1
|
Juhász G, Madarász M, Szmola B, Fedor FZ, Balogh-Lantos Z, Szabó Á, Rózsa B, Fekete Z. Hippocampal recording with a soft microelectrode array in a cranial window imaging scheme: a validation study. Sci Rep 2024; 14:24585. [PMID: 39427030 PMCID: PMC11490575 DOI: 10.1038/s41598-024-75170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The hippocampus has a crucial role in the formation, consolidation and recall of memories as well as in navigation related processes. These functions are in the focus of neuroscience and different disciplines have contributed to this research field for decades. Two-photon imaging in awake animals is a valuable new aspect for these observations, especially when it is supported by electrophysiology. In this study, we applied high speed two-photon hippocampal imaging through a chronically implanted, soft, transparent microelectrode (STM) device incorporated into a cranial window chamber in awake mice. We monitored the impedance of the recording sites over the course of the experiments to observe long-term changes in recording quality. The large-scale ipsilateral local field potential (LFP) recordings from the dorsal hippocampus provided reliable sharp wave-ripples (SPW-Rs), multi-unit activity (MUA) and single-unit activity (SUA) for up to two months. Calcium imaging of GCaMP6f. labeled cells from the CA1 pyramidal layer under the transparent device was possible even after six months in thy1-GCaMP6f. transgenic mice. We investigated the immune response with GFAP staining after the end of the long-term experiments. Based on our results, this dedicated transparent electrode device proved to be suitable for simultaneous two-photon imaging and large-scale electrophysiological measurements in chronic experiments in mice.
Collapse
Affiliation(s)
- G Juhász
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - M Madarász
- BrainVisionCenter, Budapest, Hungary
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
| | - B Szmola
- BrainVisionCenter, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - F Z Fedor
- BrainVisionCenter, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Z Balogh-Lantos
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
- Roska Tamas Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Á Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - B Rózsa
- BrainVisionCenter, Budapest, Hungary.
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary.
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary.
- Sleep Oscillation Research Group, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
2
|
Lv S, Mo F, Xu Z, Wang Y, Yang G, Han M, Jing L, Xu W, Duan Y, Liu Y, Li M, Liu J, Luo J, Wang M, Song Y, Wu Y, Cai X. Tentacle Microelectrode Arrays Uncover Soft Boundary Neurons in Hippocampal CA1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401670. [PMID: 38828784 PMCID: PMC11304256 DOI: 10.1002/advs.202401670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaojie Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gucheng Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiqi Han
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Luyi Jing
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yiming Duan
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ming Li
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juntao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Pimenta S, Freitas JR, Correia JH. Flexible neural probes: a review of the current advantages, drawbacks, and future demands. J Zhejiang Univ Sci B 2024; 25:153-167. [PMID: 38303498 PMCID: PMC10835206 DOI: 10.1631/jzus.b2300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 02/03/2024]
Abstract
Brain diseases affect millions of people and have a huge social and economic impact. The use of neural probes for studies in animals has been the main approach to increasing knowledge about neural network functioning. Ultimately, neuroscientists are trying to develop new and more effective therapeutic approaches to treating neurological disorders. The implementation of neural probes with multifunctionalities (electrical, optical, and fluidic interactions) has been increasing in the last few years, leading to the creation of devices with high temporal and spatial resolution. Increasing the applicability of, and elements integrated into, neural probes has also led to the necessity to create flexible interfaces, reducing neural tissue damage during probe implantation and increasing the quality of neural acquisition data. In this paper, we review the fabrication, characterization, and validation of several types of flexible neural probes, exploring the main advantages and drawbacks of these devices. Finally, future developments and applications are covered. Overall, this review aims to present the currently available flexible devices and future appropriate avenues for development as possible guidance for future engineered devices.
Collapse
Affiliation(s)
- Sara Pimenta
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal.
- LABBELS-Associate Laboratory, Braga/Guimares, Portugal.
| | - Joo R Freitas
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal
| | - Jos H Correia
- CMEMS-UMinho, University of Minho, Guimares 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga/Guimares, Portugal
| |
Collapse
|
4
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
5
|
Sharafkhani N, Long JM, Adams SD, Kouzani AZ. A self-stiffening compliant intracortical microprobe. Biomed Microdevices 2024; 26:17. [PMID: 38345721 PMCID: PMC10861748 DOI: 10.1007/s10544-024-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Utilising a flexible intracortical microprobe to record/stimulate neurons minimises the incompatibility between the implanted microprobe and the brain, reducing tissue damage due to the brain micromotion. Applying bio-dissolvable coating materials temporarily makes a flexible microprobe stiff to tolerate the penetration force during insertion. However, the inability to adjust the dissolving time after the microprobe contact with the cerebrospinal fluid may lead to inaccuracy in the microprobe positioning. Furthermore, since the dissolving process is irreversible, any subsequent positioning error cannot be corrected by re-stiffening the microprobe. The purpose of this study is to propose an intracortical microprobe that incorporates two compressible structures to make the microprobe both adaptive to the brain during operation and stiff during insertion. Applying a compressive force by an inserter compresses the two compressible structures completely, resulting in increasing the equivalent elastic modulus. Thus, instant switching between stiff and soft modes can be accomplished as many times as necessary to ensure high-accuracy positioning while causing minimal tissue damage. The equivalent elastic modulus of the microprobe during operation is ≈ 23 kPa, which is ≈ 42% less than the existing counterpart, resulting in ≈ 46% less maximum strain generated on the surrounding tissue under brain longitudinal motion. The self-stiffening microprobe and surrounding neural tissue are simulated during insertion and operation to confirm the efficiency of the design. Two-photon polymerisation technology is utilised to 3D print the proposed microprobe, which is experimentally validated and inserted into a lamb's brain without buckling.
Collapse
Affiliation(s)
- Naser Sharafkhani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - John M Long
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Scott D Adams
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
6
|
Chen T, Lau KSK, Hong SH, Shi HTH, Iwasa SN, Chen JXM, Li T, Morrison T, Kalia SK, Popovic MR, Morshead CM, Naguib HE. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells. Acta Biomater 2023; 171:392-405. [PMID: 37683963 DOI: 10.1016/j.actbio.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Tian Harvey Shi
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jia Xi Mary Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Morrison
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Kim YH, Koo H, Kim MS, Jung SD. Fabrication of a photo-crosslinkable fluoropolymer-passivated flexible neural probe and acute recording and stimulation performances in vivo. BIOMATERIALS ADVANCES 2023; 154:213629. [PMID: 37742557 DOI: 10.1016/j.bioadv.2023.213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm-2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2-3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.
Collapse
Affiliation(s)
- Yong Hee Kim
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea
| | - Ho Koo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine, 895 Munwang-ro, Iksan 570-711, Jeollabuk-do, Republic of Korea
| | - Sang-Don Jung
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea.
| |
Collapse
|
8
|
Perna A, Angotzi GN, Berdondini L, Ribeiro JF. Advancing the interfacing performances of chronically implantable neural probes in the era of CMOS neuroelectronics. Front Neurosci 2023; 17:1275908. [PMID: 38027514 PMCID: PMC10644322 DOI: 10.3389/fnins.2023.1275908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device. Interestingly, the recent adoption of Complementary Metal Oxide Semiconductor (CMOS) technology to realize implantable neural probes capable of monitoring hundreds to thousands of neurons simultaneously, may open new opportunities to face the FBR challenge. Indeed, this shift from passive Micro Electro-Mechanical Systems (MEMS) to active CMOS neural probe technologies creates important, yet unexplored, opportunities to tune probe features such as the mechanical properties of the probe, its layout, size, and surface physicochemical properties, to minimize tissue damage and consequently FBR. Here, we will first review relevant literature on FBR to provide a better understanding of the processes and sources underlying this tissue response. Methods to assess FBR will be described, including conventional approaches based on the imaging of biomarkers, and more recent transcriptomics technologies. Then, we will consider emerging opportunities offered by the features of CMOS probes. Finally, we will describe a prototypical neural probe that may meet the needs for advancing clinical BCIs, and we propose axial insertion force as a potential metric to assess the influence of probe features on acute tissue damage and to control the implantation procedure to minimize iatrogenic injury and subsequent FBR.
Collapse
Affiliation(s)
- Alberto Perna
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - Luca Berdondini
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| | - João Filipe Ribeiro
- Microtechnology for Neuroelectronics Lab, Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies, Genova, Italy
| |
Collapse
|
9
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
10
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
11
|
Horváth ÁC, Borbély S, Mihók F, Fürjes P, Barthó P, Fekete Z. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex. Sci Rep 2022; 12:11434. [PMID: 35794160 PMCID: PMC9259743 DOI: 10.1038/s41598-022-15367-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Infrared neuromodulation is an emerging technology in neuroscience that exploits the inherent thermal sensitivity of neurons to excite or inhibit cellular activity. Since there is limited information on the physiological response of intracortical cell population in vivo including evidence on cell damage, we aimed to create and to validate the safe operation of a microscale sharp-tip implantable optrode that can be used to suppress the activity of neuronal population with low optical power continuous wave irradiation. Effective thermal cross-section and electric properties of the multimodal microdevice was characterized in bench-top tests. The evoked multi-unit activity was monitored in the rat somatosensory cortex, and using NeuN immunocytochemistry method, quantitative analysis of neuronal density changes due to the stimulation trials was evaluated. The sharp tip implant was effectively used to suppress the firing rate of neuronal populations. Histological staining showed that neither the probe insertion nor the heating protocols alone lead to significant changes in cell density in the close vicinity of the implant with respect to the intact control region. Our study shows that intracortical stimulation with continuous-wave infrared light at 1550 nm using a sharp tip implantable optical microdevice is a safe approach to modulate the firing rate of neurons.
Collapse
Affiliation(s)
- Á Cs Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary
| | - S Borbély
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
- Neuronal Network and Behavior Research Group, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - F Mihók
- Department of Control Engineering and Information Technology, BUTE, Budapest, Hungary
| | - P Fürjes
- Microsystems Laboratory, Centre for Energy Research, ELKH, Budapest, Hungary
| | - P Barthó
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary.
| |
Collapse
|
12
|
Liang Q, Xia X, Sun X, Yu D, Huang X, Han G, Mugo SM, Chen W, Zhang Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201059. [PMID: 35362243 PMCID: PMC9165511 DOI: 10.1002/advs.202201059] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/01/2023]
Abstract
Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. However, foreign body response and performance loss over time are major challenges stemming from the chemomechanical mismatch between sensors and tissues. Herein, microgels are utilized as large crosslinking centers in hydrogel networks to modulate the tradeoff between modulus and fatigue resistance/stretchability for producing hydrogels that closely match chemomechanical properties of neural tissues. The hydrogels exhibit notably different characteristics compared to nanoparticles reinforced hydrogels. The hydrogels exhibit relatively low modulus, good stretchability, and outstanding fatigue resistance. It is demonstrated that the hydrogels are well suited for fashioning into wearable and implantable sensors that can obtain physiological pressure signals, record the local field potentials in rat brains, and transmit signals through the injured peripheral nerves of rats. The hydrogels exhibit good chemomechanical match to tissues, negligible foreign body response, and minimal signal attenuation over an extended time, and as such is successfully demonstrated for use as long-term implantable sensory devices. This work facilitates a deeper understanding of biohybrid interfaces, while also advancing the technical design concepts for implantable neural probes that efficiently obtain physiological information.
Collapse
Affiliation(s)
- Quanduo Liang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiangjiao Xia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xiguang Sun
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Dehai Yu
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Xinrui Huang
- Bethune First Hospital of Jilin UniversityNo. 1, Xinmin StreetChangchun130061P. R. China
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Guanghong Han
- Department of Oral GeriatricsHospital of StomatologyJilin UniversityChangchun130021P. R. China
| | - Samuel M. Mugo
- Department of Physical SciencesMacEwan UniversityEdmontonABT5J4S2Canada
| | - Wei Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| |
Collapse
|
13
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
14
|
Sharafkhani N, Kouzani AZ, Adams SD, Long JM, Lissorgues G, Rousseau L, Orwa JO. Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion. J Neurosci Methods 2022; 365:109388. [PMID: 34678387 DOI: 10.1016/j.jneumeth.2021.109388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Insertion of a microelectrode into the brain to record/stimulate neurons damages neural tissue and blood vessels and initiates the brain's wound healing response. Due to the large difference between the stiffness of neural tissue and microelectrode, brain micromotion also leads to neural tissue damage and associated local immune response. Over time, following implantation, the brain's response to the tissue damage can result in microelectrode failure. Reducing the microelectrode's cross-sectional dimensions to single-digit microns or using soft materials with elastic modulus close to that of the neural tissue are effective methods to alleviate the neural tissue damage and enhance microelectrode longevity. However, the increase in electrical impedance of the microelectrode caused by reducing the microelectrode contact site's dimensions can decrease the signal-to-noise ratio. Most importantly, the reduced dimensions also lead to a reduction in the critical buckling force, which increases the microelectrode's propensity to buckling during insertion. After discussing brain micromotion, the main source of neural tissue damage, surface modification of the microelectrode contact site is reviewed as a key method for addressing the increase in electrical impedance issue. The review then focuses on recent approaches to aiding insertion of flexible microelectrodes into the brain, including bending stiffness modification, effective length reduction, and application of a magnetic field to pull the electrode. An understanding of the advantages and drawbacks of the developed strategies offers a guide for dealing with the buckling phenomenon during implantation.
Collapse
Affiliation(s)
- Naser Sharafkhani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - Scott D Adams
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | - John M Long
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia
| | | | | | - Julius O Orwa
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
15
|
Garcia-Sandoval A, Guerrero E, Hosseini SM, Rocha-Flores PE, Rihani R, Black BJ, Pal A, Carmel JB, Pancrazio JJ, Voit WE. Stable softening bioelectronics: A paradigm for chronically viable ester-free neural interfaces such as spinal cord stimulation implants. Biomaterials 2021; 277:121073. [PMID: 34419732 PMCID: PMC8642083 DOI: 10.1016/j.biomaterials.2021.121073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 01/01/2023]
Abstract
Polymer toughness is preserved at chronic timepoints in a new class of modulus-changing bioelectronics, which hold promise for commercial chronic implant components such as spinal cord stimulation leads. The underlying ester-free chemical network of the polymer substrate enables device rigidity during implantation, soft, compliant, conforming structures during acute phases in vivo, and gradual stabilization of materials properties chronically, maintaining materials toughness as device stiffness changes. In the past, bioelectronics device designs generally avoided modulus-changing and materials due to the difficulty in demonstrating consistent, predictable performance over time in the body. Here, the acute, and chronic mechanical and chemical properties of a new class of ester-free bioelectronic substrates are described and characterized via accelerated aging at elevated temperatures, with an assessment of their underlying cytotoxicity. Furthermore, spinal cord stimulation leads consisting of photolithographically-defined gold traces and titanium nitride (TiN) electrodes are fabricated on ester-free polymer substrates. Electrochemical properties of the fabricated devices are determined in vitro before implantation in the cervical spinal cord of rat models and subsequent quantification of device stimulation capabilities. Preliminary in vivo evidence demonstrates that this new generation of ester-free, softening bioelectronics holds promise to realize stable, scalable, chronically viable components for bioelectronic medicines of the future.
Collapse
Affiliation(s)
- Aldo Garcia-Sandoval
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Edgar Guerrero
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Seyed Mahmoud Hosseini
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Pedro E Rocha-Flores
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Rashed Rihani
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ajay Pal
- Department of Neurology and Orthopedics, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jason B Carmel
- Department of Neurology and Orthopedics, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Walter E Voit
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
16
|
Usoro JO, Dogra K, Abbott JR, Radhakrishna R, Cogan SF, Pancrazio JJ, Patnaik SS. Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites. MICROMACHINES 2021; 12:1158. [PMID: 34683209 PMCID: PMC8539313 DOI: 10.3390/mi12101158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Microelectrode arrays (MEAs) enable the recording of electrical activity from cortical neurons which has implications for basic neuroscience and neuroprosthetic applications. The design space for MEA technology is extremely wide where devices may vary with respect to the number of monolithic shanks as well as placement of microelectrode sites. In the present study, we examine the differences in recording ability between two different MEA configurations: single shank (SS) and multi-shank (MS), both of which consist of 16 recording sites implanted in the rat motor cortex. We observed a significant difference in the proportion of active microelectrode sites over the 8-week indwelling period, in which SS devices exhibited a consistent ability to record activity, in contrast to the MS arrays which showed a marked decrease in activity within 2 weeks post-implantation. Furthermore, this difference was revealed to be dependent on the depth at which the microelectrode sites were located and may be mediated by anatomical heterogeneity, as well as the distribution of inhibitory neurons within the cortical layers. Our results indicate that the implantation depth of microelectrodes within the cortex needs to be considered relative to the chronic performance characterization.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (K.D.); (J.R.A.); (R.R.); (S.F.C.); (S.S.P.)
| | | |
Collapse
|
17
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
18
|
Wang X, Weltman Hirschberg A, Xu H, Slingsby-Smith Z, Lecomte A, Scholten K, Song D, Meng E. A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:499-513. [PMID: 35663261 PMCID: PMC9164222 DOI: 10.1109/jmems.2020.3000235] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A Parylene C polymer neural probe array with 64 electrodes purposefully positioned across 8 individual shanks to anatomically match specific regions of the hippocampus was designed, fabricated, characterized, and implemented in vivo for enabling recording in deep brain regions in freely moving rats. Thin film polymer arrays were fabricated using surface micromachining techniques and mechanically braced to prevent buckling during surgical implantation. Importantly, the mechanical bracing technique developed in this work involves a novel biodegradable polymer brace that temporarily reduces shank length and consequently, increases its stiffness during implantation, therefore enabling access to deeper brain regions while preserving a low original cross-sectional area of the shanks. The resulting mechanical properties of braced shanks were evaluated at the benchtop. Arrays were then implemented in vivo in freely moving rats, achieving both acute and chronic recordings from the pyramidal cells in the cornu ammonis (CA) 1 and CA3 regions of the hippocampus which are responsible for memory encoding. This work demonstrated the potential for minimally invasive polymer-based neural probe arrays for multi-region recording in deep brain structures.
Collapse
Affiliation(s)
- Xuechun Wang
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Huijing Xu
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Aziliz Lecomte
- Fondazione Istituto Italiano di Technologia, 16163 Genova, Italy
| | - Kee Scholten
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | - Dong Song
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | - Ellis Meng
- Biomedical Engineering and Electrical and Computer Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
19
|
Deployable, liquid crystal elastomer-based intracortical probes. Acta Biomater 2020; 111:54-64. [PMID: 32428679 DOI: 10.1016/j.actbio.2020.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
Intracortical microelectrode arrays (MEAs) are currently limited in their chronic functionality due partially to the foreign body response (FBR) that develops in regions immediately surrounding the implant (typically within 50-100 µm). Mechanically flexible, polymer-based substrates have recently been explored for MEAs as a way of minimizing the FBR caused by the chronic implantation. Nonetheless, the FBR degrades the ability of the device to record neural activity. We are motivated to develop approaches to deploy multiple recording sites away from the initial site of implantation into regions of tissue outside the FBR zone. Liquid Crystal Elastomers (LCEs) are responsive materials capable of programmable and reversible shape change. These hydrophobic materials are also non-cytotoxic and compatible with photolithography. As such, these responsive materials may be well suited to serve as substrates for smart, implantable electronics. This study explores the feasibility of LCE-based deployable intracortical MEAs. LCE intracortical probes are fabricated on a planar substrate and adopt a 3D shape after being released from the substrate. The LCE probes are then fixed in a planar configuration using polyethylene glycol (PEG). The PEG layer dissolves in physiological conditions, allowing the LCE probe to deploy post-implantation. Critically, we show that LCE intracortical probes will deploy within a brain-like agarose tissue phantom. We also show that deployment distance increases with MEA width. A finite element model was then developed to predict the deformed shape of the deployed probe when embedded in an elastic medium. Finally, LCE-based deployable intracortical MEAs were capable of maintaining electrochemical stability, recording extracellular signals from cortical neurons in vivo, and deploying recording sites greater than 100 µm from the insertion site in vivo. Taken together, these results suggest the feasibility of using LCEs to develop deployable intracortical MEAs. STATEMENT OF SIGNIFICANCE: Deployable MEAs are a recently developed class of neural interfaces that aim to shift the recording sites away from the region of insertion to minimize the negative effects of FBR on the recording performance of MEAs. In this study, we explore LCEs as a potential substrate for deployable MEAs. The novelty of this study lies in the systematic and programmable deployment offered by LCE-based intracortical MEAs. These results illustrate the feasibility and potential application of LCEs as a substrate for deployable intracortical MEAs.
Collapse
|
20
|
Márton G, Tóth EZ, Wittner L, Fiáth R, Pinke D, Orbán G, Meszéna D, Pál I, Győri EL, Bereczki Z, Kandrács Á, Hofer KT, Pongrácz A, Ulbert I, Tóth K. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110870. [PMID: 32409039 DOI: 10.1016/j.msec.2020.110870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
The use of SU-8 material in the production of neural sensors has grown recently. Despite its widespread application, a detailed systematic quantitative analysis concerning its biocompatibility in the central nervous system is lacking. In this immunohistochemical study, we quantified the neuronal preservation and the severity of astrogliosis around SU-8 devices implanted in the neocortex of rats, after a 2 months survival. We found that the density of neurons significantly decreased up to a distance of 20 μm from the implant, with an averaged density decrease to 24 ± 28% of the control. At 20 to 40 μm distance from the implant, the majority of the neurons was preserved (74 ± 39% of the control) and starting from 40 μm distance from the implant, the neuron density was control-like. The density of synaptic contacts - examined at the electron microscopic level - decreased in the close vicinity of the implant, but it recovered to the control level as close as 24 μm from the implant track. The intensity of the astroglial staining significantly increased compared to the control region, up to 560 μm and 480 μm distance from the track in the superficial and deep layers of the neocortex, respectively. Electron microscopic examination revealed that the thickness of the glial scar was around 5-10 μm thin, and the ratio of glial processes in the neuropil was not more than 16% up to a distance of 12 μm from the implant. Our data suggest that neuronal survival is affected only in a very small area around the implant. The glial scar surrounding the implant is thin, and the presence of glial elements is low in the neuropil, although the signs of astrogliosis could be observed up to about 500 μm from the track. Subsequently, the biocompatibility of the SU-8 material is high. Due to its low cost fabrication and more flexible nature, SU-8 based devices may offer a promising approach to experimental and clinical applications in the future.
Collapse
Affiliation(s)
- Gergely Márton
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary; Doctoral School on Materials Sciences and Technologies, Óbuda University, Bécsi út 96/b, Budapest 1034, Hungary.
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, Budapest 1085, Hungary.
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary; National Institute of Clinical Neuroscience, Amerikai út 57, Budapest, Hungary, 1145.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary.
| | - Domonkos Pinke
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary.
| | - Gábor Orbán
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Doctoral School on Materials Sciences and Technologies, Óbuda University, Bécsi út 96/b, Budapest 1034, Hungary.
| | - Domokos Meszéna
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary.
| | - Ildikó Pál
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| | - Edit Lelle Győri
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary; National Institute of Clinical Neuroscience, Amerikai út 57, Budapest, Hungary, 1145
| | - Zsófia Bereczki
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary.
| | - Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary.
| | - Anita Pongrácz
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary; Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly Thege Miklós út 29-33, Budapest 1121, Hungary.
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, Budapest 1083, Hungary; National Institute of Clinical Neuroscience, Amerikai út 57, Budapest, Hungary, 1145.
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary.
| |
Collapse
|
21
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|