1
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
2
|
Lim C, Lee S, Shin Y, Cho S, Park C, Shin Y, Song EC, Kim WK, Ham C, Kim SB, Kwon YS, Oh KT. Development and application of novel peptide-formulated nanoparticles for treatment of atopic dermatitis. J Mater Chem B 2023; 11:10131-10146. [PMID: 37830254 DOI: 10.1039/d3tb01202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Cheolmin Ham
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yong-Su Kwon
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Kim EY, Kumar SD, Bang JK, Ajish C, Yang S, Ganbaatar B, Kim J, Lee CW, Cho SJ, Shin SY. Evaluation of deoxythymidine-based cationic amphiphiles as antimicrobial, antibiofilm, and anti-inflammatory agents. Int J Antimicrob Agents 2023; 62:106909. [PMID: 37419291 DOI: 10.1016/j.ijantimicag.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES We recently designed a series of cationic deoxythymidine-based amphiphiles that mimic the cationic amphipathic structure of antimicrobial peptides (AMPs). Among these amphiphiles, ADG-2e and ADL-3e displayed the highest selectivity against bacterial cells. In this study, ADG-2e and ADL-3e were evaluated for their potential as novel classes of antimicrobial, antibiofilm, and anti-inflammatory agents. METHODS Minimum inhibitory concentrations of ADG-2e and ADL-3e against bacteria were determined using the broth microdilution method. Proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K was determined by radial diffusion and HPLC analysis. Biofilm activity was investigated using the broth microdilution and confocal microscopy. The antimicrobial mechanism was investigated by membrane depolarization, cell membrane integrity analysis, scanning electron microscopy (SEM), genomic DNA influence and genomic DNA binding assay. Synergistic activity was evaluated using checkerboard method. Anti-inflammatory activity was investigated using ELISA and RT-PCR. RESULTS ADG-2e and ADL-3e showed good resistance to physiological salts and human serum, and a low incidence of drug resistance. Moreover, they exhibit proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K. ADG-2e and ADL-3e were found to kill bacteria by an intracellular target mechanism and bacterial cell membrane-disrupting mechanism, respectively. Furthermore, ADG-2e and ADL-3e showed effective synergistic effects when combined with several conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Importantly, ADG-2e and ADL-3e not only suppressed MDRPA biofilm formation but also effectively eradicated mature MDRPA biofilms. Furthermore, ADG-2e and ADL-3e drastically decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) gene expression and protein secretion in lipopolysaccharide (LPS)-stimulated macrophages, implying potent anti-inflammatory activity in LPS-induced inflammation. CONCLUSION Our findings suggest that ADG-2e and ADL-3e could be further developed as novel antimicrobial, antibiofilm, and anti-inflammatory agents to combat bacterial infections.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - S Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, Republic of Korea
| | - Chelladurai Ajish
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | | | - Jeongeun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
4
|
Tuning the Anthranilamide Peptidomimetic Design to Selectively Target Planktonic Bacteria and Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12030585. [PMID: 36978452 PMCID: PMC10044445 DOI: 10.3390/antibiotics12030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
There is a pressing need to develop new antimicrobials to help combat the increase in antibiotic resistance that is occurring worldwide. In the current research, short amphiphilic antibacterial and antibiofilm agents were produced by tuning the hydrophobic and cationic groups of anthranilamide peptidomimetics. The attachment of a lysine cationic group at the tail position increased activity against E. coli by >16-fold (from >125 μM to 15.6 μM) and greatly reduced cytotoxicity against mammalian cells (from ≤20 μM to ≥150 μM). These compounds showed significant disruption of preformed biofilms of S. aureus at micromolar concentrations.
Collapse
|
5
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
6
|
Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration. Polymers (Basel) 2022; 14:polym14214482. [PMID: 36365476 PMCID: PMC9658774 DOI: 10.3390/polym14214482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT by solvent casting. Membranes without the addition of TAT were used as controls. The membranes were chemically characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA); surface properties were assessed by profilometry and contact angle; the mechanical behavior was evaluated by a tensile test, and the biological properties were assessed by direct−indirect cell viability and antibacterial activity by S. mutans and S. aureus colony-forming units. Results: TAT was detected in the FTIR and TGA analyses and modified the top surface of the membranes, increasing their roughness and wetness in both concentrations compared to the control group (p < 0.05). The addition of TAT, regardless of concentration, reduced the tensile strength and increased membrane stiffness (p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was 86.37% and 82.36%, respectively. All tested concentrations reduced the formation of biofilm on the membranes when compared to the control. Conclusion: The addition of TAT successfully resulted in the antimicrobial ability of PBAT-based barrier membranes, while it maintained acceptable levels of cell viability in membranes with adequate handling and surface properties.
Collapse
|
7
|
Ozketen A, Karaman O, Ozdemir A, Soysal I, Kizilenis C, Nteli Chatzioglou A, Cicek YA, Kolemen S, Gunbas G. Selenophene-Modified Boron Dipyrromethene-Based Photosensitizers Exhibit Photodynamic Inhibition on a Broad Range of Bacteria. ACS OMEGA 2022; 7:33916-33925. [PMID: 36188264 PMCID: PMC9520714 DOI: 10.1021/acsomega.2c02868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Microorganisms are crucial for human survival in view of both mutualistic and pathogen interactions. The control of the balance could be achieved by use of the antibiotics. There is a continuous arms race that exists between the pathogen and the antibiotics. The emergence of multidrug-resistant (MDR) bacteria threatens health even for insignificant injuries. However, the discovery of new antibiotics is not a fast process, and the healthcare system will suffer if the evolution of MDR lingers in its current frequency. The cationic photosensitizers (PSs) provide a unique approach to develop novel, light-inducible antimicrobial drugs. Here, we examine the antimicrobial activity of innovative selenophene-modified boron dipyrromethene (BODIPY)-based PSs on a variety of Gram (+) and Gram (-) bacteria. The candidates demonstrate a level of confidence in both light-dependent and independent inhibition of bacterial growth. Among them, selenophene conjugated PS candidates (BOD-Se and BOD-Se-I) are promising agents to induce photodynamic inhibition (PDI) on all experimented bacteria: E. coli, S. aureus, B. cereus, and P. aeruginosa. Further characterizations revealed that photocleavage ability on DNA molecules could be potentially advantageous over extracellular DNA possessing biofilm-forming bacteria such as B. cereus and P. aeruginosa. Microscopy analysis with fluorescent BOD-H confirmed the colocalization on GFP expressing E. coli.
Collapse
Affiliation(s)
| | - Osman Karaman
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Alara Ozdemir
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Isil Soysal
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Caglayan Kizilenis
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | | | - Yagiz Anil Cicek
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koc University, Istanbul 34450, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Biochemistry
Graduate Program, Middle East Technical
University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Dinesh Kumar S, Park JH, Kim HS, Seo CD, Ajish C, Kim EY, Lim HS, Shin SY. Cationic, amphipathic small molecules based on a triazine-piperazine-triazine scaffold as a new class of antimicrobial agents. Eur J Med Chem 2022; 243:114747. [PMID: 36103802 DOI: 10.1016/j.ejmech.2022.114747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Poor proteolytic resistance, toxicity and salt/serum sensitivity of antimicrobial peptides (AMPs) limits their practical clinical application. Here, to overcome these drawbacks of AMPs and develop novel antimicrobial agents, a series of small molecules based on a triazine-piperazine-triazine scaffold that mimic the cationic amphipathic structure of AMPs were synthesized and evaluated their potential as a new class of antimicrobial agents. All designed compounds showed strong antimicrobial activity and negligible hemolytic activity. Particularly, five compounds (9, 11, 12, 15, and 16) presented excellent cell selectivity with proteolytic resistance, salt/serum stability and anti-inflammatory activity against lipopolysaccharide (LPS)-induced inflammation. These five compounds exhibited similar or 2-4 fold higher antimicrobial activity than melittin against six antibiotic-resistant bacteria tested. Similar to the intracellular-targeting AMP, buforin-2, these compounds displayed an intracellular mode of antimicrobial action. These compounds showed potent biofilm inhibitory and eradicating activities against multidrug-resistant Pseudomonas aeruginosa (MDRPA). Additionally, these compounds displayed synergistic or additive effects when combined with selected clinically used antibiotics. Furthermore, these compounds have been proven to inhibit pro-inflammatory cytokine release by directly binding to LPS and blocking the interaction between LPS and CD14/TLR4 receptor in LPS-stimulated RAW264.7 macrophage cells. Overall, our results demonstrate the potential of the designed compounds as a novel class of multifunctional antimicrobial agents to combat bacterial infection.
Collapse
Affiliation(s)
- S Dinesh Kumar
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Hyung Park
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyun Soo Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chang Deok Seo
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chelladurai Ajish
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Young Kim
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
9
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
10
|
Pospisilova A, Vodicka J, Trudicova M, Juglova Z, Smilek J, Mencik P, Masilko J, Slaninova E, Melcova V, Kalina M, Obruca S, Sedlacek P. Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications. Polymers (Basel) 2022; 14:polym14102007. [PMID: 35631889 PMCID: PMC9146627 DOI: 10.3390/polym14102007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.
Collapse
|
11
|
Bhukta S, Samal SK, Vasudevan S, Sarveswari HB, Shanmugam K, Princy SA, Dandela R. A Prospective Diversity of Antibacterial Small Peptidomimetic and Quorum Sensing Mediated Drug: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Swadhapriya Bhukta
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies Indian Council of Medical Research-Regional Medical Research Center Bhubaneswar 751013 Odisha India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - S. Adline Princy
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| |
Collapse
|
12
|
Photodynamic Evaluation of Triazine Appended Porphyrins as Anti-Leishmanial and Anti-tumor Agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
14
|
Gunasekaran P, Han HJ, Choi JH, Ryu EK, Park NY, Bang G, La YK, Park S, Hwang K, Kim HN, Kim MH, Jeon YH, Soung NK, Bang JK. Amphipathic Small Molecule AZT Compound Displays Potent Inhibitory Effects in Cancer Cell Proliferation. Pharmaceutics 2021; 13:pharmaceutics13122071. [PMID: 34959352 PMCID: PMC8704889 DOI: 10.3390/pharmaceutics13122071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cancer has been identified as a leading cause of death worldwide, and the increasing number of cancer cases threatens to shorten the average life expectancy of people. Recently, we reported a 3-azido-3-deoxythymidine (AZT)-based amphipathic small molecule, ADG-2e that revealed a notable potency against tumor metastasis. To evaluate the anticancer potential of ADG-2e, we assessed its anticancer potency in vitro and in vivo. Anticancer screening of ADG-2e against cervical cancer cells, HeLa CCL2, and BT549 mammary gland ductal carcinoma showed significant inhibition of cancer cell proliferation. Furthermore, mechanistic investigations revealed that cancer cell death presumably proceeded through an oncosis mechanistic pathway because ADG-2e treated cells showed severe damage on the plasma membrane, a loss of membrane integrity, and leakage of α-tubulin and β-actin. Finally, evaluation of the antitumorigenic potential of ADG-2e in mouse xenograft models revealed that this compound potentially inhibits cancer cell proliferation. Collectively, these findings suggest that ADG-2e can evolve as an anticancer agent, which may represent a model for nucleoside-based small molecule anticancer drug discovery.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Dandicure Inc., Ochang, Cheongju 28119, Korea
| | - Ho Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea;
| | - Jung hoon Choi
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea; (J.h.C.); (G.B.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Nam Yeong Park
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea; (J.h.C.); (G.B.)
| | - Yeo Kyung La
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Sunghyun Park
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Kyubin Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea;
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Dandicure Inc., Ochang, Cheongju 28119, Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| |
Collapse
|
15
|
Reddy MVK, Rao KY, Anusha G, Kumar GM, Damu AG, Reddy KR, Shetti NP, Aminabhavi TM, Reddy PVG. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. ENVIRONMENTAL RESEARCH 2021; 199:111320. [PMID: 33991570 DOI: 10.1016/j.envres.2021.111320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Cholinesterase enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) cause hydrolysis of acetylcholine (ACh), a neurotransmitter responsible for the cognitive functions of the brain such as acquiring knowledge and comprehension. Therefore, inhibition of these enzymes is an effective process to curb the progressive and fatal neurological Alzheimer's disease (AD). Herein, we explored the potential inhibitory activities of various pyridine, quinoxaline, and triazine derivatives (3a-k, 6a-j and 11a-h) against AChE and BuChE enzymes by following the modified Ellman's method. Further, anti-oxidant property of these libraries was monitored using DPPH (2,2'-diphenyl-1-picryl-hydrazylhydrate) radical scavenging analysis. From the studies, we identified that compounds 6e, 6f, 11b and 11f behaved as selective AChE inhibitors with IC50 values ranging from 7.23 to 10.35 μM. Further studies revealed good anti-oxidant activity by these compounds with IC50 values in the range of 14.80-27.22 μM. The kinetic studies of the active analogues demonstrated mixed-type of inhibition due to their interaction with both the catalytic active sites (CAS) and peripheral anionic sites (PAS) of the AChE. Additionally, molecular simulation in association with fluorescence and circular dichroism (CD) spectroscopic analyses explained strong affinities of inhibitors to bind with AChE enzyme at the physiological pH of 7.2. Binding constant values of 5.4 × 104, 4.3 × 104, 3.2 × 104 and 4.9 × 104 M-1 corresponding to free energy changes -5.593, -6.799, -6.605 and -8.104 KcalM-1 were obtained at 25 °C from fluorescence emission spectroscopic studies of 6e, 6f, 11b and 11f, respectively. Besides, CD spectroscopy deliberately explained the secondary structure of AChE partly unfolded upon binding with these dynamic molecules. Excellent in vitro profiles of distinct quinoxaline and triazine compounds highlighted them as the potential leads compared to pyridine derivatives, suggesting a path towards developing preventive or therapeutic targets to treat the Alzheimer's disease.
Collapse
Affiliation(s)
- M V K Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - K Y Rao
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G Anusha
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G M Kumar
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - A G Damu
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | | | - Peddiahgari Vasu Govardhana Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| |
Collapse
|
16
|
Paulsen MH, Engqvist M, Ausbacher D, Anderssen T, Langer MK, Haug T, Morello GR, Liikanen LE, Blencke HM, Isaksson J, Juskewitz E, Bayer A, Strøm MB. Amphipathic Barbiturates as Mimics of Antimicrobial Peptides and the Marine Natural Products Eusynstyelamides with Activity against Multi-resistant Clinical Isolates. J Med Chem 2021; 64:11395-11417. [PMID: 34314189 DOI: 10.1021/acs.jmedchem.1c00734] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 μg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum β-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.
Collapse
Affiliation(s)
- Marianne H Paulsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Magnus Engqvist
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Dominik Ausbacher
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Trude Anderssen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Manuel K Langer
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Glenn R Morello
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.,Department of Science, Valley City State University, Valley City, 58072 North Dakota, United States
| | - Laura E Liikanen
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Hans-Matti Blencke
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Morten B Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
17
|
Antipseudomonal and Immunomodulatory Properties of Esc Peptides: Promising Features for Treatment of Chronic Infectious Diseases and Inflammation. Int J Mol Sci 2021; 22:ijms22020557. [PMID: 33429882 PMCID: PMC7826692 DOI: 10.3390/ijms22020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/04/2022] Open
Abstract
Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides’ ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides’ ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.
Collapse
|
18
|
Trudicova M, Smilek J, Kalina M, Smilkova M, Adamkova K, Hrubanova K, Krzyzanek V, Sedlacek P. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers (Basel) 2020; 12:E2561. [PMID: 33142862 PMCID: PMC7693122 DOI: 10.3390/polym12112561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition-structure-performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G).
Collapse
Affiliation(s)
- Monika Trudicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (M.T.); (J.S.); (M.K.); (M.S.)
| | - Jiri Smilek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (M.T.); (J.S.); (M.K.); (M.S.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (M.T.); (J.S.); (M.K.); (M.S.)
| | - Marcela Smilkova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (M.T.); (J.S.); (M.K.); (M.S.)
| | - Katerina Adamkova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic; (K.A.); (K.H.); (V.K.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic; (K.A.); (K.H.); (V.K.)
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic; (K.A.); (K.H.); (V.K.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (M.T.); (J.S.); (M.K.); (M.S.)
| |
Collapse
|
19
|
Gunasekaran P, Kim EY, Lee J, Ryu EK, Shin SY, Bang JK. Synthesis of Fmoc-Triazine Amino Acids and Its Application in the Synthesis of Short Antibacterial Peptidomimetics. Int J Mol Sci 2020; 21:ijms21103602. [PMID: 32443730 PMCID: PMC7279249 DOI: 10.3390/ijms21103602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
To combat the escalating rise of antibacterial resistance, the development of antimicrobial peptides (AMPs) with a unique mode of action is considered an attractive strategy. However, proteolytic degradation of AMPs remains the greatest challenge in their transformation into therapeutics. Herein, we synthesized Fmoc-triazine amino acids that differ from each other by anchoring either cationic or hydrophobic residues. These unnatural amino acids were adopted for solid-phase peptide synthesis (SPPS) to synthesize a series of amphipathic antimicrobial peptidomimetics. From the antimicrobial screening, we found that the trimer, BJK-4 is the most potent short antimicrobial peptidomimetic without showing hemolytic activity and it displayed enhanced proteolytic stability. Moreover, the mechanism of action to kill bacteria was found to be an intracellular targeting.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Young Kim
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
| | - Jian Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-43-240-5023
| |
Collapse
|
20
|
Antibacterial AZT derivative regulates metastasis of breast cancer cells. Eur J Med Chem 2020; 193:112233. [PMID: 32199136 DOI: 10.1016/j.ejmech.2020.112233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMP) with anticancer activity have drawn remarkable attention in modern treatments. However, long peptide length and protease instability are the most addressing factors, which hampers their further development as therapeutic agents. In view of this, herein, we designed and synthesized a series of AZT-based cationic small molecule incorporating a variety of hydrophobic groups and cationic charges, including amine and guanidine groups to mimic the amphipathic structure of AMPs. These compounds were evaluated for their antibacterial activity against Gram-positive and Gram-negative bacteria. Through an extensive structure activity relationship study (SAR), we identified ADG-2e as the most potent antibacterial agent, which exhibited remarkable potency against drug resistant bacterial strains such as MRSA and MDRPA. Further, ADG-2e was examined for their anti-metastatic ability by investigating the cancer cell migration and invasiveness through scratch wound-healing assay and transwell invasive assay, respectively. In addition, time-lapse cell tracking analysis also performed for analyzing the cell movement pattern. Treatment of ADG-2e against metastatic breast cancer cells (MDA-MB-231) suppressed tumor cell migration by multi-directional lamellipodium formation, indicating their anti-metastatic potential. Thus, our cationic AZT based small molecules may evolve as an appealing class of antibacterial agents with anti-metastasis potential.
Collapse
|
21
|
Chou WL, Lee TH, Huang TH, Wang PW, Chen YP, Chen CC, Chang ZY, Fang JY, Yang SC. Coenzyme Q 0 From Antrodia cinnamomea Exhibits Drug-Resistant Bacteria Eradication and Keratinocyte Inflammation Mitigation to Ameliorate Infected Atopic Dermatitis in Mouse. Front Pharmacol 2019; 10:1445. [PMID: 31849685 PMCID: PMC6901829 DOI: 10.3389/fphar.2019.01445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease that is usually accompanied by Staphylococcus aureus infection due to cutaneous barrier-function damage. Benzenoid compounds from Antrodia cinnamomea are known to exhibit antibacterial and anti-inflammatory activities. This study sought to investigate the potential of benzenoids for treating bacteria-infected AD. The compounds were screened against methicillin-resistant S. aureus (MRSA). Coenzyme Q0 (CoQ0), a key ingredient in A. cinnamomea, showed the strongest MRSA growth inhibition. We further tested the inhibitory effect of CoQ0 on planktonic and biofilm MRSA. The work was also performed to explore the potential effectiveness of CoQ0 on AD using activated keratinocytes and in vivo experimental AD mice as the models. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CoQ0 against MRSA were 7.81 μg/ml. CoQ0 was found to eradicate biofilm MRSA efficiently and reduce the biofilm thickness. CoQ0 killed MRSA by inhibiting DNA polymerase and topoisomerases. A proteomic assay showed that CoQ0 also reduced the ribosomal proteins. In the anti-inflammation study, CoQ0 was found to downregulate the expression of interleukin (IL)-6, chemokine (C-C motif) ligand (CCL)5, and CCL17 in HaCaT cells. CoQ0 at 0.5 μg/ml could recover the filaggrin decreased by HaCaT activation to the normal control. We established a bacteria-infected AD-like model in mice using ovalbumin (OVA) and topically applied MRSA. Topical CoQ0 delivery lessened the MRSA presence in the AD-like lesions by >90%. The erythema, barrier function, and epidermal thickness of the AD-like wounds were improved by CoQ0 through the reduction of IL-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, and by neutrophil infiltration in the lesional skin. CoQ0 is therefore regarded as effective in mitigating AD symptoms associated with bacterial load.
Collapse
Affiliation(s)
- Wei-Ling Chou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Ping Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| |
Collapse
|
22
|
Liu H, Long S, Rakesh KP, Zha GF. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur J Med Chem 2019; 185:111804. [PMID: 31675510 DOI: 10.1016/j.ejmech.2019.111804] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/19/2022]
Abstract
The emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Innovation of new antibacterial agents with new mode of action remains a high priority universally. Triazines are six-membered, nitrogen-containing heterocyclic scaffold with a wide range of pharmaceutical properties such as antibacterial, antifungal, anticancer, antioxidants, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, and analgesic activities. The present review focuses on the recent developments in the area of medicinal chemistry to discover various chemical structures as potential antimicrobial agents and their structure-activity relationships (SAR) studies are also discussed for further rational design of this kind of derivatives.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - K P Rakesh
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Gao-Feng Zha
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong.
| |
Collapse
|
23
|
Gunasekaran P, Fan M, Kim EY, Shin JH, Lee JE, Son EJ, Kim J, Hwang E, Yim MS, Kim EH, Choi YJ, Lee YH, Chung YH, Kim HN, Ryu EK, Shin SY, Kim EK, Bang JK. Amphiphilic Triazine Polymer Derivatives as Antibacterial And Anti-atopic Agents in Mice Model. Sci Rep 2019; 9:15161. [PMID: 31641232 PMCID: PMC6805867 DOI: 10.1038/s41598-019-51561-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Considering the emergence of bacterial resistance and low proteolytic stability of antimicrobial peptides (AMPs), herein we developed a series of ultra-short triazine based amphipathic polymers (TZP) that are connected with ethylene diamine linkers instead of protease sensitive amide bond. The most potent oligomers, TZP3 and TZP5 not only displayed potent antibacterial action on various drug-resistant pathogens but also exhibited a strong synergic antibacterial activity in combination with chloramphenicol against multidrug-resistant Pseudomonas aeruginosa (MDRPA). Since most of atopic dermatitis (AD) infections are caused by bacterial colonization, we evaluated the potency of TZP3 and TZP5 on AD in vitro and in vivo. In vitro AD analysis of these two polymers showed significant inhibition against the release of β-hexosaminidase and tumor necrosis factor (TNF-α) from RBL-2H3 cells. In AD-like skin lesions in BALB/c mice model, these two polymers displayed significant potency in suppressing dermal and epidermal thickness, mast cell infiltration and pro-inflammatory cytokines expression. Moreover, these polymers exhibited remarkable efficacy over the allergies caused by the imbalance of Th1/Th2 by regulating total IgE and IgG2a. Finally, the impact of treatment effects of these polymers was examined through analyzing the weights and sizes of spleen and lymph node of AD-induced mice.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Meiqi Fan
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Eun Young Kim
- Department of Medical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Ho Shin
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Ji Eun Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Eun Ju Son
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Jaehi Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Min Su Yim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Young-Jin Choi
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea
| | - Young-Ho Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Young-Ho Chung
- Drug & Disease Target Research Team, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea.,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Eun-Kyung Kim
- Division of Food Bioscience, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, 28119, Republic of Korea. .,Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
24
|
Antimicrobial activity of amphipathic α,α-disubstituted β-amino amide derivatives against ESBL - CARBA producing multi-resistant bacteria; effect of halogenation, lipophilicity and cationic character. Eur J Med Chem 2019; 183:111671. [PMID: 31536892 DOI: 10.1016/j.ejmech.2019.111671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
Abstract
The rapid emergence and spread of multi-resistant bacteria have created an urgent need for new antimicrobial agents. We report here a series of amphipathic α,α-disubstituted β-amino amide derivatives with activity against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum β-lactamase - carbapenemase (ESBL-CARBA) production. A variety of halogenated aromatic side-chains were investigated to improve antimicrobial potency and minimize formation of Phase I metabolites. Net positive charge and cationic character of the derivatives had an important effect on toxicity against human cell lines. The most potent and selective derivative was the diguanidine derivative 4e with 3,5-di-brominated benzylic side-chains. Derivative 4e displayed minimum inhibitory concentrations (MIC) of 0.25-8 μg/mL against Gram-positive and Gram-negative reference strains, and 2-32 μg/mL against multi-resistant clinical isolates. Derivative 4e showed also low toxicity against human red blood cells (EC50 > 200 μg/mL), human hepatocyte carcinoma cells (HepG2: EC50 > 64 μg/mL), and human lung fibroblast cells (MRC-5: EC50 > 64 μg/mL). The broad-spectrum antimicrobial activity and low toxicity of diguanylated derivatives such as 4e make them attractive as lead compounds for development of novel antimicrobial drugs.
Collapse
|
25
|
Kuppusamy R, Willcox M, Black DS, Kumar N. Short Cationic Peptidomimetic Antimicrobials. Antibiotics (Basel) 2019; 8:antibiotics8020044. [PMID: 31003540 PMCID: PMC6628222 DOI: 10.3390/antibiotics8020044] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
The rapid growth of antimicrobial resistance against several frontline antibiotics has encouraged scientists worldwide to develop new alternatives with unique mechanisms of action. Antimicrobial peptides (AMPs) have attracted considerable interest due to their rapid killing and broad-spectrum activity. Peptidomimetics overcome some of the obstacles of AMPs such as high cost of synthesis, short half-life in vivo due to their susceptibility to proteolytic degradation, and issues with toxicity. This review will examine the development of short cationic peptidomimetics as antimicrobials.
Collapse
Affiliation(s)
- Rajesh Kuppusamy
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - David StC Black
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|