1
|
Liu D, Lu Y, Li Z, Pang X, Gao X. Quorum Sensing: Not Just a Bridge Between Bacteria. Microbiologyopen 2025; 14:e70016. [PMID: 40159675 PMCID: PMC11955508 DOI: 10.1002/mbo3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
The study of quorum sensing (QS) has gained critical importance, offering insights into bacterial and microorganism communication. QS, regulated by autoinducers, synchronizes collective bacterial behaviors across diverse chemical signals and target genes. This review highlights innovative approaches to regulating QS, emphasizing the potential of quorum quenching and QS inhibitors to mitigate bacterial pathogenicity. These strategies have shown promise in aquaculture and plant resistance, disrupting QS pathways to combat infections. QS also provides opportunities for developing biosensors for early disease detection and preventing biofilm formation, which is critical to overcoming antimicrobial resistance. The applications of QS extend to cancer therapy, with targeted drug delivery systems utilizing QS mechanisms. Advancements in QS regulation, such as the use of nanomaterials, hydrogels, and microplastics, provide novel methods to modulate QS systems. This review explores the latest developments in QS, recognizing its significance in controlling bacterial behavior and its broad impacts on human health and disease management. Integrating these insights into therapeutic strategies and diagnostics represents a pivotal opportunity for medical progress.
Collapse
Affiliation(s)
- Derun Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
| | - Yonglin Lu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
| | - Ziyun Li
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xin Pang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xueyan Gao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesjinanChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
2
|
Ma X, Ma J, Liu J, Hao H, Hou H, Zhang G. Inhibitory Effect of Phenethyl Isothiocyanate on the Adhesion and Biofilm Formation of Staphylococcus aureus and Application on Beef. Foods 2024; 13:3362. [PMID: 39517145 PMCID: PMC11544944 DOI: 10.3390/foods13213362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to explore the mechanism by which phenethyl isothiocyanate (PEITC) inhibited the adhesion and biofilm formation of Staphylococcus aureus (S. aureus). PEITC exhibited antimicrobial efficacy against S. aureus, demonstrating a minimum inhibition concentration (MIC) of 1 mmol/L. PEITC exerted its antibacterial effect by disrupting cell membrane integrity, and it decreased total adenosine triphosphate (ATP) production after 1 and 4 h treatment. PEITC at 0.5 mmol/L increased the level of intracellular reactive oxygen species (ROS) by 26.39% compared to control. The mature biofilm of S. aureus was destroyed by 86.4% after treatment with PEITC for 24 h. Adhesion tests revealed that PEITC at 0.5 mmol/L reduced 44.51% of the S. aureus that adhered to NCM460 cells. Furthermore, at the genetic level, PEITC significantly downregulated the related genes by 31.26% to 97.04%, including agrB, agrD, isdA, ebh, luxS, fnbA, and icaR. Moreover, PEITC markedly inhibited S. aureus proliferation in beef preserved at temperatures of 25 and 4 °C, respectively. In summary, the present study suggests that PEITC effectively inhibits the adhesion and biofilm formation of S. aureus by affecting the relevant genes of S. aureus and holds promise for microbial management in meat products.
Collapse
Affiliation(s)
- Xiaojing Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Jinle Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.M.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian 116034, China
| |
Collapse
|
3
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
4
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
5
|
Wang Y, Wu Z, Wang Z, Du H, Xiao S, Lu L, Wang Z. Analyses of the Antibiofilm Activity of o-Phenanthroline Monohydrate against Enterococcus faecalis and Staphylococcus aureus and the Mechanisms Underlying These Effects. ACS Infect Dis 2024; 10:638-649. [PMID: 38258383 DOI: 10.1021/acsinfecdis.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enterococcus faecalis and Staphylococcus aureus exhibit robust biofilm formation capabilities, the formation of which is closely linked to pathogenicity and drug resistance, thereby resulting in host infection and treatment failure. o-Phenanthroline monohydrate (o-Phen) and its derivatives demonstrate a wide range of antibacterial and antifungal activities. In this study, we aimed to explore the antibiofilm activity of o-Phen to E. faecalis and S. aureus and provide insights into the molecular mechanisms for combating biofilm resistance. We demonstrated that o-Phen possesses significant antibacterial and antibiofilm properties against E. faecalis and S. aureus, inducing alterations in bacterial morphology, compromising cell membrane integrity, and exhibiting synergistic effects with β-lactam antibiotics at sub-MIC concentrations. The adhesion ability and automatic condensation capacity of, and synthesis of, extracellular polymers by E. faecalis cells were reduced by o-Phen, resulting in the inhibition of biofilm formation. Importantly, transcriptome analysis revealed 354 upregulated and 456 downregulated genes in o-Phen-treated E. faecalis. Differentially expressed genes were enriched in 11 metabolism-related pathways, including amino acid metabolism, pyrimidine metabolism, and glycolysis/gluconeogenesis. Moreover, the oppA, CeuA, and ZnuB genes involved in the ABC transport system, and the PBP1A penicillin-binding protein-coding genes sarA and mrcA were significantly downregulated. The multidrug efflux pump system and membrane permeability genes mdtG and hlyD, and bacterial adhesion-related genes, including adcA and fss2 were also downregulated, while mraZ and ASP23 were upregulated. Thus, o-Phen is anticipated to be an effective alternative drug for the treatment of E. faecalis and S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhouhui Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhiwen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Heng Du
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Xiao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lin Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
6
|
Nasser R, Ibrahim E, Fouad H, Ahmad F, Li W, Zhou Q, Yu T, Chidwala N, Mo J. Termiticidal, biochemical, and morpho-histological effects of botanical based nanoemulsion against a subterranean termite, Odontotermes Formosanus Shiraki. FRONTIERS IN PLANT SCIENCE 2024; 14:1292272. [PMID: 38259939 PMCID: PMC10800573 DOI: 10.3389/fpls.2023.1292272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Recently, the use of nanopesticides has shown significant efficacy in the control of many pests. However, the effect of nanopesticides, especially nanoemulsions, on suppressing termites, Odontotermes formosanus (Shiraki, 1909) (O. formosanus), has not been studied yet. Therefore, this study aimed to produce nanoemulsions of the essential oils of eucalyptus (Eucalyptus globulus Labill; E-EO) and nutmeg (Myristica fragrans Houtt; N-EO) to suppress O. formosanus. The analysis of eucalyptus nanoemulsion (E-NE) and nutmeg nanoemulsion (N-NE) was confirmed by using UV-Vis, dynamic light scattering, zeta potential, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. In addition, chemical analysis by Gas Chromatography with a mass spectrometer (GC-MS) exhibited the major constituents of E-NE and N-NE. The principal chemical components of E-NE included D-limonene, eucalyptol, 1,5-cyclooctadiene,3,4-dimethyl, benzene, and 1-methyl-3-(1 methylethyl)-, while the main constituents in N-NE were cyclohexane,1-methylene-4-(1 methylethenyl)-, eucalyptol, and L-. alpha. -terpineol. The mortality rates were 100% and 99.53%, respectively, after 24 hours of treatment with a concentration of 140 mg/mL, compared to 23.43% and 43.55%, respectively, from E-EO and N-EO treatment. These results refer to the essential oils' nanoemulsion as far more effective than the essential oils themselves. Furthermore, the effects of E-NE and N-NE on detoxification enzymes such as acetylcholinesterase, carboxylesterase, acid and alkaline phosphatase were investigated, as well as total protein concentrations, and the results have been found to be significantly increasing or decreasing in comparison with control. Besides, histological and morphological alterations found post exposure to E-NE and N-NE were shown. Overall, the results from this study clearly indicate that the nanopesticide-formulated nanoemulsions may have great potential to be used as novel, environmentally safe insecticides for controlling O. formosanus.
Collapse
Affiliation(s)
- Raghda Nasser
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
- Zoology and Entomology Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Hatem Fouad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Farhan Ahmad
- Entomology Section, Central Cotton Research Institute, Multan, Pakistan
| | - Wuhan Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qihuan Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Nooney Chidwala
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
He X, Ding H, Gao Z, Zhang X, Wu R, Li K. Variations in the motility and biofilm formation abilities of Escherichia coli O157:H7 during noodle processing. Food Res Int 2023; 168:112670. [PMID: 37120241 DOI: 10.1016/j.foodres.2023.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Motility and biofilm formation help to protect bacteria from host immune responses and facilitate tolerance of environmental stimuli to improve their adaptability. However, few reports have investigated the adaptability of bacteria that live in food substrates undergoing food processing-induced stress. In this study, variations in the surface morphology, bacterial count, motility, and biofilm formation abilities of Escherichia coli O157:H7 NCTC12900 were investigated during noodle processing, including the kneading, squeezing, resting, and sheeting phases. The results showed that bacterial surface morphology, count, and motility were impaired in the squeezing phase, whereas biofilm biomass continuously increased across all processing phases. Twenty-one genes and sRNAs were measured using RT-qPCR to reveal the mechanisms underlying these changes. Of these, the genes adrA, csrA, flgM, flhD, fliM, ydaM, and the sRNA McaS were significantly upregulated, whereas the genes fliA, fliG, and the sRNAs CsrC, DsrA, GcvB, and OxyS were evidently repressed. According to the correlation matrix results based on the reference gene adrA, we found that csrA, GcvB, McaS, and OxyS were the most relevant genes and sRNAs for biofilm formation and motility. For each of them, their overexpressions was found to inhibit bacterial motility and biofilm formation to varying degrees during noodle processing. Among these, 12900/pcsrA had the highest inhibitory potential against motility, yielding a minimum of 11.2 mm motility diameter in the resting phase. Furthermore, 12900/pOxyS showed the most significant inhibitory effect against biofilm formation, yielding a minimum biofilm formation value of 5% of that exhibited the wild strain in the sheeting phase. Therefore, we prospect to find an effective and feasible novel approach to weaken bacterial survival during food processing by regulating the genes or sRNAs related to motility and biofilm formation.
Collapse
|
8
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
9
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
10
|
Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem 2022; 69:2357-2386. [PMID: 34826356 DOI: 10.1002/bab.2289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant bacterial infections can kill 700,000 individuals globally each year and is considered among the top 10 global health threats faced by humanity as the arsenal of antibiotics is becoming dry and alternate antibacterial molecule is in demand. Nanoparticles of curcumin exhibit appreciable broad-spectrum antibacterial activity using unique and novel mechanisms and thus the process deserves to be reviewed and further researched to clearly understand the mechanisms. Based on the antibiotic resistance, infection, and virulence potential, a list of clinically important bacteria was prepared after extensive literature survey and all recent reports on the antibacterial activity of curcumin and its nanoformulations as well as their mechanism of antibacterial action have been reviewed. Curcumin, nanocurcumin, and its nanocomposites with improved aqueous solubility and bioavailability are very potential, reliable, safe, and sustainable antibacterial molecule against clinically important bacterial species that uses multitarget mechanism such as inactivation of antioxidant enzyme, reactive oxygen species-mediated cellular damage, and inhibition of acyl-homoserine-lactone synthase necessary for quorum sensing and biofilm formation, thereby bypassing the mechanisms of bacterial antibiotic resistance. Nanoformulations of curcumin can thus be considered as a potential and sustainable antibacterial drug candidate to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Soumitra Shome
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | |
Collapse
|
11
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Kumar S, Paliya BS, Singh BN. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb Pathog 2022; 170:105678. [PMID: 35820580 DOI: 10.1016/j.micpath.2022.105678] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Quorum sensing (QS)-regulated bacterial biofilm formation is a crucial issue in causing resistance against existing antibiotics. There is a considerable necessity to disrupt the interrelationship between bacterial QS, virulence, and biofilm formation. Disabling QS could be a novel tactic of great clinical importance. Here, we biosynthesized silver nanoparticles (Ka-AgNPs) using the aqueous leaf extract of Koelreuteria paniculata as a reducing and capping agents. The UV-Vis spectroscopy confirmed the synthesis of Ka-AgNPs as a characterization peak observed at 420 nm. TEM image revealed the spherical shape distribution of Ka-AgNPs with average particle size of 30.0 ± 5 nm. The anti-QS activity of Ka-AgNPs was tested against a bio-indicator bacterium Chromobacterium violaceum 12472 and a multi-drug resistant model strain of Pseudomonas aeruginosa (PAO1). The results demonstrated that the Ka-AgNPs superiorly inhibited QS-regulated virulence factors in PAO1 without affecting cell viability compared to chemically synthesized AgNPs (Cs-AgNPs). The Ka-AgNPs effectively suppressed the formation of biofilm of PAO1. RT-PCR results revealed that the Ka-AgNPs inhibited the expression of QS-regulated virulence genes of PAO1. These results suggest that the phyto-synthesized AgNPs could be used as promising anti-infective agents for treating drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sanket Kumar
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Balwant S Paliya
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Brahma N Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Chinnaiyan SK, Pandiyan R, Natesan S, Chindam S, Gouti AK, Sugumaran A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—evaluation of its antibacterial and anti-biofilm potential. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Sharma VK, Prateeksha, Gupta SC, Singh BN, Rao CV, Barik SK. Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Mater Today Bio 2022; 13:100204. [PMID: 35146405 PMCID: PMC8818573 DOI: 10.1016/j.mtbio.2022.100204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Existing drugs have limited success in managing obesity in human due to their low efficacy and severe side-effects. Surface-modified gold nanoparticles have now received considerable attention of researchers for efficient biomedical applications owing to their superior uptake by cells, biocompatibility, hydrophilicity and non-immunogenicity. Here we prepared Cinnamomum verum derived bioactives-functionalized gold nanoparticles (Au@P-NPs) and assessed their impact on obesity and related immune-metabolic complications in high-fat diet (HFD)-induced obese mice using metabolic experiments along with 16S RNA gene-based gut microbial profiling and faecal microbiota transplantation (FMT). Au@P-NPs treatment prevented weight gain, decreased fat deposition, reduced metabolic inflammation and endotoxaemia in HFD-fed mice. Au@P-NPs-treated group exhibited better glucose tolerance and insulin sensitivity than HFD-fed control mice, and got completely protected against hepatic steatosis. These impacts were related to increased energy expenditure and enhanced Ucp1 expression in the brown adipose tissues of Au@P-NPs-administered animals, which strongly linked with the mRNA expression of the membrane bile acid receptor TGR5. Treatment of HFD-fed animals with Au@P-NPs altered plasma bile acid profile, and increased Akkermansia muciniphila and decreased Lactobacillus populations in the faeces. Au@P-NPs-treated animals revealed altered plasma bile acid profile, and increased Akkermansia muciniphila and decreased Lactobacillus populations in the faeces. FMT experiments showed lesser weight gain and greater energy expenditure in the mice fed with faecal suspension from Au@P-NPs-treated animals than that from HFD-fed mice. These results clearly establish that gold nanoparticles functionalized with bioactive compounds of C. verum have high potential to be an anti-obesity drug.
Collapse
Affiliation(s)
| | | | - Sateesh C. Gupta
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Brahma N. Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Chandana V. Rao
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Saroj K. Barik
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
16
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
17
|
Control of Escherichia coli O157:H7 Motility and Biofilm Formation by Salicylate and Decanoate: MarA/SoxS/Rob and pchE Interactions. Appl Environ Microbiol 2021; 88:e0189121. [PMID: 34788062 DOI: 10.1128/aem.01891-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 non-antibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and -independent pathways.
Collapse
|
18
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
19
|
Ahmad A, Elisha IL, van Vuuren S, Viljoen A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. PHYTOCHEMISTRY 2021; 190:112864. [PMID: 34311279 DOI: 10.1016/j.phytochem.2021.112864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Historically, essential oils and their lead molecules have been extensively recognised for their anti-infective properties. In this context, certain volatile phenolics (VPs) have emerged as important antimicrobial compounds with excellent inhibitory activity against pathogenic bacteria and fungi, which further extends to drug-resistant and biofilm-forming micro-organisms. In this review, we aim to collate and discuss a number of published papers on the anti-infective activities of naturally occurring VPs with special emphasis on eugenol, isoeugenol, thymol and carvacrol, using Scopus Web of Science and PubMed databases. The biosynthesis and extraction of these VPs are discussed, while particular attention is given to their broad-spectrum antimicrobial activity and the mechanisms of action. We highlight combinational studies of the VPs with other phytocompounds and with commercially available drugs, which may be a promising and a rewarding future approach to combat antimicrobial resistance. These VPs alone, or concomitantly with other compounds or drugs, have the potential to be incorporated into different formulations for biomedical applications. An in-depth assessment of 2310 articles retrieved from the Scopus database spanning a 35-year period indicated 23.1% increase in global publication growth in VPs anti-infective research, with authors from Italy, Portugal and Austria dominating the research landscape. The dominant areas of investigations are identified as antimicrobial activity, antibacterial mechanism of action, antifungal mechanism of action, extraction methods and phytochemistry, use in the food industry, and for oral and dental anti-infective activity. Specific research areas, which require future attention include; antituberculosis research, nanoparticle formulation of antimicrobial active VP molecules, preclinical and clinical trials. The antimicrobial testing of isoeugenol was found to be the least studied of the VPs and this requires further attention.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa.
| | - Ishaku Leo Elisha
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Drug Development Section, Biochemistry Division, National Veterinary Research Institute, P.M.B. 01 Vom, Plateau State, Nigeria.
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
20
|
Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, Araújo VHS, Bauab TM, Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 2021; 603:120706. [PMID: 33991597 DOI: 10.1016/j.ijpharm.2021.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Larissa Spósito
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Gabriel Davi Marena
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Laura Caminitti de Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| |
Collapse
|
21
|
de Sá Coutinho D, Pires J, Gomes H, Raffin Pohlmann A, Stanisçuaski Guterres S, Rodrigues e Silva PM, Martins MA, Ferrarini SR, Bernardi A. Pequi ( Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020; 12:pharmaceutics12111075. [PMID: 33187057 PMCID: PMC7696187 DOI: 10.3390/pharmaceutics12111075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174–223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of −7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1β, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi’s beneficial effect is likely due its high levels of oleic acid.
Collapse
Affiliation(s)
- Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Jader Pires
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
| | - Hyago Gomes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | | | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurelio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Stela Regina Ferrarini
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
- Correspondence: (S.R.F.); (A.B.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
- Correspondence: (S.R.F.); (A.B.)
| |
Collapse
|
22
|
Marrelli M, Amodeo V, Perri MR, Conforti F, Statti G. Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101252. [PMID: 32977657 PMCID: PMC7598204 DOI: 10.3390/plants9101252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Essential oils (EOs) are known to possess a number of beneficial properties. Their antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and cancer-preventing activities have been extensively reported. Due to their wide use as food preservers and additives, as well as their use in agriculture, perfumes, and make-up products, these complex mixtures of volatile compounds have gained importance from a commercial point of view, not only in the pharmaceutical industry, but also in agronomic, food, cosmetic, and perfume industries. An analysis of the recent scientific literature allowed us to highlight the presence of an increasing number of studies on the potential antiarthritic properties of EOs and their main constituents, which seems to suggest a new interesting potential therapeutic application. The aim of this review is to examine the current knowledge on the beneficial effects of essential oils in the treatment of arthritic diseases, providing an overview of the reports on the in vivo and in vitro effects of EOs. Furthermore, this review critically examines the recent findings on the potential roles of the main components of EOs in the exerted beneficial effects. Obtained negative results are also reported.
Collapse
|
23
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
24
|
Prateeksha, Bajpai R, Yusuf MA, Upreti DK, Gupta VK, Singh BN. Endolichenic fungus, Aspergillus quandricinctus of Usnea longissima inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa PAO1. Microb Pathog 2019; 140:103933. [PMID: 31862392 DOI: 10.1016/j.micpath.2019.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Lichens are composite organisms, comprising of a fungus (mycobiont) and a blue-green alga (photobiont). Along with the mycobiont, numerous non-obligate microfungi live in lichen thalli. These microfungi are called endolichenic fungi (ELF). In recent years, the ELF are emerging as promising natural sources because of their capability to exert unique drug molecules. The current study aimed to isolate the ELF from the lichen, Usnea longissima Ach., to control of biofilm formation and quorum sensing phenomenon in Pseudomonas aeruginosa PAO1, an opportunistic multidrug resistance pathogen that uses quorum sensing network to produce an array of pathogenic agents. Therefore, inhibiting quorum sensing to manage the infection caused by PAO1 could be the paramount alternative approach to conventional antibiotics. The isolated ELF was identified by amplifying the long subunit region of the fungal genome. The extracted metabolites of ELF (MELE) using the acetone solvent was further investigated for anti-quorum sensing activity using the biomarker strain Chromobacterium violaceum 12472 which exerts violacein pigment via the AHL mediated quorum sensing signalling. Moreover, the effect of MELE was also evaluated on the production of virulence factors and biofilm formation of P. aeruginosa PAO1. The molecular identification revealed that ELF (accession number MN171299) exhibited 100% similarity with Aspergillus quandricinctus strain CBS 135.52. The MELE showed significant anti-quorum sensing activity at the concentration of 4 mg/mL without affecting the bacterial cell viability of P. aeruginosa PAO1. The MELE diminished the production of virulence factors, including pyocyanin, protease, elastase, rhamnolipids, and extracellular polysaccharides of P. aeruginosa PAO1 in a concentration-dependent manner. The MELE also disturbed biofilm formation of P. aeruginosa PAO1. The 3-D analysis of biofilm architecture showed that the thickness and surface area covered by microcolonies was decreased as the concentration of MELE was increased. The GC-MS analysis of MELE exhibited that organic acids and fatty acids are major constituents of the MELE. The present study reports first time that the ELF, A. quandricinctus possesses potential to inhibit quorum sensing and biofilm formation of P. aeruginosa and can be further exploited for hospital and healthcare facilities.
Collapse
Affiliation(s)
- Prateeksha
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rajesh Bajpai
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, 226016, Uttar Pradesh, India
| | - Dalip Kumar Upreti
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Brahma Nand Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|