1
|
Karimian T, Lanzerstorfer P, Weghuber J. Soft lithography-based biomolecule patterning techniques and their applications in subcellular protein interaction analysis. Mater Today Bio 2025; 32:101672. [PMID: 40177382 PMCID: PMC11964549 DOI: 10.1016/j.mtbio.2025.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
Soft lithography-based contact printing techniques have evolved into versatile methods for creating micro- and nanoscale features of biomolecules on solid substrates. In this review we present the advances in soft lithography for biomolecule deposition and its applications in subcellular protein-protein interaction (PPI) analysis. We discuss various soft lithography techniques, including micro-contact printing (μCP), nano-contact printing (nCP), capillary nanostamping, and polymer-pen-lithography (PPL) and focus on their application in biomolecule patterning on diverse substrates. We then address related challenges and advancements, including substrate selection, surface activation methods, and stamp development. The specific advantages, limitations, and potential solutions for printing various inks and biomolecules are highlighted. Furthermore, recent advances in soft lithography-based biomolecule patterning for subcellular protein interaction analysis are emphasized, demonstrating the importance of these techniques for incorporating complex cellular events into PPI readout modalities and established protein deposition strategies. Finally, an overview of future technologies and enhanced applications is provided.
Collapse
Affiliation(s)
- Tina Karimian
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstrasse 23, 4600, Wels, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Stelzhamerstrasse 23, 3430, Tulln, Austria
| |
Collapse
|
2
|
Moura S, Hartl I, Brumovska V, Calabrese PP, Yasari A, Striedner Y, Bishara M, Mair T, Ebner T, Schütz GJ, Sevcsik E, Tiemann-Boege I. Exploring FGFR3 Mutations in the Male Germline: Implications for Clonal Germline Expansions and Paternal Age-Related Dysplasias. Genome Biol Evol 2024; 16:evae015. [PMID: 38411226 PMCID: PMC10898338 DOI: 10.1093/gbe/evae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Delayed fatherhood results in a higher risk of inheriting a new germline mutation that might result in a congenital disorder in the offspring. In particular, some FGFR3 mutations increase in frequency with age, but there are still a large number of uncharacterized FGFR3 mutations that could be expanding in the male germline with potentially early- or late-onset effects in the offspring. Here, we used digital polymerase chain reaction to assess the frequency and spatial distribution of 10 different FGFR3 missense substitutions in the sexually mature male germline. Our functional assessment of the receptor signaling of the variants with biophysical methods showed that 9 of these variants resulted in a higher activation of the receptor´s downstream signaling, resulting in 2 different expansion behaviors. Variants that form larger subclonal expansions in a dissected postmortem testis also showed a positive correlation of the substitution frequency with the sperm donor's age, and a high and ligand-independent FGFR3 activation. In contrast, variants that measured high FGFR3 signaling and elevated substitution frequencies independent of the donor's age did not result in measurable subclonal expansions in the testis. This suggests that promiscuous signal activation might also result in an accumulation of mutations before the sexual maturation of the male gonad with clones staying relatively constant in size throughout time. Collectively, these results provide novel insights into our understanding of the mutagenesis of driver mutations and their resulting mosaicism in the male germline with important consequences for the transmission and recurrence of associated disorders.
Collapse
Affiliation(s)
- Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, USA
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Peter P Calabrese
- Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Johannes Kepler University, 4020 Linz, Austria
| | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | |
Collapse
|
3
|
Hartl I, Brumovska V, Striedner Y, Yasari A, Schütz GJ, Sevcsik E, Tiemann-Boege I. Measurement of FGFR3 signaling at the cell membrane via total internal reflection fluorescence microscopy to compare the activation of FGFR3 mutants. J Biol Chem 2023; 299:102832. [PMID: 36581204 PMCID: PMC9900515 DOI: 10.1016/j.jbc.2022.102832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.
Collapse
Affiliation(s)
- Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Eva Sevcsik
- Insitute of Applied Physics, TU Wien, Vienna, Austria.
| | | |
Collapse
|
4
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
5
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
6
|
Karimian T, Hager R, Karner A, Weghuber J, Lanzerstorfer P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. BIOSENSORS 2022; 12:140. [PMID: 35323410 PMCID: PMC8946821 DOI: 10.3390/bios12030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/08/2023]
Abstract
Depositing biomolecule micropatterns on solid substrates via microcontact printing (µCP) usually requires complex chemical substrate modifications to initially create reactive surface groups. Here, we present a simplified activation procedure for untreated solid substrates based on a commercial polymer metal ion coating (AnteoBindTM Biosensor reagent) that allows for direct µCP and the strong attachment of proteins via avidity binding. In proof-of-concept experiments, we identified the optimum working concentrations of the surface coating, characterized the specificity of protein binding and demonstrated the suitability of this approach by subcellular micropatterning experiments in living cells. Altogether, this method represents a significant enhancement and simplification of existing µCP procedures and further increases the accessibility of protein micropatterning for cell biological research questions.
Collapse
Affiliation(s)
- Tina Karimian
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Roland Hager
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Andreas Karner
- School of Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria;
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
- FFoQSI GmbH, Austrian Competence Center for Feed and Food Quality, Safety & Innovation, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| |
Collapse
|
7
|
Hager R, Müller U, Ollinger N, Weghuber J, Lanzerstorfer P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens 2021; 6:4076-4088. [PMID: 34652152 PMCID: PMC8630788 DOI: 10.1021/acssensors.1c01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Analysis of protein–protein
interactions in living cells
by protein micropatterning is currently limited to the spatial arrangement
of transmembrane proteins and their corresponding downstream molecules.
Here, we present a robust and straightforward method for dynamic immunopatterning
of cytosolic protein complexes by use of an artificial transmembrane
bait construct in combination with microstructured antibody arrays
on cyclic olefin polymer substrates. As a proof, the method was used
to characterize Grb2-mediated signaling pathways downstream of the
epidermal growth factor receptor (EGFR). Ternary protein complexes
(Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified, and we found
that EGFR downstream signaling is based on constitutively bound (Grb2:SOS1
and Grb2:Gab1) as well as on agonist-dependent protein associations
with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal
analysis further revealed significant differences in stability and
exchange kinetics of protein interactions. Furthermore, we could show
that this approach is well suited to study the efficacy and specificity
of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether,
this method represents a significant enhancement of quantitative subcellular
micropatterning approaches as an alternative to standard biochemical
analyses.
Collapse
Affiliation(s)
- Roland Hager
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Ulrike Müller
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Nicole Ollinger
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| |
Collapse
|
8
|
Activation and degranulation of CAR-T cells using engineered antigen-presenting cell surfaces. PLoS One 2020; 15:e0238819. [PMID: 32976541 PMCID: PMC7518621 DOI: 10.1371/journal.pone.0238819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces. Antigen-presenting cell surfaces composed of circular micropatterns of CAR-specific anti-idiotype antibodies have been developed to mimic the interaction of CAR-T cells with target tumor cells using micro-contact printing. The levels of activation and degranulation of fixed non-transduced T cells (NT), CD19.CAR-T cells, and GD2.CAR-T cells on the antigen-presenting cell surfaces were quantified and compared by measuring the intensity of the CD3ζ chain phosphorylation and the Lysosome-Associated Membrane Protein 1 (LAMP-1), respectively. The size and morphology of the cells were also measured. The intracellular Ca2+ flux of NT and CAR-T cells upon engagement with the antigen-presenting cell surface was reported. Results suggest that NT and CD19.CAR-T cells have comparable activation levels, while NT have higher degranulation levels than CD19.CAR-T cells and GD2.CAR-T cells. The findings show that antigen-presenting cell surfaces allow a quantitative analysis of the molecules involved in synapse formation in different CAR-T cells in a systematic, reproducible manner.
Collapse
|
9
|
Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020; 10:biom10040540. [PMID: 32252486 PMCID: PMC7225972 DOI: 10.3390/biom10040540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
Collapse
|