1
|
van de Vijsel RC, Hernández-García E, Orfila A, Gomila D. Optimal wave reflection as a mechanism for seagrass self-organization. Sci Rep 2023; 13:20278. [PMID: 37985847 PMCID: PMC10662035 DOI: 10.1038/s41598-023-46788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Ecosystems threatened by climate change can boost their resilience by developing spatial patterns. Spatially regular patterns in wave-exposed seagrass meadows are attributed to self-organization, yet underlying mechanisms are not well understood. Here, we show that these patterns could emerge from feedbacks between wave reflection and seagrass-induced bedform growth. We derive a theoretical model for surface waves propagating over a growing seagrass bed. Wave-induced bed shear stress shapes bedforms which, in turn, trigger wave reflection. Numerical simulations show seagrass pattern development once wave forcing exceeds a critical amplitude. In line with Mediterranean Sea field observations, these patterns have half the wavelength of the forcing waves. Our results raise the hypothesis that pattern formation optimizes the potential of seagrass meadows to reflect wave energy, and a clear direction for future field campaigns. If wave-reflecting pattern formation increases ecosystem resilience under globally intensifying wave climates, these ecosystems may inspire nature-based coastal protection measures.
Collapse
Affiliation(s)
- Roeland C van de Vijsel
- IFISC (CSIC-UIB). Institute for Cross-Disciplinary Physics and Complex Systems, 07122, Palma, Mallorca, Spain.
- Now at: Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, The Netherlands.
| | - Emilio Hernández-García
- IFISC (CSIC-UIB). Institute for Cross-Disciplinary Physics and Complex Systems, 07122, Palma, Mallorca, Spain
| | - Alejandro Orfila
- IMEDEA (CSIC-UIB). Mediterranean Institute for Advanced Studies, 07190, Esporles, Mallorca, Spain
| | - Damià Gomila
- IFISC (CSIC-UIB). Institute for Cross-Disciplinary Physics and Complex Systems, 07122, Palma, Mallorca, Spain
| |
Collapse
|
2
|
Pillai UPA, Pinardi N, Alessandri J, Federico I, Causio S, Unguendoli S, Valentini A, Staneva J. A Digital Twin modelling framework for the assessment of seagrass Nature Based Solutions against storm surges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157603. [PMID: 35901893 DOI: 10.1016/j.scitotenv.2022.157603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In this paper we demonstrate a novel framework for assessing nature-based solutions (NBSs) in coastal zones using a new suite of numerical models that provide a virtual "replica" of the natural environment. We design experiments that use a Digital Twin strategy to establish the wave, sea level and current attenuation due to seagrass NBSs. This Digital Twin modelling framework allows us to answer "what if" scenario questions such as: (i) are indigenous seagrass meadows able to reduce the energy of storm surges, and if so how? (ii) what are the best seagrass types and their landscaping for optimal wave and current attenuation? An important result of the study is to show that the landscaping of seagrasses is an important design choice and that seagrass does not directly attenuate the sea level but the current amplitudes. This framework reveals the link between seagrass NBS and the components of the disruptive potential of storm surges (waves and sea level) and opens up new avenues for future studies.
Collapse
Affiliation(s)
| | - Nadia Pinardi
- Department of Physics and Astronomy, University of Bologna, Bologna 40127, Italy
| | - Jacopo Alessandri
- Department of Physics and Astronomy, University of Bologna, Bologna 40127, Italy; Hydro-Meteo-Climate Service of the Agency for Prevention, Environment and Energy of Emilia-Romagna, Arpae-SIMC, Bologna 40122, Italy
| | - Ivan Federico
- Euro-Mediterranean Center on Climate Change, Lecce 73100, Italy
| | | | - Silvia Unguendoli
- Hydro-Meteo-Climate Service of the Agency for Prevention, Environment and Energy of Emilia-Romagna, Arpae-SIMC, Bologna 40122, Italy
| | - Andrea Valentini
- Hydro-Meteo-Climate Service of the Agency for Prevention, Environment and Energy of Emilia-Romagna, Arpae-SIMC, Bologna 40122, Italy
| | - Joanna Staneva
- Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| |
Collapse
|
3
|
Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues. WATER 2021. [DOI: 10.3390/w13081034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural ecosystem (e.g., sandy bottoms, sublittoral reefs) with P. oceanica is obviously inappropriate in most cases. This presupposes ignorance of the fact that the diversity of ecosystems is one of the bases of the biodiversity concept. In order to prevent the possibility of seagrass transplanting from being misused as a pretext for further destruction, a guide for the proper conduct of transplanting is proposed.
Collapse
|
4
|
Wu M, Wu P, He P, He N, Hu Y, Wang M, Wang Q, Zhang B, Zhang S, Fang S. Theory of scale-dependent feedback: An experimental validation and its significance for coastal saltmarsh restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143855. [PMID: 33257065 DOI: 10.1016/j.scitotenv.2020.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Theory of self-organization, i.e., scale-dependent feedback (SDF), has been widely used to explain mechanisms of spatial patterns in different ecosystems. Studies have demonstrated that self-organization is one of the mechanisms through which ecosystem resilience is maintained. However, the application of SDF in real ecological restoration practices is a challenge due to the lack of a controlled experimental validation. In the present study, multiple scales of vegetation patches were constructed along an elevation gradient in the saltmarsh ecosystem on Nanhui coasts and were investigated to verify if there was an effect of SDF. Results of the density-variation curves analyses revealed that most constructed self-organized patches could survive and an optimal curve was found of which the density-dependent feedback was proven through fitting with the asymptotic regression model. The large vegetation patches exhibited considerable increases in density when compared to the small vegetation patches, which occurred in challenging environments, i.e., on the verges of elevation thresholds, and with a tendency to shrink. Analyses using one-way ANOVA revealed that there was an optimal patch scale and elevation in the study area, i.e., 1 m × 1 m scale and 3.2 m, respectively. Optimal scale and elevation provide a comprehensively explanations of SDF, although with the positive effects gradually decreased along the distance away from the optimal condition. The present study provides novel insights on applying the theory of SDF in facilitating the restoration process of coastal saltmarshes.
Collapse
Affiliation(s)
- Mingxuan Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Research Center of Water Environment & Ecological Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Pengling Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Research Center of Water Environment & Ecological Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Research Center of Water Environment & Ecological Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Ning He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Hu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Maoqiu Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qinyi Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Bolun Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shengle Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shubo Fang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Research Center of Water Environment & Ecological Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Gagnon K, Rinde E, Bengil EGT, Carugati L, Christianen MJA, Danovaro R, Gambi C, Govers LL, Kipson S, Meysick L, Pajusalu L, Tüney Kızılkaya İ, Koppel J, Heide T, Katwijk MM, Boström C. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13605] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karine Gagnon
- Environmental and Marine Biology Åbo Akademi University Turku Finland
| | - Eli Rinde
- Norwegian Institute for Water Research Oslo Norway
| | - Elizabeth G. T. Bengil
- Mediterranean Conservation Society Izmir Turkey
- Girne American UniversityMarine School Girne TRNC via Turkey
| | - Laura Carugati
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
| | - Marjolijn J. A. Christianen
- Aquatic Ecology and Water Quality Management Group Wageningen University Wageningen The Netherlands
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
| | - Roberto Danovaro
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
- Stazione Zoologica Anton Dohrn Naples Italy
| | - Cristina Gambi
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona Italy
| | - Laura L. Govers
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Silvija Kipson
- Faculty of Science Department of Biology University of Zagreb Zagreb Croatia
| | - Lukas Meysick
- Environmental and Marine Biology Åbo Akademi University Turku Finland
| | - Liina Pajusalu
- Estonian Marine Institute University of Tartu Tallinn Estonia
| | - İnci Tüney Kızılkaya
- Mediterranean Conservation Society Izmir Turkey
- Faculty of Science Ege University Izmir Turkey
| | - Johan Koppel
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Royal Netherlands Institute for Sea Research and Utrecht University Yerseke The Netherlands
| | - Tjisse Heide
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Department of Coastal Systems Royal Netherlands Institute of Sea Research and Utrecht University Den Burg The Netherlands
| | - Marieke M. Katwijk
- Department of Environmental Science Institute for Wetland and Water Research Radboud University Nijmegen Nijmegen The Netherlands
| | | |
Collapse
|