1
|
Goode O, Łapińska U, Morimoto J, Glover G, Milner DS, Santoro AE, Pagliara S, Richards TA. Permeability selection of biologically relevant membranes matches the stereochemistry of life on Earth. PLoS Biol 2025; 23:e3003155. [PMID: 40392769 PMCID: PMC12091744 DOI: 10.1371/journal.pbio.3003155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/07/2025] [Indexed: 05/22/2025] Open
Abstract
Early in the evolution of life, a proto-metabolic network was encapsulated within a membrane compartment. The permeability characteristics of the membrane determined several key functions of this network by determining which compounds could enter the compartment and which compounds could not. One key feature of known life is the utilization of right-handed d-ribose and d-deoxyribose sugars and left-handed l-amino acid stereochemical isomers (enantiomers); however, it is not clear why life adopted this specific chirality. Generally, archaea have l-phospholipid membrane chemistries and bacteria and eukaryotes have d-phospholipid membrane chemistries. We previously demonstrated that an l-archaeal and a d-intermediate membrane mimic, bearing a mixture of bacterial and archaeal lipid characteristics (a 'hybrid' membrane), displayed increased permeability for several key compounds compared to bacterial-like membranes. Here, we investigate if these membranes can drive stereochemical selection on pentose sugars, hexose sugars, and amino acids. Using permeability assays of homogenous unilamellar vesicles, we demonstrate that both membranes select for d-ribose and d-deoxyribose sugars while the hybrid membrane uniquely selects for a reduced alphabet of l-amino acids. This repertoire includes alanine, the plausible first l-amino acid utilized. We conclude such compartments could provide stereochemical compound selection matching those used by the core metabolism of life.
Collapse
Affiliation(s)
- Olivia Goode
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen, United Kingdom
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Georgina Glover
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - David S. Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
2
|
Kurisu M, Imai M. Osmotic spawning vesicle. SOFT MATTER 2024; 20:8976-8989. [PMID: 39282998 DOI: 10.1039/d4sm00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We discovered a cascade vesicle division system driven by osmotic inflation. Binary giant unilamellar vesicles (GUVs) composed of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cholesterol (Chol) were subjected to an osmotic pressure difference by encapsulating membrane-impermeable osmolytes (typically sucrose) in an external aqueous solution containing membrane-permeable osmolytes (typically fructose). This simple setup enabled the mother GUVs to repeatedly form small membrane buds and subsequently undergo divisions over several hundred seconds, resulting in the production of approximately 30-300 daughter GUVs from a single mother GUV. The observed morphological change of GUVs is well described by the mechanical balance between membrane bending, membrane tension, and osmotic pressure difference based on the spontaneous curvature model. This "osmotic spawning" behavior of GUVs does not rely on chemical reactions or functional macromolecules. Therefore, this cascade division system is compatible with various chemical systems and has the potential to implement proliferation ability in artificial cells, drug delivery systems, and protocells simply by modifying their membrane compartments and osmolytes.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, Japan.
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Japan.
| |
Collapse
|
3
|
Zhao J, Han X. Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry. Nat Commun 2024; 15:4956. [PMID: 38858376 PMCID: PMC11164925 DOI: 10.1038/s41467-024-49412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Matsuura K, Hirahara M, Sakamoto K, Inaba H. Alkyl anchor-modified artificial viral capsid budding outside-to-inside and inside-to-outside giant vesicles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2347191. [PMID: 38903411 PMCID: PMC11188953 DOI: 10.1080/14686996.2024.2347191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 06/22/2024]
Abstract
The budding of human immunodeficiency virus from an infected host cell is induced by the modification of structural proteins bearing long-chain fatty acids, followed by their anchoring to the cell membrane. Although many model budding systems using giant unilamellar vesicles (GUVs) induced by various stimuli have been developed, constructing an artificial viral budding system of GUVs using only synthesized molecules remains challenging. Herein, we report the construction of an artificial viral capsid budding system from a lipid bilayer of GUV. The C-terminus of the β-annulus peptide was modified using an octyl chain as an alkyl anchor via a disulfide bond. The self-assembly of the β-annulus peptide with an octyl chain formed an artificial viral capsid aggregate. The fluorescence imaging and transmission electron microscopy observations revealed that the addition of the tetramethylrhodamine (TMR)-labeled octyl chain-bearing β-annulus peptide to the outer aqueous phase of GUV induced the budding of the capsid-encapsulated daughter vesicle outside-to-inside the mother GUV. Conversely, the encapsulation of the TMR-labeled octyl chain-bearing β-annulus peptide in the inner aqueous phase of GUV induced the budding of the capsid-encapsulated daughter vesicle inside-to-outside the mother GUV. Contrarily, the addition of the TMR-labeled β-annulus peptide to GUV barely induced budding. It was demonstrated that the higher the membrane fluidity of GUV, the more likely budding would be induced by the addition of the alkyl anchor-modified artificial viral capsid. The simple virus-mimicking material developed in this study, which buds off through membrane anchoring, can provide physicochemical insights into the mechanisms of natural viral budding from cells.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Miu Hirahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kentarou Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| |
Collapse
|
5
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
6
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem 2023; 6:56. [PMID: 36977828 PMCID: PMC10050237 DOI: 10.1038/s42004-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A "synthetic minimal cell" is considered here as a cell-like artificial vesicle reproduction system in which a chemical and physico-chemical transformation network is regulated by information polymers. Here we synthesise such a minimal cell consisting of three units: energy production, information polymer synthesis, and vesicle reproduction. Supplied ingredients are converted to energy currencies which trigger the synthesis of an information polymer, where the vesicle membrane plays the role of a template. The information polymer promotes membrane growth. By tuning the membrane composition and permeability to osmolytes, the growing vesicles show recursive reproduction over several generations. Our "synthetic minimal cell" greatly simplifies the scheme of contemporary living cells while keeping their essence. The chemical pathways and the vesicle reproduction pathways are well described by kinetic equations and by applying the membrane elasticity model, respectively. This study provides new insights to better understand the differences and similarities between non-living forms of matter and life.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Ryosuke Katayama
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladmir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|
9
|
Tran MP, Chatterjee R, Dreher Y, Fichtler J, Jahnke K, Hilbert L, Zaburdaev V, Göpfrich K. A DNA Segregation Module for Synthetic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202711. [PMID: 35971190 DOI: 10.1002/smll.202202711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid-liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells.
Collapse
Affiliation(s)
- Mai P Tran
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Rakesh Chatterjee
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Julius Fichtler
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Department of Systems Biology / Bioinformatics, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Heterogeneity and deformation behavior of lipid vesicles. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Miele Y, Holló G, Lagzi I, Rossi F. Shape Deformation, Budding and Division of Giant Vesicles and Artificial Cells: A Review. Life (Basel) 2022; 12:841. [PMID: 35743872 PMCID: PMC9224789 DOI: 10.3390/life12060841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
The understanding of the shape-change dynamics leading to the budding and division of artificial cells has gained much attention in the past few decades due to an increased interest in designing stimuli-responsive synthetic systems and minimal models of biological self-reproduction. In this respect, membranes and their composition play a fundamental role in many aspects related to the stability of the vesicles: permeability, elasticity, rigidity, tunability and response to external changes. In this review, we summarise recent experimental and theoretical work dealing with shape deformation and division of (giant) vesicles made of phospholipids and/or fatty acids membranes. Following a classic approach, we divide the strategies used to destabilise the membranes into two different types, physical (osmotic stress, temperature and light) and chemical (addition of amphiphiles, the addition of reactive molecules and pH changes) even though they often act in synergy when leading to a complete division process. Finally, we review the most important theoretical methods employed to describe the equilibrium shapes of giant vesicles and how they provide ways to explain and control the morphological changes leading from one equilibrium structure to another.
Collapse
Affiliation(s)
- Ylenia Miele
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Gábor Holló
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary;
| | - István Lagzi
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary;
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111 Budapest, Hungary
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences—DEEP Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy
| |
Collapse
|
13
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
14
|
Zhang M, Zhang Y, Mu W, Dong M, Han X. In Situ Synthesis of Lipid Analogues Leading to Artificial Cell Growth and Division. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingrui Zhang
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Ying Zhang
- Heilongjiang Institute of Technology College of Materials and Chemical Engineering CHINA
| | - Wei Mu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Mingdong Dong
- Aarhus Universitet Interdisciplinary Nanosci Ctr iNANO DENMARK
| | - Xiaojun Han
- Harbin Institute of Technology School of Chemical Engineering and Technology No.92, West Da-Zhi Street, Harbin, 150001, China 150001 harbin CHINA
| |
Collapse
|
15
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
16
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
17
|
Toyota T, Ohtani A, Sugiyama H. Molecular Transformation for Self-reproducing Vesicles and Underlying Analysis Methods. Chem Pharm Bull (Tokyo) 2021; 69:947-952. [PMID: 34602575 DOI: 10.1248/cpb.c21-00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Closed bilayer membranes of amphiphiles in water, termed vesicles, represent one of the promising models of primitive cellular compartments. Herein, we reviewed studies on the design and construction of vesicle-based cell models capable of sequential growth and division and their underlying analysis methods. We discussed the potential contribution of these studies to the universal understanding of the chemical/physical logics behind the steady reproduction of cellular membranes.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo.,Universal Biology Institute, The University of Tokyo
| | - Atsufumi Ohtani
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
18
|
Robinson AO, Venero OM, Adamala KP. Toward synthetic life: Biomimetic synthetic cell communication. Curr Opin Chem Biol 2021; 64:165-173. [PMID: 34597982 PMCID: PMC8784175 DOI: 10.1016/j.cbpa.2021.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineering synthetic minimal cells provide a controllable chassis for studying the biochemical principles of natural life, increasing our understanding of complex biological processes. Recently, synthetic cell engineering has enabled communication between both natural live cells and other synthetic cells. A system such as these enable studying interactions between populations of cells, both natural and artificial, and engineering small molecule cell communication protocols for a variety of basic research and practical applications. In this review, we summarize recent progress in engineering communication between synthetic and natural cells, and we speculate about the possible future directions of this work.
Collapse
Affiliation(s)
- Abbey O Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Orion M Venero
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Dreher Y, Jahnke K, Schröter M, Göpfrich K. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles. NANO LETTERS 2021; 21:5952-5957. [PMID: 34251204 PMCID: PMC8323123 DOI: 10.1021/acs.nanolett.1c00822] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Indexed: 05/24/2023]
Abstract
A minimal synthetic cell should contain a substrate for information storage and have the capability to divide. Notable efforts were made to assemble functional synthetic cells from the bottom up, however often lacking the capability to reproduce. Here, we develop a mechanism to fully control reversible cargo loading and division of DNA-containing giant unilamellar vesicles (GUVs) with light. We make use of the photosensitizer Chlorin e6 (Ce6) which self-assembles into lipid bilayers and leads to local lipid peroxidation upon illumination. On the time scale of minutes, illumination induces the formation of transient pores, which we exploit for cargo encapsulation or controlled release. In combination with osmosis, complete division of two daughter GUVs can be triggered within seconds of illumination due to a spontaneous curvature increase. We ultimately demonstrate the division of a selected DNA-containing GUV with full spatiotemporal control-proving the relevance of the division mechanism for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Yannik Dreher
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kevin Jahnke
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schröter
- Max
Planck Institute for Medical Research, Department
of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
21
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase‐Separated Giant Unilamellar Vesicles**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Kevin Jahnke
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Molecular Systems Engineering (IMSE) Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany
- Max Planck School Matter to Life Jahnstraße 29 69120 Heidelberg Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
| |
Collapse
|
22
|
Dreher Y, Jahnke K, Bobkova E, Spatz JP, Göpfrich K. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles*. Angew Chem Int Ed Engl 2021; 60:10661-10669. [PMID: 33355974 PMCID: PMC8252472 DOI: 10.1002/anie.202014174] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Indexed: 01/01/2023]
Abstract
Success in the bottom‐up assembly of synthetic cells will depend on strategies for the division of protocellular compartments. Here, we describe the controlled division of phase‐separated giant unilamellar lipid vesicles (GUVs). We derive an analytical model based on the vesicle geometry, which makes four quantitative predictions that we verify experimentally. We find that the osmolarity ratio required for division is 2
, independent of the GUV size, while asymmetric division happens at lower osmolarity ratios. Remarkably, we show that a suitable osmolarity change can be triggered by water evaporation, enzymatic decomposition of sucrose or light‐triggered uncaging of CMNB‐fluorescein. The latter provides full spatiotemporal control, such that a target GUV undergoes division whereas the surrounding GUVs remain unaffected. Finally, we grow phase‐separated vesicles from single‐phased vesicles by targeted fusion of the opposite lipid type with programmable DNA tags to enable subsequent division cycles.
Collapse
Affiliation(s)
- Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Elizaveta Bobkova
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
24
|
Liu J, Guo Z, Li Y, Liang J, Xue J, Xu J, Whitelock JM, Xie L, Kong B, Liang K. pH‐Gated Activation of Gene Transcription and Translation in Biocatalytic Metal–Organic Framework Artificial Cells. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jian Liu
- Department of Chemistry Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Ziyi Guo
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Yong Li
- National Supercomputer Research Center of Advanced Materials Advanced Materials Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Jueyi Xue
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Jiangtao Xu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| | - Lei Xie
- Department of Chemistry Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
| | - Biao Kong
- Department of Chemistry Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM Fudan University Shanghai 200433 China
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
25
|
Zul NF, Tajuddin HA, Ahmad N, Zainal Abidin ZH, Sadidarto AB, Abdullah Z. Influence of Hydrogen Bonding on Low Critical Micellar Concentration Value and Formation of Giant Vesicle of Triazole‐Contained Amphiphile. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nurul Faiezin Zul
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hairul Anuar Tajuddin
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Noraini Ahmad
- Colloid Chemistry & Nanotechnology Laboratory, Centre for Fundamental and Frontier Sciences in Nanostructure Self‐Assembly (FSSA), Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Zul Hazrin Zainal Abidin
- Visible Spectroscopy Laboratory, Centre for Ionics University of Malaya (CIUM), Department of Physics, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ahmad Bayhaki Sadidarto
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| | - Zanariah Abdullah
- Organic Research Laboratory, Department of Chemistry, Faculty of Science University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
26
|
Sugiyama H, Osaki T, Takeuchi S, Toyota T. Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method. ACS OMEGA 2020; 5:19429-19436. [PMID: 32803036 PMCID: PMC7424586 DOI: 10.1021/acsomega.0c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/16/2020] [Indexed: 05/12/2023]
Abstract
For the construction of a chemical model of contemporary living cells, the so-called water-in-oil emulsion transfer (WOET) method has drawn much attention as one of the promising preparation protocols for cell-sized liposomes encapsulating macromolecules and even micrometer-sized colloidal particles in high yields. Combining the throughput and accuracy of the observation is the key to developing a synthetic approach based on the liposomes prepared by the WOET method. Recent advances in microfluidic technology can provide a solution. By means of surface modification of a poly(dimethylsiloxane)-type microfluidic device integrating size-sorting and trapping modules, here, we enabled a simultaneous direct observation of the liposomes with a narrow size distribution, which were prepared by the WOET method. As a demonstration, we evaluated the variance of encapsulation of polystyrene colloidal particles and water permeability of the cell-sized liposomes prepared by the WOET method in the device. Since the liposomes prepared by the WOET method are useful for constructing cell models with an easy protocol, the current system will lead to a critical development of not only supramolecular chemistry and soft matter physics but also synthetic biology.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihisa Osaki
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Takeuchi
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department
of Mechano-Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyota
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal
Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
27
|
Miele Y, Medveczky Z, Holló G, Tegze B, Derényi I, Hórvölgyi Z, Altamura E, Lagzi I, Rossi F. Self-division of giant vesicles driven by an internal enzymatic reaction. Chem Sci 2020; 11:3228-3235. [PMID: 34122829 PMCID: PMC8157745 DOI: 10.1039/c9sc05195c] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Self-division is one of the most common phenomena in living systems and one of the most important properties of life driven by internal mechanisms of cells. Design and engineering of synthetic cells from abiotic components can recreate a life-like function thus contributing to the understanding of the origin of life. Existing methods to induce the self-division of vesicles require external and non-autonomous triggers (temperature change and the addition of membrane precursors). Here we show that pH-responsive giant unilamellar vesicles on the micrometer scale can undergo self-division triggered by an internal autonomous chemical stimulus driven by an enzymatic (urea-urease) reaction coupled to a cross-membrane transport of the substrate, urea. The bilayer of the artificial cells is composed of a mixture of phospholipids (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and oleic acid molecules. The enzymatic reaction increases the pH in the lumen of the vesicles, which concomitantly changes the protonation state of the oleic acid in the inner leaflet of the bilayer causing the removal of the membrane building blocks into the lumen of the vesicles thus decreasing the inner membrane area with respect to the outer one. This process coupled to the osmotic stress (responsible for the volume loss of the vesicles) leads to the division of a mother vesicle into two smaller daughter vesicles. These two processes must act in synergy; none of them alone can induce the division. Overall, our self-dividing system represents a step forward in the design and engineering of a complex autonomous model of synthetic cells.
Collapse
Affiliation(s)
- Ylenia Miele
- Department of Chemistry and Biology "A. Zambelli", University of Salerno Via Giovanni Paolo II 132, 84084 - Fisciano SA Italy
| | - Zsófia Medveczky
- Department of Physics, Budapest University of Technology and Economics H-1111, Budafoki ut 8 Budapest Hungary
| | - Gábor Holló
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics H-1111, Budafoki út 8 Budapest Hungary
| | - Borbála Tegze
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics H-1111 Budafoki ut 8 Budapest Hungary
| | - Imre Derényi
- Department of Biological Physics, Eötvös Loránd University H-1117 Pázmány Péter sétány 1/A Budapest Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Eötvös Loránd University H-1117 Pázmány Péter sétány 1/A Budapest Hungary
| | - Zoltán Hórvölgyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics H-1111 Budafoki ut 8 Budapest Hungary
| | - Emiliano Altamura
- Department of Chemistry, University of Bari, "Aldo Moro" Via Orabona 4 I-70125 Bari Italy
| | - István Lagzi
- Department of Physics, Budapest University of Technology and Economics H-1111, Budafoki ut 8 Budapest Hungary
- MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics H-1111, Budafoki út 8 Budapest Hungary
| | - Federico Rossi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno Via Giovanni Paolo II 132, 84084 - Fisciano SA Italy
- Department of Earth, Environmental and Physical Sciences - DEEP Sciences, University of Siena Pian dei Mantellini 44 53100 - Siena Italy
| |
Collapse
|
28
|
Tameyuki M, Hiranaka H, Toyota T, Asakura K, Banno T. Temperature-Dependent Dynamics of Giant Vesicles Composed of Hydrolysable Lipids Having an Amide Linkage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17075-17081. [PMID: 31797676 DOI: 10.1021/acs.langmuir.9b02707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various amphiphiles including surfactants and lipids have been designed and synthesized to improve and create new functionalities. In particular, the emergence of cell-like behaviors of giant vesicles (GVs) composed of synthetic lipids has drawn much attention in the development of chemical models for cells. The aim of this study was to measure temperature-dependent morphological changes of GVs induced by fragmentation and subsequent growth using hydrolysable cationic lipids having an amide linkage. Results from differential scanning calorimetry, fluorescence spectroscopy using an environment-responsive probe, and confocal Raman microscopy showed that the dynamics observed were due to changes in the vesicle membrane, including variation in the lipid composition, induced by thermal stimulation.
Collapse
Affiliation(s)
- Maito Tameyuki
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Hisato Hiranaka
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
29
|
Division in synthetic cells. Emerg Top Life Sci 2019; 3:551-558. [PMID: 33523162 DOI: 10.1042/etls20190023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Cell division is one of the most fundamental processes of life, and so far the only known way of how living systems can come into existence at all. Consequently, its reconstitution in any artificial cell system that will have to be built from the bottom-up is a notoriously complex but an important task. In this short review, I discuss several approaches how to realize division of cell-like compartments, from simply relying on the physical principles of destabilization by growth, or applying external forces, to the design of self-assembling and self-organizing machineries that may autonomously accomplish this task in response to external or internal cues.
Collapse
|