1
|
Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater 2024; 42:140-164. [PMID: 39280585 PMCID: PMC11402070 DOI: 10.1016/j.bioactmat.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, PR China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- Henan Engineering Research Center of Food Microbiology, College of food and bioengineering, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, PR China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, PR China
| |
Collapse
|
2
|
Tenchurin TK, Sytina EV, Solovieva EV, Shepelev AD, Mamagulashvili VG, Krasheninnikov SV, Yastremskiy EV, Nesterenko EV, Buzin AI, Istranova EV, Istranov LP, Fatkhudinov TK, Panteleyev AA, Chvalun SN. Effect of collagen denaturation degree on mechanical properties and biological activity of nanofibrous scaffolds. J Biomed Mater Res A 2024; 112:144-154. [PMID: 37921091 DOI: 10.1002/jbm.a.37598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023]
Abstract
Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.
Collapse
Affiliation(s)
- Timur Kh Tenchurin
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Sytina
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Solovieva
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksey D Shepelev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Vissarion G Mamagulashvili
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey V Krasheninnikov
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Evgeniy V Yastremskiy
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elizaveta V Nesterenko
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksandr I Buzin
- Enikolopov Institute of Synthetic Polymer Materials RAS, Moscow, Russian Federation
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Panteleyev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey N Chvalun
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| |
Collapse
|
3
|
Sitnikov DS, Revkova VA, Ilina IV, Shatalova RO, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells. RADIOPHYSICS AND QUANTUM ELECTRONICS 2023; 66:618-628. [DOI: 10.1007/s11141-024-10321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/19/2023] [Indexed: 03/07/2025]
|
4
|
Aitova A, Berezhnoy A, Tsvelaya V, Gusev O, Lyundup A, Efimov AE, Agapov I, Agladze K. Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies. Biomimetics (Basel) 2023; 8:487. [PMID: 37887618 PMCID: PMC10604593 DOI: 10.3390/biomimetics8060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420018 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | | | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| |
Collapse
|
5
|
da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int J Mol Sci 2023; 24:13642. [PMID: 37686446 PMCID: PMC10488158 DOI: 10.3390/ijms241713642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Tissue engineering for spinal cord injury (SCI) remains a complex and challenging task. Biomaterial scaffolds have been suggested as a potential solution for supporting cell survival and differentiation at the injury site. However, different biomaterials display multiple properties that significantly impact neural tissue at a cellular level. Here, we evaluated the behavior of different cell lines seeded on chitosan (CHI), poly (ε-caprolactone) (PCL), and poly (L-lactic acid) (PLLA) scaffolds. We demonstrated that the surface properties of a material play a crucial role in cell morphology and differentiation. While the direct contact of a polymer with the cells did not cause cytotoxicity or inhibit the spread of neural progenitor cells derived from neurospheres (NPCdn), neonatal rat spinal cord cells (SCC) and NPCdn only attached and matured on PCL and PLLA surfaces. Scanning electron microscopy and computational analysis suggested that cells attached to the material's surface emerged into distinct morphological populations. Flow cytometry revealed a higher differentiation of neural progenitor cells derived from human induced pluripotent stem cells (hiPSC-NPC) into glial cells on all biomaterials. Immunofluorescence assays demonstrated that PCL and PLLA guided neuronal differentiation and network development in SCC. Our data emphasize the importance of selecting appropriate biomaterials for tissue engineering in SCI treatment.
Collapse
Affiliation(s)
- Victor A. da Silva
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Bianca C. Bobotis
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Felipe F. Correia
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Théo H. Lima-Vasconcellos
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Gabrielly M. D. Chiarantin
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Laura De La Vega
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christiane B. Lombello
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sônia M. Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Alexandre H. Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
6
|
Tenchurin TK, Sharikov RV, Belousov SI, Streltsov DR, Malakhov SN, Yastremsky EV, Chesnokov YM, Davydova LI, Bogush VG, Chvalun SN. Effect of Recombinant Spidroins Self-Assembly on Rheological Behavior of Their Dispersions and Structure of Electrospun Nanofibrous Materials. Polymers (Basel) 2023; 15:3001. [PMID: 37514391 PMCID: PMC10384844 DOI: 10.3390/polym15143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The effect of primary amino acid sequence in recombinant spidroins on their spatial organization is crucial for the fabrication of artificial fibers and fibrous materials. This study focuses on the rheological properties of aqueous and alcoholic solutions of recombinant analogs of natural spidroins (rS1/9 and rS2/12), as well as the structure of their films and nanofibrous materials. Non-Newtonian flow behavior of aqueous solutions of these proteins was observed at certain concentrations in contrast to their solutions in hexafluoroisopropanol. The secondary structure of recombinant spidroins was addressed by IR spectroscopy, whereas their self-organization in various solvents was studied by AFM and cryo-TEM. The influence of the solvent on the structure and properties of the films and nanofibrous materials produced by electrospinning has been established.
Collapse
Affiliation(s)
| | - Roman V Sharikov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Sergei I Belousov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Dmitry R Streltsov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| | - Sergey N Malakhov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Evgeny V Yastremsky
- Shubnikov Institute of Crystallography, Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Yuri M Chesnokov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Lyubov I Davydova
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Vladimir G Bogush
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Sergei N Chvalun
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
7
|
Tolstaya SI, Ivanova GE, Durov OV, Lavrov IA, Baklaushev VP, Belopasov VV. Rehabilitation of spinal patients with diseases and injury of the cervical spine in the early and late postoperative period (analysis of russian and foreign recommendations). КЛИНИЧЕСКАЯ ПРАКТИКА 2023; 14:54-65. [DOI: 10.17816/clinpract472096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Despite the success of modern conservative therapy of severe spinal instability, surgical methods still retain their importance in the treatment of this pathology, but even the most successful operation may be in vain without subsequent adequate rehabilitation. This report summarizes the features of rehabilitation of patients after surgery for injuries of the cervical spine using methods and means of physiofunctional treatment.
Collapse
Affiliation(s)
- Svetlana I. Tolstaya
- Astrakhan State Medical University
- Rehabilitation Center of the Pension and Social Insurance Fund of the Russian Federation “Tinaki”
| | | | - Oleg V. Durov
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | | | - Vladimir P. Baklaushev
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
| | | |
Collapse
|
8
|
Sitnikov D, Revkova V, Ilina I, Shatalova R, Komarov P, Struleva E, Konoplyannikov M, Kalsin V, Baklaushev V. Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. Int J Mol Sci 2023; 24:6558. [PMID: 37047534 PMCID: PMC10095325 DOI: 10.3390/ijms24076558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
THz radiation induces a variety of processes in cells and has attracted the attention of researchers in recent decades. Here, data on the effects of high-intensity terahertz (THz) radiation on human directly reprogrammed neural progenitor cells (drNPCs) and on neuroblastoma cells (SK-N-BE (2)) were obtained for the first time. The results demonstrated that the exposure of non-tumor and tumor cells to broadband (0.1-3 THz) THz pulses with the intensity of 21 GW/cm2 and the electric field strength of 2.8 MV/cm for 30 min induced neither a noticeable genotoxic effect nor a statistically significant change in the proliferative activity and cell differentiation. It was also shown that the combined effect of THz radiation and salinomycin, a promising antitumor agent, on neuroblastoma cells did not enhance the genotoxic effect of this antibiotic. However, further studies involving chemotherapy drugs and other exposure parameters are warranted to introduce this new concept into anti-tumor clinical practice and to enhance the efficacy of the existing approaches.
Collapse
Affiliation(s)
- Dmitry Sitnikov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Veronika Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Inna Ilina
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Rimma Shatalova
- Center for Genetics and Life Sciences, Division of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Pavel Komarov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Evgenia Struleva
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Mikhail Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Vladimir Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, 119435 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, 117513 Moscow, Russia
| |
Collapse
|
9
|
Novosadova EV, Dolotov OV, Novosadova LV, Davydova LI, Sidoruk KV, Arsenyeva EL, Shimchenko DM, Debabov VG, Bogush VG, Tarantul VZ. Composite Coatings Based on Recombinant Spidroins and Peptides with Motifs of the Extracellular Matrix Proteins Enhance Neuronal Differentiation of Neural Precursor Cells Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:ijms24054871. [PMID: 36902300 PMCID: PMC10003142 DOI: 10.3390/ijms24054871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons. NPCs were produced by the directed differentiation of human iPSCs. The growth and differentiation of NPCs cultured on different CC variants were compared with a Matrigel (MG) coating using qPCR analysis, immunocytochemical staining, and ELISA. An investigation revealed that the use of CCs consisting of a mixture of two RSs and FPs with different peptide motifs of ECMs increased the efficiency of obtaining neurons differentiated from iPSCs compared to Matrigel. CC consisting of two RSs and FPs with Arg-Gly-Asp-Ser (RGDS) and heparin binding peptide (HBP) is the most effective for the support of NPCs and their neuronal differentiation.
Collapse
Affiliation(s)
- Ekaterina V. Novosadova
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence:
| | - Oleg V. Dolotov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Lyudmila V. Novosadova
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Lubov I. Davydova
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Konstantin V. Sidoruk
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Elena L. Arsenyeva
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Darya M. Shimchenko
- Laboratory of Cell Differentiation, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vladimir G. Debabov
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vladimir G. Bogush
- Laboratory of Protein Engineering, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Vyacheslav Z. Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
10
|
Wang H, Zhu J, Xia Y, Li Y, Fu C. Application of platelet-rich plasma in spinal surgery. Front Endocrinol (Lausanne) 2023; 14:1138255. [PMID: 37008931 PMCID: PMC10057539 DOI: 10.3389/fendo.2023.1138255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
With the aging of the population and changes in lifestyle, the incidence of spine-related diseases is increasing, which has become a major global public health problem; this results in a huge economic burden on the family and society. Spinal diseases and complications can lead to loss of motor, sensory, and autonomic functions. Therefore, it is necessary to identify effective treatment strategies. Currently, the treatment of spine-related diseases includes conservative, surgical, and minimally invasive interventional therapies. However, these treatment methods have several drawbacks such as drug tolerance and dependence, adjacent spondylosis, secondary surgery, infection, nerve injury, dural rupture, nonunion, and pseudoarthrosis. Further, it is more challenging to promote the regeneration of the interstitial disc and restore its biomechanical properties. Therefore, clinicians urgently need to identify methods that can limit disease progression or cure diseases at the etiological level. Platelet-rich plasma (PRP), a platelet-rich form of plasma extracted from venous blood, is a blood-derived product. Alpha granules contain a large number of cytokines, such as platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor, platelet factor 4 (PF-4), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β (TGF-β). These growth factors allow stem cell proliferation and angiogenesis, promote bone regeneration, improve the local microenvironment, and enhance tissue regeneration capacity and functional recovery. This review describes the application of PRP in the treatment of spine-related diseases and discusses the clinical application of PRP in spinal surgery.
Collapse
|
11
|
Agrawal L, Vimal SK, Barzaghi P, Shiga T, Terenzio M. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200315. [PMID: 36114714 DOI: 10.1002/mabi.202200315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/15/2023]
Abstract
Due to the severity of peripheral nerve injuries (PNI) and spinal cord injuries (SCI), treatment options for patients are limited. In this context, biomaterials designed to promote regeneration and reinstate the lost function are being explored. Such biomaterials should be able to mimic the biological, chemical, and physical cues of the extracellular matrix for maximum effectiveness as therapeutic agents. Development of biomaterials with desirable physical, chemical, and electrical properties, however, has proven challenging. Here a novel biomaterial formulation achieved by blending the pigment melanin and the natural polymer Poly-3-hydroxybutyrate (PHB) is proposed. Physio-chemical measurements of electrospun fibers reveal a feature rich surface nano-topography, a semiconducting-nature, and brain-tissue-like poroviscoelastic properties. Resulting fibers improve cell adhesion and growth of mouse sensory and motor neurons, without any observable toxicity. Further, the presence of polar functional groups positively affect the kinetics of fibers degradation at a pH (≈7.4) comparable to that of body fluids. Thus, melanin-PHB blended scaffolds are found to be physio-chemically, electrically, and biologically compatible with neural tissues and could be used as a regenerative modality for neural tissue injuries. A biomaterial for scaffolds intended to promote regeneration of nerve tissue after injury is developed. This biomaterial, obtained by mixing the pigment melanin and the natural polymer PHB, is biodegradable, electrically conductive, and beneficial to the growth of motor and sensory neurons. Thus, it is believed that this biomaterial can be used in the context of healthcare applications.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan.,Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China.,Universidad Integral del Caribe y América Latina, Kaminda Cas Grandi #79, Willemstad, Curacao
| | - Paolo Barzaghi
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.,Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| |
Collapse
|
12
|
Bogush VG, Davydova LI, Shulyakov VS, Sidoruk KV, Krasheninnikov SV, Bychkova MA, Debabov VG. The Development of Bioadhesives Based on Recombinant Analogues of Spider Web Proteins. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382207002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review. Int J Mol Sci 2022; 23:ijms232112996. [PMID: 36361786 PMCID: PMC9657320 DOI: 10.3390/ijms232112996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a significant medical and socioeconomic impact. To date, no effective treatment is available that can enable neuronal regeneration and recovery of function at the damaged level. This is thought to be due to scar formation, axonal degeneration and a strong inflammatory response inducing a loss of neurons followed by a cascade of events that leads to further spinal cord damage. Many experimental studies demonstrate the therapeutic effect of stem cells in SCI due to their ability to differentiate into neuronal cells and release neurotrophic factors. Therefore, it appears to be a valid strategy to use in the field of regenerative medicine. This review aims to provide an up-to-date summary of the current research status, challenges, and future directions for stem cell therapy in SCI models, providing an overview of this constantly evolving and promising field.
Collapse
|
14
|
Platelet-rich plasma loaded nerve guidance conduit as implantable biocompatible materials for recurrent laryngeal nerve regeneration. NPJ Regen Med 2022; 7:49. [PMID: 36104458 PMCID: PMC9474804 DOI: 10.1038/s41536-022-00239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractVocal cord paralysis caused by recurrent laryngeal nerve (RLN) injury during thyroidectomy results in hoarseness, aspiration, and dyspnea. We evaluated the usefulness of nerve guidance conduits (NGCs) constructed from an asymmetric polycaprolactone (PCL)/Pluronic F127 porous membrane and filled with platelet-rich plasma (PRP) for functional RLN regeneration. We evaluated the proliferation and migration of Schwann cells (SCs) after PRP treatment in vitro. For the in vivo study, rabbits were divided into a non-loaded NGC group and a PRP-loaded NGC group. The left RLNs were resected and interposed with the NGCs. Functional and histological examinations of the vocal cords were performed. SC proliferation and migration increased in a PRP dose-dependent manner, with the PRP increasing the levels of neurotrophic factors, myelin-associated glycoprotein, and ERK. In vivo, the PRP group showed significantly better vocal cord mobility and less vocalis muscle atrophy than the non-loaded NGC group. Histologically, the ingrowth of nerve endings occurred more rapidly in the PRP group, and acetylcholinesterase, neurofilament, and S-100 expression in neural endings were significantly higher in the PRP group. Furthermore, transmission electron microscopy showed that myelinated axons were more tightly packed in the PRP group. This study shows that PRP-loaded NGCs provide a favorable environment for neural regeneration and suggests that this technique has therapeutic potential for promoting RLN recovery.
Collapse
|
15
|
Recombinant Spidroin Microgel as the Base of Cell-Engineered Constructs Mediates Liver Regeneration in Rats. Polymers (Basel) 2022; 14:polym14153179. [PMID: 35956695 PMCID: PMC9370922 DOI: 10.3390/polym14153179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Aim: In this study, we seek to check if recombinant spidroin rS1/9 is applicable for cell-engineering construct development. Novel technologies of cell and tissue engineering are relevant for chronic liver failure management. Liver regeneration may represent one of the possible treatment options if a cell-engineered construct (CEC) is used. Nowadays, one can see the continuous study of various matrices to create an appropriate CEC. Materials and Methods: We have adhered allogenic liver cells and multipotent mesenchymal bone marrow stem cells (MMSC BM) to a microgel with recombinant spidroin rS1/9. Then we have studied the developed implantable CEC in a rat model (n = 80) of chronic liver failure achieved by prolonged poisoning with carbon tetrachloride. Results: Our results demonstrate that the CECs change the values of biochemical tests and morphological parameters in chronic liver failure in rats. Conclusion: We consider there to be a positive effect from the microgel-based CECs with recombinant spidroin rS1/9 in the treatment of chronic liver failure.
Collapse
|
16
|
Baklaushev VP, Yusubalieva GM, Samoilova EM, Belopasov VV. Resident Neural Stem Cell Niches and Regeneration: The Splendors and Miseries of Adult Neurogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Mikhailova MM, Sydoruk KV, Davydova LI, Yastremsky EV, Chvalun SN, Debabov VG, Bogush VG, Panteleyev AA. Nonwoven spidroin materials as scaffolds for ex vivo cultivation of aortic fragments and dorsal root ganglia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1685-1703. [PMID: 35499451 DOI: 10.1080/09205063.2022.2073426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recombinant spidroins (RS; the analogues of silk proteins of spider's web) have multiple properties beneficial for bioengineering, including their suitability for electrospinning and thus, for production of materials with oriented fibers. This makes RS-based matrices potentially effective in stimulating regeneration of peripheral nerves. The restoration of injured nerves also depends on prompt regrowth of blood vessels. Therefore, prospective scaffold materials for neuro-regenerative therapy should positively affect both the nerves and the blood vessels. Currently, the experimental models suitable for culturing and quantitative assessment of the vascular and neuronal cells on the same material are lacking. Here, we assessed the suitability of electrospun RS-based matrices for cultivation of the mouse aorta and dorsal root ganglia (DRG) explants. We also quantified the effects of matrix topography upon both types of tissues. The RS-based materials have effectively supported aortic explants survival and sprouting. The cumulative length of endothelial sprouts on rS1/9-coated inserts was significantly higher as compared to type I collagen coatings, suggesting stimulatory effects on angiogenesis in vitro. In contrast to matrices with random fibers, on matrices with parallel fibers the migration of both smooth muscle and endothelial cells was highly oriented. Furthermore, alignment of RS fibers effectively directs the growth of axons and the migration of Schwann cells from DRGs. Thus, the electrospun RS matrices are highly suitable to culture both, the DRGs and aortic explants and to study the effects of matrix topography on cell migration. This model has a high potential for further endeavor into interactions of nerve and vascular cells and tissues.
Collapse
Affiliation(s)
| | - Konstantin V Sydoruk
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Lubov I Davydova
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Evgeniy V Yastremsky
- National Research Centre «Kurchatov Institute», Moscow, Russia.,Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Moscow, Russia
| | | | - Vladimir G Debabov
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | - Vladimir G Bogush
- National Research Centre «Kurchatov Institute», Moscow, Russia.,National Research Centre «Kurchatov Institute» - GosNIIGenetika, Moscow, Russia
| | | |
Collapse
|
18
|
Mao B, Zhang Z, Lai S, Zhang K, Li J, Fu W. Demineralized Cortical Bone Matrix Augmented With Peripheral Blood-Derived Mesenchymal Stem Cells for Rabbit Medial Meniscal Reconstruction. Front Bioeng Biotechnol 2022; 10:855103. [PMID: 35573229 PMCID: PMC9091599 DOI: 10.3389/fbioe.2022.855103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering is a promising treatment strategy for meniscal regeneration after meniscal injury. However, existing scaffold materials and seed cells still have many disadvantages. The objective of the present study is to explore the feasibility of peripheral blood-derived mesenchymal stem cells (PBMSCs) augmented with demineralized cortical bone matrix (DCBM) pretreated with TGF-β3 as a tissue-engineered meniscus graft and the repair effect. PBMSCs were collected from rabbit peripheral blood and subjected to three-lineage differentiation and flow cytometry identification. DCBM was prepared by decalcification, decellularization, and cross-linking rabbit cortical bone. Various characteristics such as biomechanical properties, histological characteristics, microstructure and DNA content were characterized. The cytotoxicity and the effects of DCBM on the adhesion and migration of PBMSCs were evaluated separately. The meniscus-forming ability of PBMSCs/DCBM complex in vitro induced by TGF-β3 was also evaluated at the molecular and genetic levels, respectively. Eventually, the present study evaluated the repair effect and cartilage protection effect of PBMSCs/DCBM as a meniscal graft in a rabbit model of medial meniscal reconstruction in 3 and 6 months. The results showed PBMSCs positively express CD29 and CD44, negatively express CD34 and CD45, and have three-lineage differentiation ability, thus can be used as tissue engineering meniscus seed cells. After the sample procedure, the cell and DNA contents of DCBM decreased, the tensile modulus did not decrease significantly, and the DCBM had a pore structure and no obvious cytotoxicity. PBMSCs could adhere and grow on the scaffold. Under induction of TGF-β3, PBMSCs/DCBM composites expressed glycosaminoglycan (GAG), and the related gene expression also increased. The results of the in vivo experiments that the PBMSCs/DCBM group had a better repair effect than the DCBM group and the control group at both 12 and 24 weeks, and the protective effect on cartilage was also better. Therefore, the application of DCBM augmented with PBMSCs for meniscus injury treatment is a preferred option for tissue-engineered meniscus.
Collapse
Affiliation(s)
- Beini Mao
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhong Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopaedics, No.3 People’s Hospital of Chengdu, Chengdu, China
| | - Sike Lai
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Koop F, Strauß S, Peck CT, Aper T, Wilhelmi M, Hartmann C, Hegermann J, Schipke J, Vogt PM, Bucan V. Preliminary application of native Nephila edulis spider silk and fibrin implant causes granulomatous foreign body reaction in vivo in rat's spinal cord. PLoS One 2022; 17:e0264486. [PMID: 35286342 PMCID: PMC8920256 DOI: 10.1371/journal.pone.0264486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/12/2022] [Indexed: 12/22/2022] Open
Abstract
After spinal cord injury, gliomesenchymal scaring inhibits axonal regeneration as a physical barrier. In peripheral nerve injuries, native spider silk was shown to be an effective scaffold to facilitate axonal re-growth and nerve regeneration. This study tested a two-composite scaffold made of longitudinally oriented native spider silk containing a Haemocomplettan fibrin sheath to bridge lesions in the spinal cord and enhance axonal sprouting. In vitro cultivation of neuronal cells on spider silk and fibrin revealed no cytotoxicity of the scaffold components. When spinal cord tissue was cultured on spider silk that was reeled around a metal frame, migration of different cell types, including neurons and neural stem cells, was observed. The scaffold was implanted into spinal cord lesions of four Wistar rats to evaluate the physical stress caused on the animals and examine the bridging potential for axonal sprouting and spinal cord regeneration. However, the implantation in-vivo resulted in a granulomatous foreign body reaction. Spider silk might be responsible for the strong immune response. Thus, the immune response to native spider silk seems to be stronger in the central nervous system than it is known to be in the peripheral body complicating the application of native spider silk in spinal cord injury treatment.
Collapse
Affiliation(s)
- Felix Koop
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Aper
- Cardiac, Thoracic, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Cardiac, Thoracic, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Kiseleva A, Nestor G, Östman JR, Kriuchkova A, Savin A, Krivoshapkin P, Krivoshapkina E, Seisenbaeva GA, Kessler VG. Modulating Surface Properties of the Linothele fallax Spider Web by Solvent Treatment. Biomacromolecules 2021; 22:4945-4955. [PMID: 34644050 PMCID: PMC8672351 DOI: 10.1021/acs.biomac.1c00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.
Collapse
Affiliation(s)
- Aleksandra Kiseleva
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Gustav Nestor
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Johnny R. Östman
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Anastasiia Kriuchkova
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Artemii Savin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Krivoshapkin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Elena Krivoshapkina
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | | | - Vadim G. Kessler
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
21
|
Development of 3D culture scaffolds for directional neuronal growth using 2-photon lithography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112502. [PMID: 34857288 DOI: 10.1016/j.msec.2021.112502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023]
Abstract
Conventional applications of transplant technology, applied to severe traumatic injuries of the nervous system, have met limited success in the clinics due to the complexity of restoring function to the damaged tissue. Neural tissue engineering aims to deploy scaffolds mimicking the physiological properties of the extracellular matrix to facilitate the elongation of axons and the repair of damaged nerves. However, the fabrication of ideal scaffolds with precisely controlled thickness, texture, porosity, alignment, and with the required mechanical strength, features needed for effective clinical applications, remains technically challenging. We took advantage of state-of-the-art 2-photon photolithography to fabricate highly ordered and biocompatible 3D nanogrid structures to enhance neuronal directional growth. First, we characterized the physical and chemical properties and proved the biocompatibility of said scaffolds by successfully culturing primary sensory and motor neurons on their surface. Interestingly, axons extended along the fibers with a high degree of alignment to the pattern of the nanogrid, as opposed to the lack of directionality observed on flat glass or polymeric surfaces, and could grow in 3D between different layers of the scaffold. The axonal growth pattern observed is highly desirable for the treatment of traumatic nerve damage occurring during peripheral and spinal cord injuries. Thus, our findings provide a proof of concept and explore the possibility of deploying aligned fibrous 3D scaffold/implants for the directed growth of axons, and could be used in the design of scaffolds targeted towards the restoration and repair of lost neuronal connections.
Collapse
|
22
|
Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats. Pharmaceutics 2021; 13:pharmaceutics13101704. [PMID: 34683996 PMCID: PMC8539429 DOI: 10.3390/pharmaceutics13101704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The main goal of our research was to fabricate electrospun scaffolds from three different silk proteins—silk fibroin from Bombyx mori silkworm cocoons and two recombinant spidroins, rS2/12 and rS2/12-RGDS—and to perform a comparative analysis of the structure, biological properties, and regenerative potential of the scaffolds in a full-thickness rat skin wound model. The surface and internal structures were investigated using scanning electron microscopy and scanning probe nanotomography. The structures of the scaffolds were similar. The average fiber diameter of the scaffolds was 315 ± 26 nm, the volume porosity was 94.5 ± 1.4%, the surface-to-volume ratio of the scaffolds was 25.4 ± 4.2 μm−1 and the fiber surface roughness was 3.8 ± 0.6 nm. The scaffolds were characterized by a non-cytotoxicity effect and a high level of cytocompatibility with cells. The scaffolds also had high regenerative potential—the healing of the skin wound was accelerated by 19 days compared with the control. A histological analysis did not reveal any fragments of the experimental constructions or areas of inflammation. Thus, novel data on the structure and biological properties of the silk fibroin/spidroin electrospun scaffolds were obtained.
Collapse
|
23
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
24
|
Lian J, Ju G, Cai X, Cai Y, Li C, Ma S, Cao Y. Nanofibrous Membrane Dressings Loaded With Sodium Hydrogen Sulfide/Endothelial Progenitor Cells Promote Wound Healing. Front Bioeng Biotechnol 2021; 9:657549. [PMID: 34422776 PMCID: PMC8372243 DOI: 10.3389/fbioe.2021.657549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) has been identified as an important gasotransmitter. H2S donor can release H2S sustained and is used as wound dressing. Endothelial progenitor cells (EPCs), given their regenerative ability, have also been reported to enhance wound healing. However, effective drug carriers are missing for the clinical application of H2S and EPCs. In this study, we investigated a novel drug carrier nanofibrous membrane, which was prepared by blending the recombinant spider silk protein (rMaSp) and sodium hydrogen sulfide (NaHS) by electrospun. Our results show that the rMaSp/NaHS nanofibrous membrane is associated with high hemocompatibility and cytocompatibility and is capable of stably releasing H2S for a long period of time. We also tested the rMaSp/NaHS membrane loaded with EPCs in an in vivo cutaneous wound model. We showed that the rMaSp/NaHS/EPC system significantly enhances wound regeneration efficiency as compared to rMaSp membrane and rMaSp/NaHS membrane. This study provides key evidence supporting the clinical application of nanofibrous membrane in the field of skin tissue regeneration.
Collapse
Affiliation(s)
- Jie Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xueyao Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Li
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, China
| | - Sunxiang Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Revkova VA, Sidoruk KV, Kalsin VA, Melnikov PA, Konoplyannikov MA, Kotova S, Frolova AA, Rodionov SA, Smorchkov MM, Kovalev AV, Troitskiy AV, Timashev PS, Chekhonin VP, Bogush VG, Baklaushev V. Spidroin Silk Fibers with Bioactive Motifs of Extracellular Proteins for Neural Tissue Engineering. ACS OMEGA 2021; 6:15264-15273. [PMID: 34151105 PMCID: PMC8210451 DOI: 10.1021/acsomega.1c01576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 05/16/2023]
Abstract
The interaction of neural progenitor cells (NPCs) with the extracellular matrix (ECM) plays an important role in neural tissue regeneration. Understanding which motifs of the ECM proteins are crucial for normal NPC adhesion, proliferation, and differentiation is important in order to create more adequate tissue engineered models of neural tissue and to efficiently study the central nervous system regeneration mechanisms. We have shown earlier that anisotropic matrices prepared from a mixture of recombinant dragline silk proteins, such as spidroin 1 and spidroin 2, by electrospinning are biocompatible with NPCs and provide good proliferation and oriented growth of neurites. This study objective was to find the effects of spidroin-based electrospun materials, modified with peptide motifs of the extracellular matrix proteins (RGD, IKVAV, and VAEIDGIEL) on adhesion, proliferation, and differentiation of directly reprogrammed neural precursor cells (drNPCs). The structural and biomechanical studies have shown that spidroin-based electrospun mats (SBEM), modified with ECM peptides, are characterized by a uniaxial orientation and elastic moduli in the swollen state, comparable to those of the dura mater. It has been found for the first time that drNPCs on SBEM mostly preserve their stemness in the growth medium and even in the differentiation medium with brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, while addition of the mentioned ECM-peptide motifs may shift the balance toward neuroglial differentiation. We have demonstrated that the RGD motif promotes formation of a lower number of neurons with longer neurites, while the IKVAV motif is characterized by formation of a greater number of NF200-positive neurons with shorter neurites. At the same time, all the studied matrices preserve up to 30% of neuroglial progenitor cells, phenotypically similar to radial glia derived from the subventricular zone. We believe that, by using this approach and modifying spidroin by various ECM-motifs or other substances, one may create an in vitro model for the neuroglial stem cell niche with the potential control of their differentiation.
Collapse
Affiliation(s)
- Veronica A. Revkova
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | | | - Vladimir A. Kalsin
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Pavel A. Melnikov
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Mikhail A. Konoplyannikov
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Svetlana Kotova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia A. Frolova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Sergey A. Rodionov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Mikhail M. Smorchkov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexey V. Kovalev
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexander V. Troitskiy
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Peter S. Timashev
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Chemistry
Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P. Chekhonin
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | - Vladimir
P. Baklaushev
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| |
Collapse
|
26
|
Zhang X, Gong B, Zhai J, Zhao Y, Lu Y, Zhang L, Xue J. A Perspective: Electrospun Fibers for Repairing Spinal Cord Injury. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
28
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
29
|
Combined Cell Therapy in the Treatment of Neurological Disorders. Biomedicines 2020; 8:biomedicines8120613. [PMID: 33333803 PMCID: PMC7765161 DOI: 10.3390/biomedicines8120613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted.
Collapse
|
30
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
31
|
Ritzau-Reid KI, Spicer CD, Gelmi A, Grigsby CL, Ponder JF, Bemmer V, Creamer A, Vilar R, Serio A, Stevens MM. An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2003710. [PMID: 34035794 PMCID: PMC7610826 DOI: 10.1002/adfm.202003710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 05/04/2023]
Abstract
The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering.
Collapse
Affiliation(s)
- Kaja I. Ritzau-Reid
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Christopher D. Spicer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden; Department of Chemistry, York Biomedical Research
Institute, University of York, Heslington YO10 5DD, UK
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Applied
Chemistry and Environmental Science, School of Science, RMIT University,
Melbourne 3000, Australia
| | - Christopher L. Grigsby
- Department of Medical Biochemistry and Biophysics, Karolinska
Institutet, Stockholm 171 77, Sweden
| | - James F. Ponder
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Victoria Bemmer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London SW7 2AZ,
UK
| | - Andrea Serio
- Department of Materials, Department of Bioengineering, Institute of
Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Centre
for Craniofacial & Regenerative Biology, King’s College London
and The Francis Crick Institute, Tissue Engineering and Biophotonics
Division, Dental Institute, King’s College London, London SE1 9RT,
UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute
of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK;
Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Stockholm 171 77, Sweden
| |
Collapse
|
32
|
Moisenovich MM, Silachev DN, Moysenovich AM, Arkhipova AY, Shaitan KV, Bogush VG, Debabov VG, Latanov AV, Pevzner IB, Zorova LD, Babenko VA, Plotnikov EY, Zorov DB. Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia. Front Cell Dev Biol 2020; 8:823. [PMID: 33015039 PMCID: PMC7505932 DOI: 10.3389/fcell.2020.00823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin-green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area.
Collapse
Affiliation(s)
| | - Denis N. Silachev
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Histology, Embryology and Cytology Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | | | | | | | - Vladimir G. Bogush
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Vladimir G. Debabov
- National Research Center “Kurchatov Institute” – GOSNIIGENETIKA, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | | | - Irina B. Pevzner
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Ljubava D. Zorova
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Valentina A. Babenko
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Egor Y. Plotnikov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry B. Zorov
- Laboratory of Mitochondrial Structure and Function, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
33
|
Revkova VA, Grebenik EA, Kalsin VA, Demina TS, Bardakova KN, Shavkuta BS, Melnikov PA, Samoilova EM, Konoplyannikov MA, Efremov YM, Zhang C, Akopova TA, Troitsky AV, Timashev PS, Baklaushev VP. Chitosan- g-oligo(L,L-lactide) Copolymer Hydrogel Potential for Neural Stem Cell Differentiation. Tissue Eng Part A 2020; 26:953-963. [PMID: 32159465 DOI: 10.1089/ten.tea.2019.0265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We evaluated the applicability of chitosan-g-oligo(L,L-lactide) copolymer (CLC) hydrogel for central nervous system tissue engineering. The biomechanical properties of the CLC hydrogel were characterized and its biocompatibility was assessed with neural progenitor cells obtained from two different sources: H9-derived neural stem cells (H9D-NSCs) and directly reprogrammed neural precursor cells (drNPCs). Our study found that the optically transparent CLC hydrogel possessed biomechanical characteristics suitable for culturing human neural stem/precursor cells and was noncytotoxic. When seeded on films prepared from CLC copolymer hydrogel, both H9D-NSC and drNPC adhered well, expanded and exhibited signs of spontaneous differentiation. While H9D-NSC mainly preserved multipotency as shown by a high proportion of Nestin+ and Sox2+ cells and a comparatively lower expression of the neuronal markers βIII-tubulin and MAP2, drNPCs, obtained by direct reprogramming, differentiated more extensively along the neuronal lineage. Our study indicates that the CLC hydrogel may be considered as a substrate for tissue-engineered constructs, applicable for therapy of neurodegenerative diseases. Impact statement We synthetized a chitosan-g-oligo(L,L-lactide) hydrogel that sustained multipotency of embryonic-derived neural stem cells (NSCs) and supported differentiation of directly reprogrammed NSC predominantly along the neuronal lineage. The hydrogel exhibited no cytotoxicity in vitro, both in extraction and contact cytotoxicity tests. When seeded on the hydrogel, both types of NSCs adhered well, expanded, and exhibited signs of spontaneous differentiation. The biomechanical properties of the hydrogel were similar to that of human spinal cord with incised pia mater. These data pave the way for further investigations of the hydrogel toward its applicability in central nervous system tissue engineering.
Collapse
Affiliation(s)
- Veronica A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Tatiana S Demina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
| | - Kseniia N Bardakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shavkuta
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
| | - Pavel A Melnikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Ekaterina M Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Mikhail A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tatiana A Akopova
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr V Troitsky
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Photonic Technologies, Research Center "Crystallography and Photonics," Russian Academy of Sciences, Moscow, Russia
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| |
Collapse
|
34
|
Abstract
Many biomaterials have been developed which aim to match the elastic modulus of the brain for improved interfacing. However, other properties such as ultimate toughness, tensile strength, poroviscoelastic responses, energy dissipation, conductivity, and mass diffusivity also need to be considered.
Collapse
|
35
|
Abstract
Spider web proteins are unique materials created by nature that, considering the combination of their properties, do not have analogues among natural or human-created materials. Obtaining significant amounts of these proteins from natural sources is not feasible. Biotechnological manufacturing in heterological systems is complicated by the very high molecular weight of spidroins and their specific amino acid composition. Obtaining recombinant analogues of spidroins in heterological systems, mainly in bacteria and yeast, has become a compromise solution. Because they can self-assemble, these proteins can form various materials, such as fibers, films, 3D-foams, hydrogels, tubes, and microcapsules. The effectiveness of spidroin hydrogels in deep wound healing, as 3D scaffolds for bone tissue regeneration and as oriented fibers for axon growth and nerve tissue regeneration, was demonstrated in animal models. The possibility to use spidroin micro- and nanoparticles for drug delivery was demonstrated, including the use of modified spidroins for virus-free DNA delivery into animal cell nuclei. In the past few years, significant interest has arisen concerning the use of these materials as biocompatible and biodegradable soft optics to construct photonic crystal super lenses and fiber optics and as soft electronics to use in triboelectric nanogenerators. This review summarizes the latest achievements in the field of spidroin production, the creation of materials based on them, the study of these materials as a scaffold for the growth, proliferation, and differentiation of various types of cells, and the prospects for using these materials for medical applications (e.g., tissue engineering, drug delivery, coating medical devices), soft optics, and electronics. Accumulated data suggest the use of recombinant spidroins in medical practice in the near future.
Collapse
Affiliation(s)
- Vladimir G Debabov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| | - Vladimir G Bogush
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| |
Collapse
|
36
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
37
|
Design and manufacture of 3D cell culture plate for mass production of cell-spheroids. Sci Rep 2019; 9:13976. [PMID: 31562370 PMCID: PMC6765015 DOI: 10.1038/s41598-019-50186-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
A 3D cell culture is preferred to 2D cell culture since it allows cells to grow in all directions in vitro, similar to how they would in vivo. 3D cell culture plates currently used in tissue engineering research have limited access to control the geometry. Furthermore, 3D cell culture plate manufacturing methods are relatively complex, time-consuming, labor-intensive, and expensive. Therefore, a design and manufacturing method, which has relatively low cost, high throughput, and high size flexibility, is proposed. Cell culture plate was fabricated by computer aided design and manufacturing software using polydimethylsiloxane as a plate constituent. With the successfully-developed 3D cell culture plate, the morphology and viability of the cultured mesenchymal stem cells were tested.The mesenchymal stem cells seeded on the newly-fabricated 3D cell culture plate aggregated to form 3D spheroids within 24 h of incubation and well-maintained their viability. Thus, due to the capacity of mass production of the cell spheroids with a desired cell viability, the newly-fabricated plate has a great promise to prepare 3D cell spheroids for experimental as well as clinical applications.
Collapse
|
38
|
Sergeeva A, Vikulina AS, Volodkin D. Porous Alginate Scaffolds Assembled Using Vaterite CaCO 3 Crystals. MICROMACHINES 2019; 10:E357. [PMID: 31146472 PMCID: PMC6630714 DOI: 10.3390/mi10060357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.
Collapse
Affiliation(s)
- Alena Sergeeva
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| |
Collapse
|