PMID: 38282683 PMCID: PMC10809716 DOI: 10.1021/acs.chemmater.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
The realization of stable monolayers from 2D van der Waals (vdW) solids has fueled the search for exfoliable crystals with even lower dimensionalities. To this end, 1D and quasi-1D (q-1D) vdW crystals comprising weakly bound subnanometer-thick chains have been discovered and demonstrated to exhibit nascent physics in the bulk. Although established micromechanical and liquid-phase exfoliation methods have been applied to access single isolated chains from bulk crystals, interchain vdW interactions with nonequivalent strengths have greatly hindered the ability to achieve uniform single isolated chains. Here, we report that encapsulation of the model q-1D vdW crystal, Sb2Se3, within single-walled carbon nanotubes (CNTs) circumvents the relatively stronger c-axis vdW interactions between the chains and allows for the isolation of single chains with structural integrity. High-resolution transmission electron microscopy and selected area electron diffraction studies of the Sb2Se3@CNT heterostructure revealed that the structure of the [Sb4Se6]n chain is preserved, enabling us to systematically probe the size-dependent properties of Sb2Se3 from the bulk down to a single chain. We show that ensembles of the [Sb4Se6]n chains within CNTs display Raman confinement effects and an emergent band-like absorption onset around 600 nm, suggesting a strong blue shift of the near-infrared band gap of Sb2Se3 into the visible range upon encapsulation. First-principles density functional theory calculations further provided qualitative insight into the structures and interactions that could manifest in the Sb2Se3@CNT heterostructure. Spatial visualization of the calculated electron density difference map of the heterostructure indicated a minimal degree of electron donation from the host CNT to the guest [Sb4Se6]n chain. Altogether, this model system demonstrates that 1D and q-1D vdW crystals with strongly anisotropic vdW interactions can be precisely studied by encapsulation within CNTs with suitable diameters, thereby opening opportunities in understanding dimension-dependent properties of a plethora of emergent vdW solids at or approaching the subnanometer regime.
Collapse
Affiliation(s)
- Griffin
M. Milligan
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Ze-Fan Yao
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | | | - Baixin Tong
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Balaji Ayyanar C, Helaili S, Mavinkere Rangappa S, Boonyasopon P, Siengchin S. Attempt to identify antimicrobial Tridax procumbens (TP) mechanical properties using experimental work coupled with FEM model for biomedical applications. J Mech Behav Biomed Mater 2023; 146:106086. [PMID: 37639932 DOI: 10.1016/j.jmbbm.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Medicinal plants play a prodigious role in the wound-healing process. Tridax procumbens (TP) has been proven to show strong antimicrobial activity against Staphylococcus aureus and could heal skin infections. Identifying mechanical properties of TP in his solid state and mixed with carboxymethylcellulose (CMC) have never been studied before. In this study, fresh TP liquid extracts blended with carboxymethylcellulose (CMC) biofilm were developed through the solution casting method. The casted film was tested for tensile strength through the Universal Tensile Tester (UTT), and the results were compared with the Finite Element Numerical Model (FEM) through the FEM code developed on the ANSYS solver. The experimental mean tensile test results for pure CMC were found as follows: tensile stress at the maximum of 15.31 MPa, modulus of elasticity of 7,24 GPa, the density of 1,62 g/cm3, and Poisson's ratio of 0.22. The experimental mean tensile test results for pure CMC/TP 50% were as follows: tensile stress at the maximum of 26.2 MPa, modulus of elasticity of 2.092 GPa, and density of 1.276 g/cm3. After several iterations, the following results were found for pure TP: modulus of elasticity of 0.225 GPa, a density of 0.93 g/cm3, and Poisson's ratio of 0.4 through FEM using inverse method technique. The experimental results were compared with the FEM solutions, which were found to be very close to the experimental results. The TP/CMC bio-membrane could be applied as a good wound dressing in biomedical applications. Mechanical properties found in this paper can contribute to the valorization of TP usage in several medical curing films applications.
Collapse
Affiliation(s)
- C Balaji Ayyanar
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, India.
| | - Sofiene Helaili
- Carthage University, Tunisia Polytechnic School, LASMAP (LR03ES06), Rue El-Khawarizmi, BP 743, 2078, La Marsa, Tunisia; Carthage University, ISTEUB, 2 Rue de l'Artisanat Charguia 2, 2035, Tunis, Tunisia
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| | - Pawinee Boonyasopon
- Department of Design Management and Business Development, Faculty of Architecture and Design, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
5
|
Al-Hamry A, Lu T, Chen H, Adiraju A, Nasraoui S, Brahem A, Bajuk-Bogdanović D, Weheabby S, Pašti IA, Kanoun O. Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091473. [PMID: 37177018 PMCID: PMC10180099 DOI: 10.3390/nano13091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
In this paper, the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites have been investigated. Composite sensors were fabricated by direct laser scribing and characterized using UV-vis-NIR, Raman, Fourier transform infrared, and X-ray photoemission spectroscopies, electron scanning microscopy coupled with energy-dispersive X-ray analysis, and impedance spectroscopy (IS). These methods confirm the composite homogeneity and laser reduction of GO/MWNT with dominant GO characteristics, while ISresults analysis reveals the circuit model for rGO-GO-rGO structure and the effect of MWNT on the sensor properties. Although direct laser scribing of GO-based humidity sensor shows an outstanding response (|ΔZ|/|Z| up to 638,800%), a lack of stability and repeatability has been observed. GO/MWNT-based humidity sensors are more conductive than GO sensors and relatively less sensitive (|ΔZ|/|Z| = 163,000%). However, they are more stable in harsh humid conditions, repeatable, and reproducible even after several years of shelf-life. In addition, they have fast response/recovery times of 10.7 s and 9.3 s and an ultra-fast response time of 61 ms when abrupt humidification/dehumidification is applied by respiration. All carbon-based sensors' overall properties confirm the advantage of introducing the GO/MWNT hybrid and laser direct writing to produce stable structures and sensors.
Collapse
Affiliation(s)
- Ammar Al-Hamry
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Tianqi Lu
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Haoran Chen
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Anurag Adiraju
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Salem Nasraoui
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Danica Bajuk-Bogdanović
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Saddam Weheabby
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Igor A Pašti
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Olfa Kanoun
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
6
|
Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery. Sci Rep 2022; 12:21114. [PMID: 36476955 PMCID: PMC9729229 DOI: 10.1038/s41598-022-25222-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT's concentration obtained via UV-visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms' percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms' percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C-N and N-C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.
Collapse
|
7
|
Abd-Elhamid AI, Abu Elgoud EM, Aly HF. Graphene oxide modified with carboxymethyl cellulose for high adsorption capacities towards Nd(III) and Ce(III) from aqueous solutions. CELLULOSE 2022; 29:9831-9846. [DOI: 10.1007/s10570-022-04862-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/22/2022] [Indexed: 09/02/2023]
Abstract
AbstractThis work addresses a simple method to functionalize graphene oxide with sodium carboxymethyl cellulose using tetraethyl orthosilicate as a linker for rapid and significant removal of Nd(III) and Ce(III) from aqueous solutions. The prepared composite (GO–CMC) was characterized by different techniques to confirm the modification and adsorption process. The sorption performance of the GO–CMC was evaluated using Nd(III) and Ce(III) as absorbent materials. The experimental results demonstrated that the sorption process was excellently fitted by the pseudo-second-order kinetic model. The adsorption results were also analyzed by different isotherm models. According to the Langmuir isotherm model, the experimental sorption capacities at pH 3.0 was 661.21 and 436.55 mg/g for Nd(III) and Ce(III), respectively. The thermodynamic results indicated that the sorption process of the two examined metal ions was endothermic and spontaneous. The regenerated GO–CMC composite has a similar removal percentage to the original composite. These results confirmed that the prepared composite (GO–CMC) could be used as an effective adsorbent for Nd(III) and Ce(III) from certain multielement solutions.
Collapse
|
8
|
Govindasamy GA, S. M. N. Mydin RB, Harun NH, Effendy WNFWE, Sreekantan S. Giant milkweed plant-based copper oxide nanoparticles for wound dressing application: physicochemical, bactericidal and cytocompatibility profiles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
An JM, Shahriar SMS, Lee DY, Hwang SR, Lee YK. Pore Size-Dependent Stereoscopic Hydrogels Enhance the Therapeutic Efficiency of Botulinum Toxin for the Treatment of Nerve-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19139-19153. [PMID: 35452222 DOI: 10.1021/acsami.2c01738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Botulinum toxin (BoNT) is a major neurotherapeutic protein that has been used at low doses for diverse pharmacological applications. However, the pleiotropic effect of BoNT depends on multiple periodic injections owing to its rapid elimination profile, short-term therapeutic effect, and high mortality rate when administered at high doses. In addition to low patient compliance, these drawbacks represent the significant challenges that limit the further clinical use of BoNT. This study developed a new hydrogel-based single dosage form of BoNT by employing a one-step cross-linking chemistry. Its controlled porous structures and composition facilitated uniform drug distribution inside the hydrogel and controllable release of BoNT mediated by slow diffusion. A single dose remained stable for at least 2.5 months and showed sustained effect for at least 20 weeks, meeting the requirements for a single-dose form of BoNT. Additionally, this dosage form was evaluated as safe from all aspects of toxicology. This delivery system resulted in a 100% survival rate after administering a BoNT dose of 30 units, while a dose of more than 5 units of naked BoNT caused a 100% mortality rate within a few days. Overall, this strategy could provide patients with the first single-dose treatment option of BoNT and improve their quality of life.
Collapse
Affiliation(s)
- Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| | - S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5940, United States
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
| |
Collapse
|
10
|
Nuisin R, Siripongpreda T, Watcharamul S, Siralertmukul K, Kiatkamjornwong S. Facile Syntheses of Physically Crosslinked Carboxymethyl Cellulose Hydrogels and Nanocomposite Hydrogels for Enhancing Water Absorbency and Adsorption of Sappan Wood Dye. ChemistrySelect 2022. [DOI: 10.1002/slct.202104598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roongkan Nuisin
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Tatiya Siripongpreda
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Supawin Watcharamul
- Environmental Science Faculty of Science Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Krisana Siralertmukul
- The Metallurgy and Materials Science Research Institute Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
| | - Suda Kiatkamjornwong
- Office of the Research Affairs Chulalongkorn University Phyathai Road Bangkok 10330 Thailand
- Fellow the Academy of Science, The Royal Society of Bangkok 10300 Thailand
| |
Collapse
|
11
|
Yadav S, Ibrar I, Altaee A, Samal AK, Karbassiyazdi E, Zhou J, Bartocci P. High-Performance mild annealed CNT/GO-PVA composite membrane for brackish water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe 3O 4 embedded multi-walled carbon nanotubes. CHEMOSPHERE 2021; 281:130718. [PMID: 34044302 DOI: 10.1016/j.chemosphere.2021.130718] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Multi walled carbon nanotubes (MWCNTs) have attracted more and more attention as adsorbents due to their excellent adsorption properties. By loading metal particles on MWCNTs, the chemical reduction ability of adsorbed pollutants could be provided, so as to achieve the purpose of adsorption and degradation of pollutants. Therefore, the removal process of NO3--N by Fe-Pd-Fe3O4/MWCNTs was studied, including rapid adsorption of initial pollutants, gradual reduction of intermediate products and re-adsorption of final products. The results showed that Fe-Pd-Fe3O4/MWCNTs completely removed NO3--N within 2 h, 39% and 25% of which were converted into NO2--N and NH4+-N. The adsorption efficiency, kinetics, capacity and adsorption energy all followed the order of NH4+-N > NO2--N > NO3--N. With the recoverability and reusability of Fe-Pd-Fe3O4/MWCNTs having been confirmed in 5 consecutive cycles, the removal rate of NO3--N still reached 43%. It has been shown that MWCNTs prolonged the reducing power for NO3--N, due to avoiding the aggregation of metal particles. The rapid adsorption of initial pollutants, effective stepwise reduction and convenient recovery processes were of great value for the rehabilitation of polluted water.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
13
|
Tabarsa M, ZareNezhad B. Humid air plasma-assisted surface treatment as a green functionalization technique to enhance the multi-walled carbon nanotubes dispersion and stability in aqueous solutions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1964989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masoud Tabarsa
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Bahman ZareNezhad
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
14
|
Khawaja H, Zahir E, Asghar MA, Rafique K, Asghar MA. Synthesis and Application of Covalently Grafted Magnetic Graphene Oxide Carboxymethyl Cellulose Nanocomposite for the Removal of Atrazine From an Aqueous Phase. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1949515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Heena Khawaja
- Department of Chemistry, University of Karachi, Karachi, Sindh, Pakistan
| | - Erum Zahir
- Department of Chemistry, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Asif Asghar
- Department of Chemistry, University of Karachi, Karachi, Sindh, Pakistan
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, Karachi, Sindh, Pakistan
| | | | - Muhammad Arif Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| |
Collapse
|
15
|
Li X, Zou H, Zhuo B, Shao C, Cao S, Zhang B, Yuan Q. Steady and Robust CNTs-Based Electric Heating Membrane Fabricated by Addition of Nanocellulose and Hot-Press Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5763-5775. [PMID: 33960796 DOI: 10.1021/acs.langmuir.1c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a type of biomass-based electric heating membrane (EHM) with excellent stability was fabricated; this was achieved by incorporating carbon nanotubes (CNTs) into the nanofibrillated cellulose (NFC) as a natural dispersant and a biological substrate, as well as via the control of ultrasonic dispersion, grammage, and encapsulation using poly(dimethylsiloxane) (PDMS) with hot pressing. NFC entangles with CNTs in the form of an intertwined network and non-covalent interactions to fabricate a flexible EHM with steady electric heating performance; this formation is attributed to not only their similar morphology and surface-active groups but also the use of NFC that avoids additional disturbances in the overlapped interface among CNTs as far as possible. The obtained steady resistance varies as low as 5.1% under energized operation. In the encapsulated EHM (EM), PDMS was anchored on its surface by using hot pressing and an intertwined structure to enhance flexibility and robustness. The encapsulated membrane can be used in low-voltage applications, which require flexibility, waterproofing, and insulation.
Collapse
Affiliation(s)
- Xinpu Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Haojie Zou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bing Zhuo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Chuang Shao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Shuoang Cao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Binxia Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Quanping Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
16
|
Hydrogen generation and hydrogenation reactions efficiently mediated by a thin film of reduced graphene oxide-grafted with carboxymethyl chitosan and Ag nanoparticles. J Colloid Interface Sci 2021; 583:626-641. [DOI: 10.1016/j.jcis.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 01/12/2023]
|
17
|
Karbovnyk I, Klym H, Piskunov S, Popov AA, Chalyy D, Zhydenko I, Lukashevych D. The impact of temperature on electrical properties of polymer-based nanocomposites. LOW TEMPERATURE PHYSICS 2020; 46:1231-1234. [DOI: 10.1063/10.0002479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The paper discusses the results of temperature studies of polymer-based nanocomposites obtained by incorporating multi-walled carbon nanotubes in thin layers of poly(3,4-ethylenedioxythophene):poly(4-styrenesulfonate), specifically focusing on interesting features in the dependencies of electrical properties across the wide range of temperatures from ambient one down to 10 K.
Collapse
Affiliation(s)
- I. Karbovnyk
- Ivan Franko National University of Lviv 1 , Lviv 79017, Ukraine
| | - H. Klym
- Lviv Polytechnic National University 2 , Lviv 79013, Ukraine
| | - S. Piskunov
- Institute of Solid State Physics, University of Latvia 3 , Riga LV-1063, Latvia
| | - A. A. Popov
- Institute of Solid State Physics, University of Latvia 3 , Riga LV-1063, Latvia
| | - D. Chalyy
- Lviv State University of Life Safety 4 , Lviv 79007, Ukraine
| | - I. Zhydenko
- Lviv State University of Life Safety 4 , Lviv 79007, Ukraine
| | - D. Lukashevych
- Lviv Polytechnic National University 2 , Lviv 79013, Ukraine
| |
Collapse
|
18
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. Int J Biol Macromol 2020; 167:101-116. [PMID: 33220377 DOI: 10.1016/j.ijbiomac.2020.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) nanocomposite beads were prepared by facile, simple and environmentally friendly method. Initially, CuO-NiO was prepared and applied for the catalytic reduction of 4-nitrophenol (4-NP). The results showed that CuO-NiO demonstrate high catalytic activity toward the reduction of 4-NP to 4-aminophenol (4-AP) with a rate constant of 2.97 × 10-2 s-1. Further, CuO-NiO were well-dispersed in the polymeric matrix of carboxymethyl cellulose to prepare CMC/CuO-NiO beads. CMC/CuO-NiO nanocomposite beads were also applied to catalyze the reduction of potassium ferrocyanide (K3Fe (CN)6), 4-NP, Congo red (CR) and Eosin yellow (EY) in the presence of sodium borohydride. Experimental data indicated that CMC/CuO-NiO nanocomposite has higher catalytic activity and high rate constant compared to CuO-NiO. The rate constant found to be 6.88 × 10-2, 6.27 × 10-2, 1.89 × 10-2 and 2.43 × 10-2 for K3Fe(CN)6, 4-NP, CR and EY, respectively, using 5 mg CMC/CuO-NiO beads. FE-SEM, EDX, FTER, XRD and XPS were used to characterize the nanocomposites. CMC/CuO-NiO beads catalytically reduced up to 95-99% of K3Fe(CN)6, 4-NP, CR and EY within 40, 60, 120 and 120 s. CMC/CuO-NiO beads were found more selective for the reduction of 4-NP. The catalytic reduction performance of CMC/CuO-NiO beads was optimized by studying the influence of different parameters on the catalytic reduction of 4-NP. Hence, the effective and super catalytic performance toward the reduction of different organic and inorganic pollutants makes CMC/CuO-NiO beads a smart material and suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial catalysts.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Zhuo B, Cao S, Li X, Liang J, Bei Z, Yang Y, Yuan Q. A Nanofibrillated Cellulose-Based Electrothermal Aerogel Constructed with Carbon Nanotubes and Graphene. Molecules 2020; 25:molecules25173836. [PMID: 32846907 PMCID: PMC7503273 DOI: 10.3390/molecules25173836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nanofibrillated cellulose (NFC) as an environmentally friendly substrate material has superiority for flexible electrothermal composite, while there is currently no research on porous NFC based electrothermal aerogel. Therefore, this work used NFC as a skeleton, combined with multi-walled carbon nanotubes (MWCNTs) and graphene (GP), to prepare NFC/MWCNTs/GP aerogel (CCGA) via a simple and economic freeze-drying method. The electrothermal CCGA was finally assembled after connecting CCGA with electrodes. The results show that when the concentration of the NFC/MWCNTs/GP suspension was 5 mg mL-1 and NFC amount was 80 wt.%, the maximum steady-state temperature rise of electrothermal CCGA at 3000 W m-2 and 2000 W m-2 was of about 62.0 °C and 40.4 °C, respectively. The resistance change rate of the CCGA was nearly 15% at the concentration of 7 mg mL-1 under the power density of 2000 W m-2. The formed three-dimensional porous structure is conducive to the heat exchange. Consequently, the electrothermal CCGA can be used as a potential lightweight substrate for efficient electrothermal devices.
Collapse
|
20
|
Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int J Biol Macromol 2020; 154:307-318. [DOI: 10.1016/j.ijbiomac.2020.03.122] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/15/2023]
|
21
|
Saladino ML, Markowska M, Carmone C, Cancemi P, Alduina R, Presentato A, Scaffaro R, Biały D, Hasiak M, Hreniak D, Wawrzyńska M. Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials. MATERIALS 2020; 13:ma13081980. [PMID: 32340390 PMCID: PMC7216044 DOI: 10.3390/ma13081980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an inhibitory activity against the Gram-positive Staphylococcus aureus, but not against Gram-negative Pseudomonas aeruginosa. At the same time, it does not exhibit any cytotoxic effect on normal fibroblasts.
Collapse
Affiliation(s)
- Maria Luisa Saladino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| | - Marta Markowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wrocław, Poland; (M.M.); (D.H.)
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Clara Carmone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Bld. 16-17, I-90128 Palermo, Italy; (C.C.); (P.C.); (R.A.); (A.P.)
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale Delle Scienze Bld. 6, I-90128 Palermo, Italy;
| | - Dariusz Biały
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
- Division of Preclinical Research, Faculty of Health Sciences, Wroclaw Medical University, Ludwika Pasteura 1, PL-50-367 Wrocław, Poland
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| | - Mariusz Hasiak
- Department of Mechanics and Material Science Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, PL-50-370 Wrocław, Poland;
| | - Dariusz Hreniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wrocław, Poland; (M.M.); (D.H.)
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Magdalena Wawrzyńska
- Carbonmed Spółka z Ograniczoną Odpowiedzialnością, ul. Okólna 2, 50-422 Wrocław, Poland
- Division of Preclinical Research, Faculty of Health Sciences, Wroclaw Medical University, Ludwika Pasteura 1, PL-50-367 Wrocław, Poland
- Correspondence: (M.L.S.); (D.B.); (M.W.)
| |
Collapse
|
22
|
Jeon JW, Biswas MC, Patton CL, Wujcik EK. Water-processable, sprayable LiFePO4/graphene hybrid cathodes for high-power lithium ion batteries. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
García-Beltrán G, Mercado-Zúñiga C, Torres-SanMiguel CR, Trejo-Valdez M, Villalpando I, Torres-Torres C. Dynamic compressibility and third-order optical nonlinearities in carbon/metal-based nanofluids. Phys Chem Chem Phys 2020; 22:4793-4804. [PMID: 32068198 DOI: 10.1039/c9cp06202e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the superposition of two high-irradiance optical beams on the mechanical properties exhibited by carbon nanotubes decorated with platinum nanoparticles was analyzed. The change in density, compressibility modulus and acoustic velocity in the samples suspended in acetone and ethanol was estimated by measuring the nonlinear refractive index tested by a two-wave mixing experiment. The nanotubes were prepared by a spray pyrolysis processing route and the metal decoration was carried by chemical vapor deposition. High-Resolution Transmission Electron Microscopy studies confirmed the multiwall nature of the carbon nanotubes; while energy-dispersive X-ray spectroscopy reveals the separated presence of platinum nanoparticles incorporated to the hybrid nanostructures. An Nd-YAG laser system emitting at 532 nm wavelength with 4 ns pulse duration was used for conducting the third-order nonlinear optical evaluations by a standard optical Kerr gate technique. Comparative experiments showed that the composition of the liquid solution plays an important role in the manipulation of the density exhibited by the nanofluids. Remarkably, the incorporation of Pt in the tubes originates stronger changes of the mechanical characteristics induced by optical nonlinearities in the nanofluids irradiated by nanosecond pulses. Within this work, it is highlighted that potential applications for developing multivalent logic operations by fuzzy mechano-optic effects exhibited by nanofluids can be contemplated.
Collapse
Affiliation(s)
- Geselle García-Beltrán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico.
| | | | | | | | | | | |
Collapse
|
24
|
Miyashiro D, Hamano R, Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E186. [PMID: 31973149 PMCID: PMC7074973 DOI: 10.3390/nano10020186] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical, and electrical properties. In the past decade, the number of publications and patents on cellulose and nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility, and transparency is accelerating due to the growing environmental problems surrounding us such as CO2 emissions, the accumulation of large amounts of plastic, and the depletion of energy resources such as oil. Research on mixed materials of cellulose, NC, and CNTs has been expanding because these materials exhibit various characteristics that can be controlled by varying the combination of cellulose, NC to CNTs while also being biodegradable and recyclable. An understanding of these mixed materials is required because these characteristics are diverse and are expected to solve various environmental problems. Thus far, many review papers on cellulose, NC or CNTs have been published. Although guidance for the suitable application of these mixed materials is necessary, there are few reviews summarizing them. Therefore, this review introduces the application and feature on mixed materials of cellulose, NC and CNTs.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
- ESTECH CORP., 2-7-31 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Ryo Hamano
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| |
Collapse
|
25
|
Son YR, Park SJ. Influence of carboxymethyl cellulose content on structures and electrochemical behaviors of reduced graphene oxide films. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|