1
|
Yao H, Toyoda H, Takada N, Oebisu N, Orita K, Ban Y, Saito K, Nakazawa K, Kobayashi Y, Taniwaki H, Ohira C, Oh JS, Shirafuji T, Terai H, Nakamura H. Anti-Tumor Effect of Non-Thermal Atmospheric Pressure Plasma-Activated Medium on Synovial Sarcoma: An In Vitro and In Vivo Study. Biomedicines 2025; 13:534. [PMID: 40149512 PMCID: PMC11940581 DOI: 10.3390/biomedicines13030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Anti-tumor effects of plasma-activated medium (PAM) were demonstrated using various malignant tumors. However, the anti-tumor effect of PAM on synovial sarcoma remains unclear. Therefore, we aimed to investigate the anti-tumor effects of PAM on synovial sarcoma and its underlying mechanisms, focusing on the quantitative analyses of both intracellular reactive oxygen species (ROS) and cell apoptosis. Methods: The human synovial sarcoma cell line HS-SY-II was used to investigate the cell viability after PAM treatment. We investigated the anti-tumor effects and side effects of local PAM injection in a synovial sarcoma xenograft murine model. Moreover, we observed PAM-induced intracellular ROS accumulation and cell apoptosis and assessed the involvement of intracellular ROS in the anti-tumor effects of PAM using an intracellular ROS scavenger. Results: PAM significantly decreased the viability of synovial sarcoma cells compared with untreated Dulbecco's modified Eagle medium. Local PAM injection into a synovial sarcoma xenograft murine model significantly suppressed tumor growth, including tumor volume (p < 0.001) and weight (p = 0.031), without side effects. Regarding anti-tumor mechanisms, PAM induced significant cell apoptosis and intracellular ROS accumulation (p < 0.001). The intracellular ROS scavenger significantly inhibited the anti-tumor effect of PAM (p < 0.001). Conclusions: We confirmed the anti-tumor effects of PAM on synovial sarcoma in vitro and in vivo, as well as the absence of side effects. The underlying mechanism was suggested to involve cell apoptosis induced by intracellular ROS accumulation. Considering the various clinical issues associated with the existing treatments of synovial sarcoma, PAM is a promising new option.
Collapse
Affiliation(s)
- Hana Yao
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoki Takada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoto Oebisu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Kumi Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yoshitaka Ban
- Department of Orthopaedic Surgery, Osaka City Juso Hospital, Osaka 532-0034, Japan
| | - Kosuke Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Katsumasa Nakazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yuto Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroshi Taniwaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Chinatsu Ohira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Jun-Seok Oh
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Tatsuru Shirafuji
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| |
Collapse
|
2
|
Stapelmann K, Gershman S, Miller V. Plasma-liquid interactions in the presence of organic matter-A perspective. JOURNAL OF APPLIED PHYSICS 2024; 135:160901. [PMID: 38681528 PMCID: PMC11055635 DOI: 10.1063/5.0203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sophia Gershman
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
3
|
Zhong X, Yu J, Zhao D, Teng J, Jiao H. Association between serum apolipoprotein A1 and atrial fibrillation in the Chinese population: a case-control study. BMC Cardiovasc Disord 2023; 23:269. [PMID: 37221493 DOI: 10.1186/s12872-023-03283-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The relationship between serum apolipoprotein A1 (APOA1) and atrial fibrillation (AF) is not known. Therefore, we sought to investigate the associations between APOA1 and AF in the Chinese population. METHODS This case-control study included 950 patients with AF (29-83 years old, 50.42% male) who were hospitalized consecutively in China between January 2019 and September 2021. Controls with sinus rhythm and without AF were matched (1:1) to cases by sex and age. Pearson correlation analysis was performed to investigate the correlation between APOA1 and blood lipid profiles. Multivariate regression models were used to explore the association between APOA1 and AF. The receiver operator characteristic (ROC) curve was constructed to examine the performance of APOA1. RESULTS Multivariate regression analysis showed that low serum APOA1 in men and women with AF was significantly associated with AF (OR = 0.261, 95% CI: 0.162-0.422, P < 0.001). Pearson correlation analysis indicated that serum APOA1 was positively correlated with total cholesterol (TC) (r = 0.456, p < 0.001), low-density lipoprotein cholesterol (LDL-C) (r = 0.825, p < 0.001), high-density lipoprotein cholesterol (HDL-C) (r = 0.238, p < 0.001), and apolipoprotein B (APOB) (r = 0.083, p = 0.011). ROC curve analysis showed that APOA1 levels of 1.105 g/L and 1.205 g/L were the optimal cut-off values for predicting AF in males and females, respectively. CONCLUSION Low APOA1 in male and female patients is significantly associated with AF in the Chinese population of non-statin users. APOA1 may be a potential biomarker for AF and contribute to the pathological progression of AF along with low blood lipid profiles. Potential mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Jie Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Dongsheng Zhao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Huachen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhua West Road, Lixia District, Jinan City, Shandong Province, China.
| |
Collapse
|
4
|
Tanaka H, Mizuno M, Ishikawa K, Miron C, Okazaki Y, Toyokuni S, Nakamura K, Kajiyama H, Hori M. Plasma activated Ringer's lactate solution. Free Radic Res 2023; 57:14-20. [PMID: 36815453 DOI: 10.1080/10715762.2023.2182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Low-temperature plasma (LTP) has been widely used in life science. Plasma-activated solutions were defined as solutions irradiated with LTP, and water, medium, and Ringer's solutions have been irradiated with LTP to produce plasma-activated solutions. They contain chemical compounds produced by reactions among LTP, air, and solutions. Reactive oxygen and nitrogen species (RONS) are major components in plasma-activated solutions and recent studies revealed that plasma-activated organic compounds are produced in plasma-activated Ringer's lactate solution (PAL). Many in vitro and in vivo studies demonstrated that PAL exhibits anti-tumor effects on cancers, and biochemical analyses revealed intracellular molecular mechanisms of cancer cell death by PAL.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Camelia Miron
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Nasri Z, Memari S, Wenske S, Clemen R, Martens U, Delcea M, Bekeschus S, Weltmann K, von Woedtke T, Wende K. Singlet-Oxygen-Induced Phospholipase A 2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation. Chemistry 2021; 27:14702-14710. [PMID: 34375468 PMCID: PMC8596696 DOI: 10.1002/chem.202102306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2 ) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation.
Collapse
Affiliation(s)
- Zahra Nasri
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Seyedali Memari
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute of Anatomy and Cell BiologyUniversity Medicine GreifswaldFriedrich-Loeffler-Straße 23cGreifswald17487Germany
| | - Sebastian Wenske
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ramona Clemen
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ulrike Martens
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Mihaela Delcea
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldWalther-Rathenau-Straße 49 A17489Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| |
Collapse
|
6
|
Cold Atmospheric Plasma Changes the Amino Acid Composition of Solutions and Influences the Anti-Tumor Effect on Melanoma Cells. Int J Mol Sci 2021; 22:ijms22157886. [PMID: 34360651 PMCID: PMC8346059 DOI: 10.3390/ijms22157886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.
Collapse
|
7
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
8
|
GSH Modification as a Marker for Plasma Source and Biological Response Comparison to Plasma Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the use of glutathione as a marker to establish a correlation between plasma parameters and the resultant liquid chemistry from two distinct sources to predefined biological outcomes. Two different plasma sources were operated at parameters that resulted in similar biological responses: cell viability, mitochondrial activity, and the cell surface display of calreticulin. Specific glutathione modifications appeared to be associated with biological responses elicited by plasma. These modifications were more pronounced with increased treatment time for the European Cooperation in Science and Technology Reference Microplasma Jet (COST-Jet) and increased frequency for the dielectric barrier discharge and were correlated with more potent biological responses. No correlations were found when cells or glutathione were exposed to exogenously added long-lived species alone. This implied that short-lived species and other plasma components were required for the induction of cellular responses, as well as glutathione modifications. These results showed that comparisons of medical plasma sources could not rely on measurements of long-lived chemical species; rather, modifications of biomolecules (such as glutathione) might be better predictors of cellular responses to plasma exposure.
Collapse
|
9
|
Parameters Affecting the Antimicrobial Properties of Cold Atmospheric Plasma Jet. J Clin Med 2019; 8:jcm8111930. [PMID: 31717600 PMCID: PMC6912271 DOI: 10.3390/jcm8111930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ's antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections.
Collapse
|