1
|
Martinez-Hernandez JE, Salvo-Garrido H, Levicoy D, Caligari PDS, Rupayán A, Moyano T, Carrasco M, Hernandez S, Armijo-Godoy G, Westermeyer F, Larama G. Genomic structure of yellow lupin (Lupinus luteus): genome organization, evolution, gene family expansion, metabolites and protein synthesis. BMC Genomics 2025; 26:477. [PMID: 40369454 DOI: 10.1186/s12864-025-11678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Yellow lupin (Lupinus luteus) gives valuable high-quality protein and has good sustainability due to its ability in nitrogen fixation and exudation of organic acids, which reduces the need for chemical-based phosphate fertilization in acid soils. However, the crop needs further improvements to contribute in a major way to sustainable agriculture and food security.In this study, we present the first chromosome-level genome assembly of L. luteus. The results provide insights into its genomic organization, evolution, and functional attributes. Using integrated genomic approaches, we unveil the genetic bases governing its adaptive responses to environmental stress, delineating the intricate interplay among alkaloid biosynthesis, mechanisms of pathogen resistance, and secondary metabolite transporters. Our comparative genomic analysis of closely related species highlights recent speciation events within the Lupinus genus, exposing extensive synteny preservation alongside notable structural alterations, particularly chromosome translocations. Remarkable expansions of gene families implicated in terpene metabolism, stress responses, and conglutin proteins were identified, elucidating the genetic basis of L. luteus' superior nutritional profile and defensive capabilities. Additionally, a diverse array of disease resistance-related (R) genes was uncovered, alongside the characterization of pivotal enzymes governing quinolizidine alkaloid biosynthesis, thus shedding light on the molecular mechanisms underlying "bitterness" in lupin seeds.This comprehensive genomic analysis serves as a valuable resource to improve this species in terms of resilience, yield, and seed protein levels to contribute to food and feed to face the worldwide challenge of sustainable agriculture and food security.
Collapse
Affiliation(s)
- J Eduardo Martinez-Hernandez
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de Las Américas, Santiago, 7500975, Chile
| | - Haroldo Salvo-Garrido
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile.
| | - Daniela Levicoy
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Peter D S Caligari
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Annally Rupayán
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Tomas Moyano
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Makarena Carrasco
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Sebastián Hernandez
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Grace Armijo-Godoy
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Fernando Westermeyer
- CGNA (Agriaquaculture Nutritional Genomic Center), Las Heras 350, Temuco, 4781158, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, 4811230, Chile
| |
Collapse
|
2
|
Surma A, Książkiewicz M, Bielski W, Kozak B, Galek R, Rychel-Bielska S. Development and validation of PCR marker array for molecular selection towards spring, vernalization-independent and winter, vernalization-responsive ecotypes of white lupin (Lupinus albus L.). Sci Rep 2025; 15:2659. [PMID: 39838084 PMCID: PMC11751487 DOI: 10.1038/s41598-025-86482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci. The present study aimed to develop and validate a versatile PCR marker array enabling molecular selection of spring- and winter-type white lupin ecotypes. Candidate DArT-seq and silicoDArT loci were transformed into cleaved amplified polymorphic sequence (CAPS) or derived CAPS markers. Developed markers, together with those previously published for LalbFTc1 INDELs and quantitative trait loci from linkage maps, were implemented for screening of white lupin germplasm panel subjected to 2-year phenotyping of phenology traits. Three DArT-seq, two silicoDArT and seven LalbFTc1 INDEL markers were positively validated, constituting a convenient PCR-based marker assay for rapid and accurate reselection of white lupin germplasm towards early flowering and thermoneutrality or late flowering and vernalization-responsiveness, as well as for tracking high genetic and phenotypic diversity within white lupin landraces, revealed in the present study.
Collapse
Affiliation(s)
- Anna Surma
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Książkiewicz
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Wojciech Bielski
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-631, Poznań, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland
| |
Collapse
|
3
|
Pancaldi F, Gulisano A, Severing EI, van Kaauwen M, Finkers R, Kodde L, Trindade LM. The genome of Lupinus mutabilis: Evolution and genetics of an emerging bio-based crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:881-900. [PMID: 39264984 DOI: 10.1111/tpj.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L. mutabilis is attracting interest as a potential multipurpose crop to diversify the European supply of plant proteins, increase agricultural biodiversity, and fulfill bio-based applications. This study reports the first high-quality L. mutabilis genome assembly, which is also the first sequenced assembly of a New World lupin species. Through comparative genomics and phylogenetics, the evolution of L. mutabilis within legumes and lupins is described, highlighting both genomic similarities and patterns specific to L. mutabilis, potentially linked to environmental adaptations. Furthermore, the assembly was used to study the genetics underlying important traits for the establishment of L. mutabilis as a novel crop, including protein and quinolizidine alkaloids contents in seeds, genomic patterns of classic resistance genes, and genomic properties of L. mutabilis mycorrhiza-related genes. These analyses pointed out copy number variation, differential genomic gene contexts, and gene family expansion through tandem duplications as likely important drivers of the genomic diversity observed for these traits between L. mutabilis and other lupins and legumes. Overall, the L. mutabilis genome assembly will be a valuable resource to conduct genetic research and enable genomic-based breeding approaches to turn L. mutabilis into a multipurpose legume crop.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Agata Gulisano
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Edouard I Severing
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Gennovation B.V, Agro Business Park 10, 6708PW, Wageningen, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Gennovation B.V, Agro Business Park 10, 6708PW, Wageningen, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Luisa M Trindade
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
4
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Mancinotti D, Czepiel K, Taylor JL, Golshadi Galehshahi H, Møller LA, Jensen MK, Motawia MS, Hufnagel B, Soriano A, Yeheyis L, Kjaerulff L, Péret B, Staerk D, Wendt T, Nelson MN, Kroc M, Geu-Flores F. The causal mutation leading to sweetness in modern white lupin cultivars. SCIENCE ADVANCES 2023; 9:eadg8866. [PMID: 37540741 PMCID: PMC10403207 DOI: 10.1126/sciadv.adg8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Lupins are high-protein crops that are rapidly gaining interest as hardy alternatives to soybean; however, they accumulate antinutritional alkaloids of the quinolizidine type (QAs). Lupin domestication was enabled by the discovery of genetic loci conferring low QA levels (sweetness), but the precise identity of the underlying genes remains uncertain. We show that pauper, the most common sweet locus in white lupin, encodes an acetyltransferase (AT) unexpectedly involved in the early QA pathway. In pauper plants, a single-nucleotide polymorphism (SNP) strongly impairs AT activity, causing pathway blockage. We corroborate our hypothesis by replicating the pauper chemotype in narrow-leafed lupin via mutagenesis. Our work adds a new dimension to QA biosynthesis and establishes the identity of a lupin sweet gene for the first time, thus facilitating lupin breeding and enabling domestication of other QA-containing legumes.
Collapse
Affiliation(s)
- Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Katarzyna Czepiel
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań, Poland
| | - Jemma L. Taylor
- Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Hajar Golshadi Galehshahi
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | | | | - Mohammed Saddik Motawia
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Bárbara Hufnagel
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Benjamin Péret
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Toni Wendt
- Traitomic A/S, J.C. Jacobsens Gade 14, 1799 Copenhagen, Denmark
| | - Matthew N. Nelson
- Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA 6014, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań, Poland
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
6
|
Duraiswamy A, Sneha A. NM, Jebakani K. S, Selvaraj S, Pramitha J. L, Selvaraj R, Petchiammal K. I, Kather Sheriff S, Thinakaran J, Rathinamoorthy S, Kumar P. R. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. FRONTIERS IN PLANT SCIENCE 2023; 13:1070398. [PMID: 36874916 PMCID: PMC9976781 DOI: 10.3389/fpls.2022.1070398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, β-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.
Collapse
Affiliation(s)
- Aishwarya Duraiswamy
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Nancy Mano Sneha A.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sherina Jebakani K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sellakumar Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Lydia Pramitha J.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramchander Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Indira Petchiammal K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sharmili Kather Sheriff
- Agronomy, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jenita Thinakaran
- Horticulture, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Samundeswari Rathinamoorthy
- Crop Physiology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramesh Kumar P.
- Plant Biochemistry, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
7
|
Czyż KB, Taylor CM, Kawaliło M, Koczyk G. Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. Int J Mol Sci 2022; 23:ijms232416003. [PMID: 36555644 PMCID: PMC9783688 DOI: 10.3390/ijms232416003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nodulation is a hallmark yet non-universal characteristic of legumes. It is unknown whether the mechanisms underlying nitrogen-fixing symbioses evolved within legumes and the broader nitrogen-fixing clade (NFC) repeatedly de novo or based on common ancestral pathways. Ten new transcriptomes representing members from the Cercidoideae and Caesalpinioideae subfamilies were supplemented with published omics data from 65 angiosperms, to investigate how gene content correlates with nodulation capacity within Fabaceae and the NFC. Orthogroup analysis categorized annotated genes into 64150 orthogroups, of which 19 were significantly differentially represented between nodulating versus non-nodulating NFC species and were most commonly absent in nodulating taxa. The distribution of six over-represented orthogroups within Viridiplantae representatives suggested that genomic evolution events causing gene family expansions, including whole-genome duplications (WGDs), were unlikely to have facilitated the development of stable symbioses within Fabaceae as a whole. Instead, an absence of representation of 13 orthogroups indicated that losses of genes involved in trichome development, defense and wounding responses were strongly associated with rhizobial symbiosis in legumes. This finding provides novel evidence of a lineage-specific predisposition for the evolution and/or stabilization of nodulation in Fabaceae, in which a loss of pathogen resistance genes may have allowed for stable mutualistic interactions with rhizobia.
Collapse
Affiliation(s)
- Katarzyna B. Czyż
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
- Correspondence:
| | - Candy M. Taylor
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Michał Kawaliło
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| | - Grzegorz Koczyk
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| |
Collapse
|
8
|
Garg G, Kamphuis LG, Bayer PE, Kaur P, Dudchenko O, Taylor CM, Frick KM, Foley RC, Gao L, Aiden EL, Edwards D, Singh KB. A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1252-1266. [PMID: 35779281 PMCID: PMC9544533 DOI: 10.1111/tpj.15885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/02/2023]
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.
Collapse
Affiliation(s)
- Gagan Garg
- CSIRO Agriculture and FoodFloreatWA6014Australia
| | - Lars G. Kamphuis
- CSIRO Agriculture and FoodFloreatWA6014Australia
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWA6102Australia
| | - Philipp E. Bayer
- The School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTX77005USA
| | - Candy M. Taylor
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
| | - Karen M. Frick
- CSIRO Agriculture and FoodFloreatWA6014Australia
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | | | - Erez Lieberman Aiden
- School of Agriculture and Environment, University of Western AustraliaCrawleyWA6009Australia
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTX77005USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTechPudongChina
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - David Edwards
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- The School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| | - Karam B. Singh
- CSIRO Agriculture and FoodFloreatWA6014Australia
- UWA Institute of AgricultureUniversity of Western AustraliaCrawleyWA6009Australia
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWA6102Australia
| |
Collapse
|
9
|
Lu Q, Li R, Liao J, Hu Y, Gao Y, Wang M, Li J, Zhao Q. Integrative analysis of the steroidal alkaloids distribution and biosynthesis of bulbs Fritillariae Cirrhosae through metabolome and transcriptome analyses. BMC Genomics 2022; 23:511. [PMID: 35836113 PMCID: PMC9284883 DOI: 10.1186/s12864-022-08724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of the steroidal alkaloid biosynthesis in Fritillaria species is still very limited. Results To promote our understanding of these pathways, we performed non-target metabolomics and transcriptome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids biosynthesis of BFC. Conclusion These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritillaria species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08724-0.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Jiaqing Liao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.,College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yuqin Hu
- Aba County Shenhe Agricultural Development Co. LTD, Aba County, 624600, China
| | - Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mingcheng Wang
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Road, Chengdu, 610106, China
| | - Jian Li
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 610106, China. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China. .,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.
| |
Collapse
|
10
|
Mancinotti D, Frick KM, Geu-Flores F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat Prod Rep 2022; 39:1423-1437. [PMID: 35302146 DOI: 10.1039/d1np00069a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Quinolizidine alkaloids (QAs) are a class of alkaloids that accumulate in a variety of leguminous plants and have applications in the agricultural, pharmaceutical and chemical industries. QAs are notoriously present in cultivated lupins (Lupinus spp.) where they complicate the use of the valuable, high-protein beans due to their toxic properties and bitter taste. Compared to many other alkaloid classes, the biosynthesis of QAs is poorly understood, with only the two first pathway enzymes having been discovered so far. In this article, we review the different biosynthetic hypotheses that have been put forth in the literature (1988-2009) and highlight one particular hypothesis (1988) that agrees with the often ignored precursor feeding studies (1964-1994). Our focus is on the biosynthesis of the simple tetracyclic QA (-)-sparteine, from which many of the QAs found in lupins derive. We examine every pathway step on the way to (-)-sparteine and discuss plausible mechanisms, altogether proposing the involvement of 6-9 enzymes. Together with the new resources for gene discovery developed for lupins in the past few years, this review will contribute to the full elucidation of the QA pathway, including the identification and characterization of the missing pathway enzymes.
Collapse
Affiliation(s)
- Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Karen Michiko Frick
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Osorio CE, Till BJ. A Bitter-Sweet Story: Unraveling the Genes Involved in Quinolizidine Alkaloid Synthesis in Lupinus albus. FRONTIERS IN PLANT SCIENCE 2022; 12:795091. [PMID: 35154186 PMCID: PMC8826574 DOI: 10.3389/fpls.2021.795091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-containing secondary metabolites that are found in over 20% of plant species. Lupinus albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions containing up to 11% of QA in seeds. Notwithstanding their clear advantages as a natural protecting system, lupin-breeding programs have selected against QA content without proper understanding of quinolizidine alkaloid biosynthetic pathway. This review summarizes the current status in this field, with focus on the utilization of natural mutations such as the one contained in pauper locus, and more recently the development of molecular markers, which along with the advent of sequencing technology, have facilitated the identification of candidate genes located in the pauper region. New insights for future research are provided, including the utilization of differentially expressed genes located on the pauper locus, as candidates for genome editing. Identification of the main genes involved in the biosynthesis of QA will enable precision breeding of low-alkaloid, high nutrition white lupin. This is important as plant based high quality protein for food and feed is an essential for sustainable agricultural productivity.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Mancinotti D, Rodriguez MC, Frick KM, Dueholm B, Jepsen DG, Agerbirk N, Geu-Flores F. Development and application of a virus-induced gene silencing protocol for the study of gene function in narrow-leafed lupin. PLANT METHODS 2021; 17:131. [PMID: 34963500 PMCID: PMC8714437 DOI: 10.1186/s13007-021-00832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lupins are promising protein crops with an increasing amount of genomic and transcriptomic resources. The new resources facilitate the in silico identification of candidate genes controlling important agronomic traits. However, a major bottleneck for lupin research and crop improvement is the in planta characterization of gene function. Here, we present an efficient protocol for virus-induced gene silencing (VIGS) to down-regulate endogenous genes in narrow-leafed lupin (NLL) using the apple latent spherical virus (ALSV). RESULTS We identified ALSV as an appropriate VIGS vector able to infect NLL without causing a discernible phenotype. We created improved ALSV vectors to allow for efficient cloning of gene fragments into the viral genome and for easier viral propagation via agroinfiltration of Nicotiana benthamiana. Using this system, we silenced the visual marker gene phytoene desaturase (PDS), which resulted in systemic, homogenous silencing as indicated by bleaching of newly produced tissues. Furthermore, by silencing lysine decarboxylase (LaLDC)-a gene likely to be involved in toxic alkaloid biosynthesis-we demonstrate the applicability of our VIGS method to silence a target gene alone or alongside PDS in a 'PDS co-silencing' approach. The co-silencing approach allows the visual identification of tissues where silencing is actively occurring, which eases tissue harvesting and downstream analysis, and is useful where the trait under study is not affected by PDS silencing. Silencing LaLDC resulted in a ~ 61% or ~ 67% decrease in transcript level, depending on whether LaLDC was silenced alone or alongside PDS. Overall, the silencing of LaLDC resulted in reduced alkaloid levels, providing direct evidence of its involvement in alkaloid biosynthesis in NLL. CONCLUSIONS We provide a rapid and efficient VIGS method for validating gene function in NLL. This will accelerate the research and improvement of this underutilized crop.
Collapse
Affiliation(s)
- Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Cecilia Rodriguez
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karen Michiko Frick
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bjørn Dueholm
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ditte Goldschmidt Jepsen
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Agerbirk
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
13
|
Liang Y, Wei K, Wei F, Qin S, Deng C, Lin Y, Li M, Gu L, Wei G, Miao J, Zhang Z. Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis. BMC PLANT BIOLOGY 2021; 21:566. [PMID: 34856930 PMCID: PMC8641164 DOI: 10.1186/s12870-021-03334-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. RESULTS To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. CONCLUSION This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.
Collapse
Affiliation(s)
- Ying Liang
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Kunhua Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Fan Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Shuangshuang Qin
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Chuanhua Deng
- Guangxi Forest Inventory and Planning Institute, Nanning, 530011, China
| | - Yang Lin
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
| | - Guili Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jianhua Miao
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China.
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Hufnagel B, Soriano A, Taylor J, Divol F, Kroc M, Sanders H, Yeheyis L, Nelson M, Péret B. Pangenome of white lupin provides insights into the diversity of the species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2532-2543. [PMID: 34346542 PMCID: PMC8633493 DOI: 10.1111/pbi.13678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 05/21/2023]
Abstract
White lupin is an old crop with renewed interest due to its seed high protein content and high nutritional value. Despite a long domestication history in the Mediterranean basin, modern breeding efforts have been fairly scarce. Recent sequencing of its genome has provided tools for further description of genetic resources but detailed characterization of genomic diversity is still missing. Here, we report the genome sequencing of 39 accessions that were used to establish a white lupin pangenome. We defined 32 068 core genes that are present in all individuals and 14 822 that are absent in some and may represent a gene pool for breeding for improved productivity, grain quality, and stress adaptation. We used this new pangenome resource to identify candidate genes for alkaloid synthesis, a key grain quality trait. The white lupin pangenome provides a novel genetic resource to better understand how domestication has shaped the genomic variability within this crop. Thus, this pangenome resource is an important step towards the effective and efficient genetic improvement of white lupin to help meet the rapidly growing demand for plant protein sources for human and animal consumption.
Collapse
Affiliation(s)
- Bárbara Hufnagel
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
- Present address:
CIRADUMR AGAP InstitutSEAPAG TeamPetit‐BourgGuadeloupeF‐97170French West Indies
| | | | | | - Fanchon Divol
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
| | - Magdalena Kroc
- Institute of Plant Genetics Polish Academy of SciencesPoznanPoland
| | | | | | | | - Benjamin Péret
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
| |
Collapse
|
15
|
Unraveling the Biosynthesis of Quinolizidine Alkaloids Using the Genetic and Chemical Diversity of Mexican Lupins. DIVERSITY 2021. [DOI: 10.3390/d13080375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quinolizidine alkaloids (QAs) are synthesized by the genus Lupinus as a defense against herbivores. Synthesis of QAs in lupins is species- and organ-specific. Knowledge about their biosynthesis and their corresponding pathways are still fragmentary, in part because lupins of commercial importance were mainly investigated, representing a small sample of the chemodiversity of the genus. Here, we explore the use of three Mexican lupins: Lupinus aschenbornii, Lupinus montanus, and Lupinus bilineatus as a model to study the physiology of QA biosynthesis. The corresponding QA patterns cover widely and narrowly distributed tetracyclic QAs. Quinolizidine alkaloid patterns of seeds and plantlets at different developmental stages were determined by GLC–MS and compared to identify the onset of de novo QA synthesis and to gain insight into specific and common biosynthesis trends. Onset of de novo QA biosynthesis occurred after the metabolization of seed QA during germination and was species-specific, as expected. A common QA pattern, from which the diversity of QA observed in these species is generated, was not found; however, lupanine and 3β-lupanine were found in the three specieswhile sparteine was not found in Lupinus bilineatus, suggesting that this simplest tetracyclic QA is not the precursor of more complex QAs. Similar patterns of metabolization and biosynthesis of structurally related QAs were observed, suggesting a common regulation.
Collapse
|
16
|
Expression Profiles of Alkaloid-Related Genes across the Organs of Narrow-Leafed Lupin ( Lupinus angustifolius L.) and in Response to Anthracnose Infection. Int J Mol Sci 2021; 22:ijms22052676. [PMID: 33800929 PMCID: PMC7962062 DOI: 10.3390/ijms22052676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
The main restraint obstructing the wider adoption of lupins as protein crops is the presence of bitter and toxic quinolizidine alkaloids (QAs), whose contents might increase under exposure to stressful environmental conditions. A poor understanding of how QAs accumulate hinders the breeding of sweet varieties. Here, we characterize the expression profiles of QA-related genes, along with the alkaloid content, in various organs of sweet and bitter narrow-leafed lupin (NLL, Lupinus angustifolius L.). Special attention is paid to the RAP2-7 transcription factor, a candidate regulator of the QA pathway. We demonstrate the upregulation of RAP2-7 and other QA-related genes, across the aerial organs of a bitter cultivar and the significant correlations between their expression levels, thus supporting the role of RAP2-7 as an important regulatory gene in NLL. Moreover, we showed that the initial steps of QA synthesis might occur independently in all aerial plant organs sharing common regulatory mechanisms. Nonetheless, other regulatory steps might be involved in RAP2-7-triggered QA accumulation, given its expression pattern in leaves. Finally, the examination of QA-related gene expression in plants infected with Colletotrichum lupini evidenced no connection between QA synthesis and anthracnose resistance, in contrast to the important role of polyamines during plant–pathogen interactions.
Collapse
|
17
|
Vishnyakova MA, Kushnareva AV, Shelenga TV, Egorova GP. Alkaloids of narrow-leaved lupine as a factor determining alternative ways of the crop's utilization and breeding. Vavilovskii Zhurnal Genet Selektsii 2021; 24:625-635. [PMID: 33659848 PMCID: PMC7716546 DOI: 10.18699/vj20.656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Narrow-leaved lupine (Lupinus angustifolius L.), a valuable leguminous crop adapted to a wide range of
climatic conditions, has a very short history of domestication. For many centuries it was used mainly as a green
manure, since the success and prospects of the multi-purpose use of the species depend on its breeding improvement,
in particular, on a particular concentration of alkaloids in seeds and green mass. The first varieties of scientific
breeding were created only in the 1930s after the appearance of low-alkaloid mutants. Despite wide prospects
for use in various areas of the national economy, unstable productivity and susceptibility to diseases hinder the
production of this crop. Obviously, breeders deal only with a small part of the gene pool of the species and limited
genetic resources, using mainly low-alkaloid (sweet) genotypes to create new varieties. The genetic potential of
the species can be used more efficiently. At the same time, it is rational to create highly alkaloid (bitter) varieties
for green manure, while food and feed varieties
should not lose their adaptive potential, in particular, resistance to
pathogens, due to the elimination of alkaloids. In this regard, it seems to be a productive idea to create ‘bitter/sweet’
varieties combining a high content of alkaloids in the vegetative organs and low in seeds, which can be achieved
by regulating the synthesis/transport of alkaloids in the plant. The paper discusses the current state of use of the
species as a green manure, fodder, food plant. Information is given on the quantity and qualitative composition of
narrow-leaved lupine alkaloids, their applied value, in particular, fungicidal, antibacterial, insecticidal, the use of
lupine alkaloids as active principles of drugs. Along with promising breeding considerations, the possibility of using
technologies for processing raw high-alkaloid materials with the accompanying extraction of valuable ingredients
for pharmaceuticals is discussed. Information is briefly presented about the genomic resources of the species and
the prospects for their use in marker-assistant selection and genome editing.
Collapse
Affiliation(s)
- M A Vishnyakova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A V Kushnareva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - G P Egorova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
18
|
Wang P, Zhou G, Jian J, Yang H, Renshaw D, Aubert MK, Clements J, He T, Sweetingham M, Li C. Whole-genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrow-leafed lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1192-1210. [PMID: 33249667 DOI: 10.1111/tpj.15100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 05/04/2023]
Abstract
Shifting from a livestock-based protein diet to a plant-based protein diet has been proposed as an essential requirement to maintain global food sustainability, which requires the increased production of protein-rich crops for direct human consumption. Meanwhile, the lack of sufficient genetic diversity in crop varieties is an increasing concern for sustainable food supplies. Countering this concern requires a clear understanding of the domestication process and dynamics. Narrow-leafed lupin (Lupinus angustifolius L.) has experienced rapid domestication and has become a new legume crop over the past century, with the potential to provide protein-rich seeds. Here, using long-read whole-genome sequencing, we assembled the third-generation reference genome for the narrow-leafed lupin cultivar Tanjil, comprising 20 chromosomes with a total genome size of 615.8 Mb and contig N50 = 5.65 Mb. We characterized the original mutation and putative biological pathway resulting in low seed alkaloid level that initiated the recent domestication of narrow-leafed lupin. We identified a 1133-bp insertion in the cis-regulatory region of a putative gene that may be associated with reduced pod shattering (lentus). A comparative analysis of genomic diversity in cultivars and wild types identified an apparent domestication bottleneck, as precisely predicted by the original model of the bottleneck effect on genetic variability in populations. Our results identify the key domestication genetic loci and provide direct genomic evidence for a domestication bottleneck, and open up the possibility of knowledge-driven de novo domestication of wild plants as an avenue to broaden crop plant diversity to enhance food security and sustainable low-carbon emission agriculture.
Collapse
Affiliation(s)
- Penghao Wang
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huaan Yang
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Daniel Renshaw
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Matthew K Aubert
- Australian Grain Technologies Pty Ltd, 100 Byfield Street, Northam, WA, 6041, Australia
| | - Jonathan Clements
- Green Blueprint Pty Ltd, 117C Hastings Street, Scarborough, WA, 6019, Australia
- Glycemic Lupin Company Pty Ltd, 33 Commercial St, Coorow, WA, 6515, Australia
| | - Tianhua He
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Mark Sweetingham
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| |
Collapse
|
19
|
Schultz CJ, Goonetilleke SN, Liang J, Lahnstein J, Levin KA, Bianco-Miotto T, Burton RA, Mather DE, Chalmers KJ. Analysis of Genetic Diversity in the Traditional Chinese Medicine Plant 'Kushen' ( Sophora flavescens Ait.). FRONTIERS IN PLANT SCIENCE 2021; 12:704201. [PMID: 34413868 PMCID: PMC8369264 DOI: 10.3389/fpls.2021.704201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 05/13/2023]
Abstract
Kushen root, from the woody legume Sophora flavescens, is a traditional Chinese medicine that is a key ingredient in several promising cancer treatments. This activity is attributed in part to two quinolizidine alkaloids (QAs), oxymatrine and matrine, that have a variety of therapeutic activities in vitro. Genetic selection is needed to adapt S. flavescens for cultivation and to improve productivity and product quality. Genetic diversity of S. flavescens was investigated using genotyping-by-sequencing (GBS) on 85 plants grown from seeds collected from 9 provinces of China. DArTSeq provided over 10,000 single nucleotide polymorphism (SNP) markers, 1636 of which were used in phylogenetic analysis to reveal clear regional differences for S. flavescens. One accession from each region was selected for PCR-sequencing to identify gene-specific SNPs in the first two QA pathway genes, lysine decarboxylase (LDC) and copper amine oxidase (CAO). To obtain SfCAO sequence for primer design we used a targeted transcript capture and assembly strategy using publicly available RNA sequencing data. Partial gene sequence analysis of SfCAO revealed two recently duplicated genes, SfCAO1 and SfCAO2, in contrast to the single gene found in the QA-producing legume Lupinus angustifolius. We demonstrate high efficiency converting SNPs to Kompetitive Allele Specific PCR (KASP) markers developing 27 new KASP markers, 17 from DArTSeq data, 7 for SfLDC, and 3 for SfCAO1. To complement this genetic diversity analysis a field trial site has been established in South Australia, providing access to diverse S. flavescens material for morphological, transcriptomic, and QA metabolite analysis. Analysis of dissected flower buds revealed that anthesis occurs before buds fully open suggesting a potential for S. flavescens to be an inbreeding species, however this is not supported by the relatively high level of heterozygosity observed. Two plants from the field trial site were analysed by quantitative real-time PCR and levels of matrine and oxymatrine were assessed in a variety of tissues. We are now in a strong position to select diverse plants for crosses to accelerate the process of genetic selection needed to adapt kushen to cultivation and improve productivity and product quality.
Collapse
Affiliation(s)
- Carolyn J. Schultz
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Shashi N. Goonetilleke
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jianping Liang
- Department of Chinese Medicine, College of Life Sciences, Shanxi Agricultural University, Shanxi, China
- *Correspondence: Jianping Liang,
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kenneth J. Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Kenneth J. Chalmers,
| |
Collapse
|
20
|
Plewiński P, Ćwiek-Kupczyńska H, Rudy E, Bielski W, Rychel-Bielska S, Stawiński S, Barzyk P, Krajewski P, Naganowska B, Wolko B, Książkiewicz M. Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume. PLANT, CELL & ENVIRONMENT 2020; 43:2680-2698. [PMID: 32885839 DOI: 10.1111/pce.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume crop, cultivated both as a green manure and as a source of protein for animal feed and human food production. During its domestication process, numerous agronomic traits were improved, however, only two trait-related genes were identified hitherto, both by linkage mapping. Genome-wide association studies (GWAS), exploiting genomic sequencing, did not select any novel candidate gene. In the present study, an innovative method of 3'-end reduced representation transcriptomic profiling, a massive analysis of cDNA ends, has been used for genotyping of 126 L. angustifolius lines surveyed by field phenotyping. Significant genotype × environment interactions were identified for all phenology and yield traits analysed. Principal component analysis of population structure evidenced European domestication bottlenecks, visualized by clustering of breeding materials and cultivars. GWAS provided contribution towards deciphering vernalization pathway in legumes, and, apart from highlighting known domestication loci (Ku/Julius and mol), designated novel candidate genes for L. angustifolius traits. Early phenology was associated with genes from vernalization, cold-responsiveness and phosphatidylinositol signalling pathways whereas high yield with genes controlling photosynthesis performance and abiotic stress (drought or heat) tolerance. PCR-based toolbox was developed and validated to enable tracking desired alleles in marker-assisted selection. Narrow-leafed lupin was genotyped with an innovative method of transcriptome profiling and phenotyped for phenology, growth and yield traits in field. Early phenology was found associated with genes from cold-response, vernalization and phosphatidylinositol signalling pathways, whereas high yield with genes running photosystem II and drought or heat stress response. Key loci were supplied with PCR-based toolbox for marker-assisted selection.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Hanna Ćwiek-Kupczyńska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Elżbieta Rudy
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Stanisław Stawiński
- Department in Przebędowo, Plant Breeding Smolice Ltd., Murowana Goślina, Poland
| | - Paweł Barzyk
- Department in Wiatrowo, Poznań Plant Breeding Ltd., Wiatrowo, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
21
|
Iqbal MM, Erskine W, Berger JD, Nelson MN. Phenotypic characterisation and linkage mapping of domestication syndrome traits in yellow lupin (Lupinus luteus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2975-2987. [PMID: 32683474 PMCID: PMC7497344 DOI: 10.1007/s00122-020-03650-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 05/03/2023]
Abstract
The transformation of wild plants into domesticated crops usually modifies a common set of characters referred to as 'domestication syndrome' traits such as the loss of pod shattering/seed dehiscence, loss of seed dormancy, reduced anti-nutritional compounds and changes in growth habit, phenology, flower and seed colour. Understanding the genetic control of domestication syndrome traits facilitates the efficient transfer of useful traits from wild progenitors into crops through crossing and selection. Domesticated forms of yellow lupin (Lupinus luteus L.) possess many domestication syndrome traits, while their genetic control remains a mystery. This study aimed to reveal the genetic control of yellow lupin domestication traits. This involved phenotypic characterisation of those traits, defining the genomic regions controlling domestication traits on a linkage map and performing a comparative genomic analysis of yellow lupin with its better-understood relatives, narrow-leafed lupin (L. angustifolius L.) and white lupin (L. albus L.). We phenotyped an F9 recombinant inbred line (RIL) population of a wide cross between Wodjil (domesticated) × P28213 (wild). Vernalisation responsiveness, alkaloid content, flower and seed colour in yellow lupin were each found to be controlled by single loci on linkage groups YL-21, YL-06, YL-03 and YL-38, respectively. Aligning the genomes of yellow with narrow-leafed lupin and white lupin revealed well-conserved synteny between these sister species (76% and 71%, respectively). This genomic comparison revealed that one of the key domestication traits, vernalisation-responsive flowering, mapped to a region of conserved synteny with the vernalisation-responsive flowering time Ku locus of narrow-leafed lupin, which has previously been shown to be controlled by an FT homologue. In contrast, the loci controlling alkaloid content were each found at non-syntenic regions among the three species. This provides a first glimpse into the molecular control of flowering time in yellow lupin and demonstrates both the power and the limitation of synteny as a tool for gene discovery in lupins.
Collapse
Affiliation(s)
- Muhammad Munir Iqbal
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, WA, 6009, Australia.
| | - William Erskine
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jens D Berger
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.
- Royal Botanic Gardens, Kew, Wakehurst Place Ardingly, West Sussex, RH17 6TN, UK.
| |
Collapse
|
22
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
23
|
Książkiewicz M, Yang H. Molecular Marker Resources Supporting the Australian Lupin Breeding Program. COMPENDIUM OF PLANT GENOMES 2020. [DOI: 10.1007/978-3-030-21270-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Chromatographic Fingerprinting of the Old World Lupins Seed Alkaloids: A Supplemental Tool in Species Discrimination. PLANTS 2019; 8:plants8120548. [PMID: 31783673 PMCID: PMC6963311 DOI: 10.3390/plants8120548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
Abstract
The total contents and qualitative compositions of alkaloids in seeds of 10 Old World lupin species (73 accessions) were surveyed using gas chromatography. The obtained results, combined with those for three lupin crops, Lupinus angustifolius, Lupinus albus, and Lupinus luteus, provide the most complete and up-to-date overview of alkaloid profiles of 13 lupin species originating from the Mediterranean Basin. The qualitative alkaloid compositions served as useful supplementary tools of species discrimination. On the basis of the most abundant major alkaloids, lupanine, lupinine, and multiflorine, the Old World lupin species were divided into four groups. Those containing lupanine (L. angustifolius, L. albus, and Lupinus mariae-josephi), containing lupinine (Lupinus luteus, Lupinus hispanicus, and Lupinus × hispanicoluteus), containing lupinine and multiflorine (Lupinus atlanticus, Lupinus palaestinus, Lupinus anatolicus, Lupinus digitatus, Lupinus pilosus, and Lupinus cosentinii), and containing multiflorine (Lupinus micranthus). Within a given group, certain species can be, in most cases, further distinguished by the presence of other major alkaloids. The discrimination of species based on the total alkaloid content was found to be less reliable because of the significant intra-species variations, as well as the influences of environmental factors on the seed alkaloid content.
Collapse
|
25
|
Plewiński P, Książkiewicz M, Rychel-Bielska S, Rudy E, Wolko B. Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2019; 20:ijms20225670. [PMID: 31726789 PMCID: PMC6888189 DOI: 10.3390/ijms20225670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype.
Collapse
|
26
|
Rychel S, Książkiewicz M. Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). J Appl Genet 2019; 60:269-281. [PMID: 31410824 PMCID: PMC6803572 DOI: 10.1007/s13353-019-00508-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
White lupin (Lupinus albus L.) is a legume grain crop cultivated since ancient Greece and Egypt. Modern white lupin cultivars are appreciated as a source of protein with positive nutraceutical impact. However, white lupins produce anti-nutritional compounds, quinolizidine alkaloids, which provide bitter taste and have a negative influence on human health. During domestication of this species, several recessive alleles at unlinked loci controlling low alkaloid content were selected. One of these loci, pauper, was exploited worldwide providing numerous low-alkaloid cultivars. However, molecular tracking of pauper has been hampered due to the lack of diagnostic markers. In the present study, the synteny-based approach was harnessed to target pauper locus. Single-nucleotide polymorphisms flanking pauper locus on white lupin linkage map as well as candidate gene sequences elucidated from the narrow-leafed lupin (L. angustifolius L.) chromosome segment syntenic to the pauper linkage group region were transformed to PCR-based molecular markers. These markers were analyzed both in the mapping population and world germplasm collection. From fourteen markers screened, eleven were localized at a distance below 1.5 cM from this locus, including five co-segregating with pauper. The linkage of these markers was confirmed by high LOD values (up to 58.4). Validation performed in the set of 127 bitter and 23 sweet accessions evidenced high applicability of one marker, LAGI01_35805_F1_R1, for pauper locus selection, highlighted by the low ratio of false-positive scores (2.5%). LAGI01_35805 represents a homolog of L. angustifolius acyltransferase-like (LaAT) gene which might hypothetically participate in the alkaloid biosynthesis process in lupins.
Collapse
Affiliation(s)
- Sandra Rychel
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
27
|
Kroc M, Czepiel K, Wilczura P, Mokrzycka M, Święcicki W. Development and Validation of a Gene-Targeted dCAPS Marker for Marker-Assisted Selection of Low-Alkaloid Content in Seeds of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Genes (Basel) 2019; 10:genes10060428. [PMID: 31167507 PMCID: PMC6628303 DOI: 10.3390/genes10060428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/03/2022] Open
Abstract
Low-alkaloid content is an important breeding target to improve the quality of lupin seeds. An APETALA2/ethylene response transcription factor, RAP2-7, is likely a candidate gene for the major alkaloid locus iucundus, and plays a crucial role in regulation of seed alkaloid content in narrow-leafed lupin (NLL; Lupinus angustifolius L.). Here, we exploited a single-nucleotide polymorphism within RAP2-7 credibly associated with seed alkaloid content, to develop the co-dominant derived cleaved amplified polymorphic sequence (dCAPS) marker iuc_RAP2-7. Marker validation in 202 NLL accessions demonstrated that seed alkaloid content ≥0.9% of the seed dry weight was associated with the high-alkaloid marker band (Iucundus genotypes), whereas alkaloid content up to 0.5% of the seed dry weight was associated with the low-alkaloid marker band (iucundus genotypes). Within a given detection limit, iuc_RAP2-7 unambiguously identified all but three low-alkaloid accessions. The latter accessions apparently have a different regulatory mechanism for seed alkaloid content because the RAP2-7 gene/putative promoter sequence and expression of alkaloid-associated genes in the leaves of the three ambiguous accessions were similar to those of bitter Iucundus lines. We consider the iuc_RAP2-7 marker is a powerful tool that will facilitate NLL marker-assisted selection by rapid rejection of bitter Iucundus genotypes and thus accelerate development of new low-alkaloid cultivars.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Katarzyna Czepiel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Paulina Wilczura
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Monika Mokrzycka
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Wojciech Święcicki
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|