1
|
Reinsch N, Mayer M, Blunk I. Generalized gametic relationships for flexible analyses of parent-of-origin effects. G3 GENES|GENOMES|GENETICS 2021; 11:6166654. [PMID: 33693544 PMCID: PMC8496240 DOI: 10.1093/g3journal/jkab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Abstract
A class of epigenetic inheritance patterns known as genomic imprinting allows alleles to influence the phenotype in a parent-of-origin-specific manner. Various pedigree-based parent-of-origin analyses of quantitative traits have attempted to determine the share of genetic variance that is attributable to imprinted loci. In general, these methods require four random gametic effects per pedigree member to account for all possible types of imprinting in a mixed model. As a result, the system of equations may become excessively large to solve using all available data. If only the offspring have records, which is frequently the case for complex pedigrees, only two averaged gametic effects (transmitting abilities) per parent are required (reduced model). However, the parents may have records in some cases. Therefore, in this study, we explain how employing single gametic effects solely for informative individuals (i.e., phenotyped individuals), and only average gametic effects otherwise, significantly reduces the complexity compared with classical gametic models. A generalized gametic relationship matrix is the covariance of this mixture of effects. The matrix can also make the reduced model much more flexible by including observations from parents. Worked examples are present to illustrate the theory and a realistic body mass data set in mice is used to demonstrate its utility. We show how to set up the inverse of the generalized gametic relationship matrix directly from a pedigree. An open-source program is used to implement the rules. The application of the same principles to phased marker data leads to a genomic version of the generalized gametic relationships.
Collapse
Affiliation(s)
- Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Inga Blunk
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
2
|
Blunk I, Thomsen H, Reinsch N, Mayer M, Försti A, Sundquist J, Sundquist K, Hemminki K. Genomic imprinting analyses identify maternal effects as a cause of phenotypic variability in type 1 diabetes and rheumatoid arthritis. Sci Rep 2020; 10:11562. [PMID: 32665606 PMCID: PMC7360775 DOI: 10.1038/s41598-020-68212-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
Imprinted genes, giving rise to parent-of-origin effects (POEs), have been hypothesised to affect type 1 diabetes (T1D) and rheumatoid arthritis (RA). However, maternal effects may also play a role. By using a mixed model that is able to simultaneously consider all kinds of POEs, the importance of POEs for the development of T1D and RA was investigated in a variance components analysis. The analysis was based on Swedish population-scale pedigree data. With P = 0.18 (T1D) and P = 0.26 (RA) imprinting variances were not significant. Explaining up to 19.00% (± 2.00%) and 15.00% (± 6.00%) of the phenotypic variance, the maternal environmental variance was significant for T1D (P = 1.60 × 10-24) and for RA (P = 0.02). For the first time, the existence of maternal genetic effects on RA was indicated, contributing up to 16.00% (± 3.00%) of the total variance. Environmental factors such as the social economic index, the number of offspring, birth year as well as their interactions with sex showed large effects.
Collapse
Affiliation(s)
- Inga Blunk
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|