1
|
Zhang M, Dong X, Huang Z, Li X, Zhao Y, Wang Y, Zhu H, Fang A, Giovannucci EL. Cheese consumption and multiple health outcomes: an umbrella review and updated meta-analysis of prospective studies. Adv Nutr 2023; 14:1170-1186. [PMID: 37328108 PMCID: PMC10509445 DOI: 10.1016/j.advnut.2023.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
This umbrella review aims to provide a systematic and comprehensive overview of current evidence from prospective studies on the diverse health effects of cheese consumption. We searched PubMed, Embase, and Cochrane Library to identify meta-analyses/pooled analyses of prospective studies examining the association between cheese consumption and major health outcomes from inception to August 31, 2022. We reanalyzed and updated previous meta-analyses and performed de novo meta-analyses with recently published prospective studies, where appropriate. We calculated the summary effect size, 95% prediction confidence intervals, between-study heterogeneity, small-study effects, and excess significance bias for each health outcome. We identified 54 eligible articles of meta-analyses/pooled analyses. After adding newly published original articles, we performed 35 updated meta-analyses and 4 de novo meta-analyses. Together with 8 previous meta-analyses, we finally included 47 unique health outcomes. Cheese consumption was inversely associated with all-cause mortality (highest compared with lowest category: RR = 0.95; 95% CI: 0.92, 0.99), cardiovascular mortality (RR = 0.93; 95% CI: 0.88, 0.99), incident cardiovascular disease (CVD) (RR = 0.92; 95% CI: 0.89, 0.96), coronary heart disease (CHD) (RR = 0.92; 95% CI: 0.86, 0.98), stroke (RR = 0.93; 95% CI: 0.89, 0.98), estrogen receptor-negative (ER-) breast cancer (RR = 0.89; 95% CI: 0.82, 0.97), type 2 diabetes (RR = 0.93; 95% CI: 0.88, 0.98), total fracture (RR = 0.90; 95% CI: 0.86, 0.95), and dementia (RR = 0.81; 95% CI: 0.66, 0.99). Null associations were found for other outcomes. According to the NutriGrade scoring system, moderate quality of evidence was observed for inverse associations of cheese consumption with all-cause and cardiovascular mortality, incident CVD, CHD, and stroke, and for null associations with cancer mortality, incident hypertension, and prostate cancer. Our findings suggest that cheese consumption has neutral to moderate benefits for human health.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaocong Dong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zihui Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zhao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingyao Wang
- Chinese Nutrition Society Academy of Nutrition and Health, Beijing, China.
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Aiping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Saeed M, Shoaib A, Kandimalla R, Javed S, Almatroudi A, Gupta R, Aqil F. Microbe-based therapies for colorectal cancer: Advantages and limitations. Semin Cancer Biol 2022; 86:652-665. [PMID: 34020027 DOI: 10.1016/j.semcancer.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is one of the leading global causes of death in both men and women. Colorectal cancer (CRC) alone accounts for ∼10 % of total new global cases and poses an over 4% lifetime risk of developing cancer. Recent advancements in the field of biotechnology and microbiology concocted novel microbe-based therapies to treat various cancers, including CRC. Microbes have been explored for human use since centuries, especially for the treatment of various ailments. The utility of microbes in cancer therapeutics is widely explored, and various bacteria, fungi, and viruses are currently in use for the development of cancer therapeutics. The human gut hosts about 100 trillion microbes that release their metabolites in active, inactive, or dead conditions. Microbial secondary metabolites, proteins, immunotoxins, and enzymes are used to target cancer cells to induce cell cycle arrest, apoptosis, and death. Various approaches, such as dietary interventions, the use of prebiotics and probiotics, and fecal microbiota transplantation have been used to modulate the gut microbiota in order to prevent or treat CRC pathogenesis. The present review highlights the role of the gut microbiota in CRC precipitation, the potential mechanisms and use of microorganisms as CRC biomarkers, and strategies to modulate microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raghuram Kandimalla
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ramesh Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
miR-22 Suppresses EMT by Mediating Metabolic Reprogramming in Colorectal Cancer through Targeting MYC-Associated Factor X. DISEASE MARKERS 2022; 2022:7843565. [PMID: 36061355 PMCID: PMC9436592 DOI: 10.1155/2022/7843565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal cancers. MicroRNAs (miRNAs) have been proved to be unusually expressed in CRC progression and thus alter multiple pathological processes in CRC cells. However, the specific roles and mechanisms of miR-22 in CRC have not been clearly reported. MicroRNA-22 (miR-22) and MYC-associated factor X (MAX) expressions were determined by RT-qPCR in CRC tissues and cells. The targeted regulatory effects of miR-22 and MAX were confirmed by luciferase reporter and coimmunoprecipitation assays. Also, gain- and loss-of-function and rescue experiments were used to elucidate the function and mechanism of miR-22 and MAX in CRC cells and the mouse xenograft model. We discovered that miR-22 was hypermethylated and downregulated, while MAX was upregulated in CRC. miR-22 markedly inhibited migration, invasion, glycolysis, and cancer stem cell transcription factors in CRC cells. In addition, it was found that miR-22 can directly target MAX. Additional functional experiments confirmed that MAX overexpression can rescue the effects of miR-22 on the behavior of CRC cells. This study suggested that miR-22, as a cancer suppressor, participates in CRC progression by targeting MAX, which might provide basic information for therapeutic targets for CRC.
Collapse
|
4
|
Yin F, Zhao R, Gorja DR, Fu X, Lu N, Huang H, Xu B, Chen H, Shim JH, Liu K, Li Z, Laster KV, Dong Z, Lee MH. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm Sin B 2022; 12:4122-4137. [PMID: 36386480 PMCID: PMC9643289 DOI: 10.1016/j.apsb.2022.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.
Collapse
|
5
|
Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int 2022; 156:111327. [DOI: 10.1016/j.foodres.2022.111327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
|
6
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
7
|
Association Between Mycotoxin Exposure and Dietary Habits in Colorectal Cancer Development Among a Polish Population: A Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030698. [PMID: 31973151 PMCID: PMC7037804 DOI: 10.3390/ijerph17030698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal types of cancer worldwide. The developing of this disease includes many factors such as genetic, socioeconomic, environmental, and lifestyle factors, and nutrition habits. The aim of the study is the determination of zearalenone and its metabolite level in the biological samples of participants at risk of CRC, in relation to the nutrition data and information on the quality of life dependent on health. In the cohort clinical trial, 150 participants aged between 50 and 65 will be studied. The participants will be assigned into two groups depending on the colonoscopy result. Participants will be tested at dietary intake, quality of life, sleep time and quality, stress level as well as biochemical parameters of the blood. Moreover, in the biological samples, concentration of zearalenone and its metabolites (α-zearalenol and β-zearalenol) as well as the characteristics of gastrointestinal bacterial will be determined, and the end of the trial for both groups and their results will be compared. Taking into account the possible effect of mycotoxins and nutrition habits on the development of cancer, the results obtained may allow the formulation of new nutritional recommendations and reduce the development and occurrence of CRC.
Collapse
|