1
|
Huang YH, Escalona HE, Sun YF, Zhang PF, Du XY, Gong SR, Tang XF, Liang YS, Yang D, Chen PT, Yang HY, Chen ML, Hüttel B, Hlinka O, Wang X, Meusemann K, Ślipiński A, Zwick A, Waterhouse RM, Misof B, Niehuis O, Li HS, Pang H. Molecular evolution of dietary shifts in ladybird beetles (Coleoptera: Coccinellidae): from fungivory to carnivory and herbivory. BMC Biol 2025; 23:67. [PMID: 40022128 PMCID: PMC11871716 DOI: 10.1186/s12915-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Dietary shifts are major evolutionary steps that shape ecological niches and biodiversity. The beetle family Coccinellidae, commonly known as ladybirds, first transitioned from a fungivorous to an insectivorous and subsequently a plant diet. However, the molecular basis of this dietary diversification remained unexplored. RESULTS We investigated the molecular evolution of dietary shifts in ladybirds, focusing on the transitions from fungivory to carnivory (Coccinellidae) and from carnivory to herbivory (Epilachnini), by comparing 25 genomes and 62 transcriptomes of beetles. Our analysis shows that chemosensory gene families have undergone significant expansions at both nodes of diet change and were differentially expressed in feeding experiments, suggesting that they may be related to foraging. We found expansions of digestive and detoxifying gene families and losses of chitin-related digestive genes in the herbivorous ladybirds, and absence of most plant cell wall-degrading enzymes in the ladybirds dating from the transition to carnivory, likely indicating the effect of different digestion requirements on the gene repertoire. Immunity effector genes tend to emerge or have specific amino acid sequence compositions in carnivorous ladybirds and are downregulated under suboptimal dietary treatments, suggesting a potential function of these genes related to microbial symbionts in the sternorrhynchan prey. CONCLUSIONS Our study provides a comprehensive comparative genomic analysis to address evolution of chemosensory, digestive, detoxifying, and immune genes associated with dietary shifts in ladybirds. Ladybirds can be considered a ubiquitous example of dietary shifts in insects, and thus a promising model system for evolutionary and applied biology.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huan-Ying Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mei-Lan Chen
- School of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, China
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ondrej Hlinka
- CSIRO Information, Management and Technology, Pullenvale, QLD, Australia
| | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Karen Meusemann
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg, 79104, Germany
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Asano F, Miyahara T, Miyamoto H, Kodama H. A Thermophile-Fermented Compost Modulates Intestinal Cations and the Expression of a Juvenile Hormone-Binding Protein Gene in the Female Larvae of Hercules Beetle Dynastes hercules (Coleoptera: Scarabaeidae). INSECTS 2023; 14:910. [PMID: 38132584 PMCID: PMC10744137 DOI: 10.3390/insects14120910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The Hercules beetle larvae grow by feeding on humus, and adding a thermophile-fermented compost to the humus can upregulate the growth of female larvae. In this study, the effects of compost on the intestinal environment, including pH, cation concentrations, and organic acid concentrations of intestinal fluids, were investigated, and the RNA profile of the fat body was determined. Although the total intestinal potassium ions were similar between the larvae grown without compost (control larvae) and those with compost (compost larvae), the proportion of potassium ions in the midgut of the compost larvae drastically increased. In the midgut, an unidentified organic acid was the most abundant, and its concentration increased in the compost larvae. Transcriptome analysis showed that a gene encoding hemolymph juvenile-binding protein (JHBP) was expressed in the compost female larvae and not in the control female larvae. Expression of many genes involved in the defensive system was decreased in the compost female larvae. These results suggest that the female-specific enhancement of larval growth by compost was associated with the increased JHBP expression under conditions in which the availability of nutrition from the humus was improved by an increase in potassium ions in the midgut.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; (F.A.); (T.M.); (H.M.)
| |
Collapse
|
4
|
Shi Y, He L, Ding W, Huang H, He H, Xue J, Gao Q, Zhang Z, Li Y, Qiu L. Function analysis of CYP321A9 from Spodoptera frugiperda (Lepidoptera: Noctuidae) associated with emamectin benzoate, and a novel insecticide, cyproflanilide detoxification. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1812-1819. [PMID: 37651729 DOI: 10.1093/jee/toad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is an invasive agricultural pest that is a serious threat to agricultural production and global food security. Chemical control is the most effective method for preventing outbreaks of S. frugiperda. However, insecticide resistance often develops as a result of prolonged pesticide use, and the molecular mechanisms involved in insecticide resistance remain unclear. Insect cytochrome P450 monooxygenases play an important role in the detoxification of insecticides and insecticide resistance in Lepidoptera. In our study, the LC50 of a novel insecticide (cyproflanilide) and a conventional insecticide (emamectin benzoate) for S. frugiperda second-instar larvae were 7.04 and 1.61 mg/L, respectively. Furthermore, CYP321A9 expression was upregulated in larvae exposed to these insecticides. Additionally, knockdown of CYP321A9 by feeding larvae with dsRNA for 72 h significantly increased the mortality of S. frugiperda exposed to emamectin benzoate and cyproflanilide by 23.33% and 7.78%, respectively. Our results indicate that CYP321A9 may play an important role in the detoxification of emamectin benzoate and cyproflanilide in S. frugiperda. Our findings provide a basis to better understand the mechanisms of insecticide resistance and contribute to the control of S. frugiperda.
Collapse
Affiliation(s)
- Yang Shi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Hunan Agricultural University, Changsha 410128, China
| | - Hong Huang
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhixiang Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Wang J, Wei J, Yi T, Li YY, Xu T, Chen L, Xu H. A green leaf volatile, (Z)-3-hexenyl-acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice. BMC Biol 2023; 21:140. [PMID: 37337192 DOI: 10.1186/s12915-023-01642-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Insects rely on chemosensory perception, mainly olfaction, for the location of mates, food sources, and oviposition sites. Plant-released volatile compounds guide herbivorous insects to search for and locate their host plants, further helping them to identify suitable positions for oviposition. The fall armyworm Spodoptera frugiperda (S. frugiperda) was found to invade China in 2019 and has since seriously threatened multiple crops, particularly maize and rice. However, the chemical and molecular mechanisms underlying oviposition preference in this pest are not fully understood. Here, the oviposition preference of S. frugiperda on maize and rice plants was investigated. RESULTS GC-EAD and GC-MS/MS techniques were used to identify the antennally active volatiles from maize and rice plants. The attraction and oviposition stimulation of identified components to female adults were tested in both laboratory and field settings. The odorant receptors (ORs) on female antennae were expressed in Xenopus oocytes, and their functions evaluated by RNAi. Ten and eleven compounds of maize and rice plants, respectively, were identified to possess electrophysiological activity from headspace volatiles. Among these compounds, (Z)-3-hexenyl-acetate specifically presented in maize volatiles was found to play a critical role in attracting females and stimulating oviposition compared to rice volatiles. Among the cloned ORs on the antennae of both sexes, SfruOR23 with highly female-biased expression mediated the responses of females to (Z)-3-hexenyl-acetate. Knockdown of SfruOR23 using RNAi markedly reduced the electrophysiological response of female antennae and oviposition preference to the compound. CONCLUSIONS (Z)-3-Hexenyl-acetate is a key volatile mediating the host and oviposition preference of S. frugiperda on maize. The olfactory receptor of (Z)-3-hexenyl-acetate was identified to be SfruOR23, which is mainly expressed in the antennae of S. frugiperda.
Collapse
Affiliation(s)
- Jiali Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ya-Ya Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Tian Xu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Li Chen
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zhu Q, Li F, Shu Q, Feng P, Wang Y, Dai M, Mao T, Sun H, Wei J, Li B. Disruption of peritrophic matrix chitin metabolism and gut immune by chlorantraniliprole results in pathogenic bacterial infection in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105430. [PMID: 37248008 DOI: 10.1016/j.pestbp.2023.105430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, β-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.
Collapse
Affiliation(s)
- Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
7
|
He L, Shi Y, Ding W, Huang H, He H, Xue J, Gao Q, Zhang Z, Li Y, Qiu L. Cytochrome P450s genes CYP321A9 and CYP9A58 contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2023; 79:1783-1790. [PMID: 36627818 DOI: 10.1002/ps.7355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda is one of the most destructive agricultural pests, which can complete their entire life cycle on various plants. At present, some detoxification genes have been proved to be involved in the adaptability to plants in insects. However, the genetics behind insect pest responses to host switches, and their ability to adapt to new host plants, remain poorly understood. This study was conducted to evaluate the adaptation of S. frugiperda to host plant and determine the roles of CYP321A9 and CYP9A58 in the detoxification metabolism of the fall armyworm. RESULTS The results revealed that feeding on maize was more suitable for S. frugiperda to develop compared with rice. In addition, knocking down of SfCYP321A9 and SfCYP9A58 resulted in a prolonged developmental time of S. frugiperda larvae that fed on rice. Meanwhile, RNAi knockdown of SfCYP321A9 resulted in significantly higher mortality of S. frugiperda larvae when exposed to the rice allelochemicals, ferulic acid, gramine and tricin. Furthermore, overexpression of SfCYP321A9 significantly reduced mortality in Drosophila melanogaster when exposed to gramine and tricin. CONCLUSION Our results suggest that CYP321A9 and CYP9A58 genes play a key role in host plant adaptation in S. frugiperda, which contribute to a greater understanding of the molecular basis of host plant adaptation and provide the means to develop effective management tools for S. frugiperda resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yang Shi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - Hong Huang
- Hunan Institute of Plant Protection, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhixiang Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
CRISPR/Cas9-Mediated Mutagenesis of Sex-Specific Doublesex Splicing Variants Leads to Sterility in Spodoptera frugiperda, a Global Invasive Pest. Cells 2022; 11:cells11223557. [PMID: 36428986 PMCID: PMC9688123 DOI: 10.3390/cells11223557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith), an emerging invasive pest worldwide, has posed a serious agricultural threat to the newly invaded areas. Although somatic sex differentiation is fundamentally conserved among insects, the sex determination cascade in S. frugiperda is largely unknown. In this study, we cloned and functionally characterized Doublesex (dsx), a "molecular switch" modulating sexual dimorphism in S. frugiperda using male- and female-specific isoforms. Given that Lepidoptera is recalcitrant to RNAi, CRISPR/Cas9-mediated mutagenesis was employed to construct S. frugiperda mutants. Specifically, we designed target sites on exons 2, 4, and 5 to eliminate the common, female-specific, and male-specific regions of S. frugiperda dsx (Sfdsx), respectively. As expected, abnormal development of both the external and internal genitalia was observed during the pupal and adult stages. Interestingly, knocking out sex-specific dsx variants in S. frugiperda led to significantly reduced fecundity and fertility in adults of corresponding sex. Our combined results not only confirm the conserved function of dsx in S. frugiperda sex differentiation but also provide empirical evidence for dsx as a potential target for the Sterile Insect Technique (SIT) to combat this globally invasive pest in a sustainable and environmentally friendly way.
Collapse
|
9
|
Ettinger CL, Byrne FJ, de Souza Pacheco I, Brown DJ, Walling LL, Atkinson PW, Redak RA, Stajich JE. Transcriptome and population structure of glassy-winged sharpshooters (Homalodisca vitripennis) with varying insecticide resistance in southern California. BMC Genomics 2022; 23:721. [PMID: 36273137 PMCID: PMC9587601 DOI: 10.1186/s12864-022-08939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California’s Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. Results We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. Conclusions In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08939-1.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| | - Frank J Byrne
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | | | - Dylan J Brown
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Richard A Redak
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
11
|
Chen YL, Kumar R, Liu CH, Wang HC. Litopenaeus vannamei peritrophin interacts with WSSV and AHPND-causing V. parahaemolyticus to regulate disease pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2022; 126:271-282. [PMID: 35609762 DOI: 10.1016/j.fsi.2022.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Peritrophins are peritrophic membrane (PM) proteins that can interact with chitin fibers via chitin-binding domains. Peritrophins have essential roles in providing porosity and strength to the PM that lines the shrimp midgut. Acute hepatopancreatic necrosis disease (AHPND), caused by strains of V. parahaemolyticus, is known to initially colonize the shrimp stomach and simultaneously disrupt its structural barriers (e.g., cuticle or epithelial tissues) to reach the hepatopancreas. Although stomach and hepatopancreas were identified as target tissues involved in AHPND pathogenesis, our results indicated that peritrophin in peritrophic membrane has a crucial role in determining not only colonization of AHPND-causing bacteria but also their tissue distribution. As the interaction between LvPeritrophin (LvPT) and WSSV (white spot syndrome virus) is not well understood, we noted that LvPT expression was upregulated in shrimp stomach challenged with either WSSV or AHPND. In an in vitro pathogen binding assay, there was strong binding of recombinant LvPT WSSV and AHPND-causing V. parahaemolyticus, and various bacteria. Furthermore, dsRNA-mediated LvPT silencing inhibited WSSV gene expression and viral genome replication. However, downregulation of LvPT gene expression increased copies of AHPND-causing bacteria in shrimp digestive tract, and facilitated bacterial colonization in stomach. In conclusion, we speculated that LvPT might regulate bacterial colonization during AHPND, whereas in WSSV infection, LvPT silencing favored the host. Although recombinant LvPT had strong binding with WSSV, the precise role of LvPT in WSSV infection needs further investigation. These findings increased our understanding of host-pathogen interactions in AHPND and WSSV infection that can be applied in shrimp aquaculture for developing effective antibacterial and antiviral strategies.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiol Spectr 2021; 9:e0060421. [PMID: 34704785 PMCID: PMC8549738 DOI: 10.1128/spectrum.00604-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
Collapse
|
13
|
Etebari K, Gharuka M, Asgari S, Furlong MJ. Diverse Host Immune Responses of Different Geographical Populations of the Coconut Rhinoceros Beetle to Oryctes Rhinoceros Nudivirus (OrNV) Infection. Microbiol Spectr 2021; 9:e0068621. [PMID: 34523987 PMCID: PMC8557903 DOI: 10.1128/spectrum.00686-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Incursions of the coconut rhinoceros beetle (CRB), Oryctes rhinoceros, into different islands in the South Pacific have been detected in recent years. It has been suggested that this range expansion is related to an O. rhinoceros haplotype reported to show reduced susceptibility to the well-established classical biocontrol agent, Oryctes rhinoceros nudivirus (OrNV). Our understanding of the genetic characteristics which distinguish the population of O. rhinoceros that has recently established in Solomon Islands from other well-established populations across the region is very limited. Here, we hypothesized that the recently established O. rhinoceros population should have greater innate immune responses when challenged by OrNV than those of well-established and native O. rhinoceros populations. We used the RNA sequencing (RNA-Seq) approach to generate gene expression profiles of midgut tissue from OrNV-infected and noninfected individuals collected in the Solomon Islands (recent incursion), Papua New Guinea and Fiji (previously established), and the Philippines (within the native range). The collections included individuals from each of the three major mitochondrial lineages (CRB-G, CRB-PNG, and CRB-S) known to the region, allowing us to explore the specific responses of each haplotype to infection. Although insects from the Philippines and Solomon Islands that were tested belong to the same mitochondrial lineage (CRB-G), their overall responses to infection were different. The number of differentially expressed genes between OrNV-infected and noninfected wild-caught individuals from the four different locations varied from 148 to 252. Persistent OrNV infection caused a high level of induced antimicrobial activity and immune responses in O. rhinoceros, but the direction and magnitude of the responses were population specific. The insects tested from the Solomon Islands displayed extremely high expression of genes which are known to be involved in immune responses (e.g. coleoptericin, cecropin, and serpin). These variations in the host immune system among insects from different geographical regions might be driven by variations in the virulence of OrNV isolates, and this requires further investigation. Overall, our current findings support the importance of immunity in insect pest incursion and an expansion of the pest's geographic range. IMPORTANCE Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress coconut rhinoceros beetle (CRB) in the Pacific Islands. Recently a new wave of CRB incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles (CRB-G). Our comparative analysis of OrNV-infected and noninfected CRBs revealed that specific sets of genes were induced by viral infection in the beetles. This induction was much stronger in beetles collected from the Solomon Islands, a newly invaded country, than in individuals collected from within the beetle's native range (the Philippines) or from longer-established populations in its exotic range (Fiji and Papua New Guinea [PNG]). Beetles from the Philippines and the Solomon Islands that were tested in this study all belonged to the CRB-G haplotype, but the country-specific responses of the beetles to OrNV infection were different.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maria Gharuka
- Research Division, Ministry of Agriculture and Livestock, Honiara, Solomon Islands
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J. Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Han W, Tang F, Zhong Y, Zhang J, Liu Z. Identification of yellow gene family and functional analysis of Spodoptera frugiperda yellow-y by CRISPR/Cas9. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104937. [PMID: 34446204 DOI: 10.1016/j.pestbp.2021.104937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
For a devastating agricultural pest, functional genomics promotes the finding of novel technology to control Spodoptera frugiperda, such as the genetics-based strategies. In the present study, 11 yellow genes were identified in Spodoptera frugiperda. The transcriptome analysis showed the tissue-specific expression of part yellow genes, which suggested the importance of yellow genes in some biological processes in S. frugiperda, such as pigmentation. Among these yellow genes, the expression profiles of yellow-y gene showed that it was expressed in all life stages. In order to realize the further study of yellow-y, we employed CRISPR/Cas9 system to knock out this gene. Following knock out, diverse phenotypes were observed, such as color changes in both larvae and adults. Different from the wild-type larvae and adults, G0 mutants were yellowed since hatching. However, no color difference was observed with the pupal cuticle between the wild-type and mutant pupae before the 8th day. On the basis of the single-pair strategy of G0 generation, the yellow-y gene was proved to be a recessive gene. The G1 yellowish larvae with biallelic mutations displayed a relatively longer development period than wild-type, and often generated abnormal pupae and moths. The deletion of yellow-y also resulted in a decline in the fecundity. The results revealed that yellow-y gene was important for S. frugiperda pigmentation, as well as in its development and reproduction. Besides, the present study set up a standard procedure to knock out genes in S. frugiperda, which could be helpful for our understanding some key molecular processes, such as functional roles of detoxification genes as insecticide resistance mechanisms or modes of action of insecticides to facilitate the management of this insect pest.
Collapse
Affiliation(s)
- Weikang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Fengxian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yanni Zhong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Junteng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
15
|
Characteristics of the Peritrophic Matrix of the Silkworm, Bombyx mori and Factors Influencing Its Formation. INSECTS 2021; 12:insects12060516. [PMID: 34199436 PMCID: PMC8227122 DOI: 10.3390/insects12060516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The insect midgut is an important digestive organ with the peritrophic matrix (PM) being a semi-permeable membrane secreted by the midgut cells. The PM plays an important role in improving midgut digestion efficiency and protecting the midgut from food particles and exogenous pathogens. The silkworm, Bombyx mori, is an economically important insect. Understanding the structure of the PM is necessary for studying its function, but characteristics of PM in B. mori have been rarely reported. In this study, we conducted a comprehensive study on the PM structure of the PM in silkworms and found its thickness increased gradually during growth, but there was no difference in the thickness comparing the anterior, middle, and posterior regions. Permeability of the PM gradually decreased from the anterior to posterior regions. In addition, we found the formation of the PM was influenced by food ingestion and the gut microbiota. Abstract The peritrophic matrix (PM) secreted by the midgut cells of insects is formed by the binding of PM proteins to chitin fibrils. The PM envelops the food bolus, serving as a barrier between the content of the midgut lumen and its epithelium, and plays a protective role for epithelial cells against mechanical damage, pathogens, toxins, and other harmful substances. However, few studies have investigated the characteristics and synthesis factors of the PM in the silkworm, Bombyx mori. Here, we examined the characteristics of the PM in the silkworms. The PM thickness of the silkworms increased gradually during growth, while there was no significant difference in thickness along the entire PM region. Permeability of the PM decreased gradually from the anterior to posterior PM. We also found that PM synthesis was affected by food ingestion and the gut microbiota. Our results are beneficial for future studies regarding the function of the PM in silkworms.
Collapse
|
16
|
Zha XL, Yu XB, Zhang HY, Wang H, Huang XZ, Shen YH, Lu C. Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. Int J Mol Sci 2020; 21:ijms21217973. [PMID: 33121000 PMCID: PMC7663561 DOI: 10.3390/ijms21217973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
The insect midgut secretes a semi-permeable, acellular peritrophic membrane (PM) that maintains intestinal structure, promotes digestion, and protects the midgut from food particles and pathogenic microorganisms. Peritrophin is an important PM protein (PMP) in the PM. Here, we identified 11 peritrophins with 1–16 chitin binding domains (CBDs) comprising 50–56 amino acid residues. Multiple CBDs in the same peritrophin clustered together, rather than by species. The CBD contained six highly conserved cysteine residues, with the key feature of amino acids between them being CX11-15CX5CX9-14CX11-12CX6-7C. Peritrophins with 2 and 4 CBDs (Bm09641 and Bm01504, respectively), and with 1, 8, and 16 CBDs (Bm11851, Bm00185, and Bm01491, respectively) were mainly expressed in the anterior midgut, and throughout the midgut, respectively. Survival rates of transgenic silkworms with Bm01504 overexpression (Bm01504-OE) and knockout (Bm01504-KO) infected with B. morinucleopolyhedrovirus (BmNPV) were significantly higher and lower, whereas expression of the key viral gene, p10, were lower and higher, respectively, compared with wild type (WT). Therefore, Bm01504-OE and Bm01504-KO transgenic silkworms were more and less resistant, respectively, to BmNPV. Bm01504 plays important roles in resisting BmNPV invasion. We provide a new perspective for studying PM function, and reveal how the silkworm midgut resists invasive exogenous pathogenic microorganisms.
Collapse
Affiliation(s)
- Xu-Le Zha
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xin-Bo Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Hong-Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Han Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xian-Zhi Huang
- Science and Technology Department, Southwest University, Chongqing 400715, China;
| | - Yi-Hong Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| |
Collapse
|
17
|
Qiu L, He L, Tan X, Zhang Z, Wang Y, Li X, He H, Ding W, Li Y. Identification and phylogenetics of Spodoptera frugiperda chemosensory proteins based on antennal transcriptome data. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100680. [PMID: 32278289 DOI: 10.1016/j.cbd.2020.100680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Understanding the interaction between the insect olfactory system and the environment is crucial for fully explaining the molecular mechanisms underlying insect behavior, and providing new strategies for integrated pest management. Although there is good evidence that olfactory proteins play a vital role in mediating insect behaviors, the olfactory mechanism of insects remains poorly understood. We identified a total of 71 chemosensory genes; 25 odorant-binding proteins (OBPs), 27 odorant receptors (ORs), 8 ionotropic receptors (IRs), 8 chemosensory proteins (CSPs) and 3 sensory neuron membrane proteins (SNMPs), in the antennae of male and female fall armyworms, Spodoptera frugiperda, an invasive global pest that causes significant economic damage worldwide. We used differential gene expression (DGE) and fragments per kilobase per million fragments (FPKM) values to compare the transcript levels of candidate chemosensory genes, and qRT-PCR to compare the expression levels of the OR gene, in male and female antennae. The expression of candidate OR genes in male and female antennae was consistent with the DGE data, and the expression of the SfruCL4419.Contig1-All and SfruUnigene1070-All genes was sex-biased. These results not only provide new information on the olfactory mechanism of S. frugiperda, and insects in general, but also suggest new gene targets for pest control.
Collapse
Affiliation(s)
- Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoping Tan
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Yong Wang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China.
| |
Collapse
|
18
|
Ren M, Zafar MM, Mo H, Yang Z, Li F. Fighting against fall armyworm by using multiple genes pyramiding and silencing (MGPS) technology. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1703-1706. [PMID: 31782080 DOI: 10.1007/s11427-019-1586-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|