1
|
Hirota K, Salim F, Yamada T. DeepES: deep learning-based enzyme screening to identify orphan enzyme genes. Bioinformatics 2025; 41:btaf053. [PMID: 39909853 PMCID: PMC11881691 DOI: 10.1093/bioinformatics/btaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/04/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025] Open
Abstract
MOTIVATION Progress in sequencing technology has led to determination of large numbers of protein sequences, and large enzyme databases are now available. Although many computational tools for enzyme annotation were developed, sequence information is unavailable for many enzymes, known as orphan enzymes. These orphan enzymes hinder sequence similarity-based functional annotation, leading gaps in understanding the association between sequences and enzymatic reactions. RESULTS Therefore, we developed DeepES, a deep learning-based tool for enzyme screening to identify orphan enzyme genes, focusing on biosynthetic gene clusters and reaction class. DeepES uses protein sequences as inputs and evaluates whether the input genes contain biosynthetic gene clusters of interest by integrating the outputs of the binary classifier for each reaction class. The validation results suggested that DeepES can capture functional similarity between protein sequences, and it can be implemented to explore orphan enzyme genes. By applying DeepES to 4744 metagenome-assembled genomes, we identified candidate genes for 236 orphan enzymes, including those involved in short-chain fatty acid production as a characteristic pathway in human gut bacteria. AVAILABILITY AND IMPLEMENTATION DeepES is available at https://github.com/yamada-lab/DeepES. Model weights and the candidate genes are available at Zenodo (https://doi.org/10.5281/zenodo.11123900).
Collapse
Affiliation(s)
- Keisuke Hirota
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, 152-8550, Japan
| | - Felix Salim
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, 152-8550, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, 152-8550, Japan
- Metagen, Inc., Yamagata, 997-0052, Japan
- Metagen Therapeutics, Inc., Yamagata, 997-0052, Japan
- digzyme, Inc., Tokyo, 105-0001, Japan
| |
Collapse
|
2
|
Shahid, Hayat M, Alghamdi W, Akbar S, Raza A, Kadir RA, Sarker MR. pACP-HybDeep: predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning. Sci Rep 2025; 15:565. [PMID: 39747941 PMCID: PMC11695694 DOI: 10.1038/s41598-024-84146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Worldwide, Cancer remains a significant health concern due to its high mortality rates. Despite numerous traditional therapies and wet-laboratory methods for treating cancer-affected cells, these approaches often face limitations, including high costs and substantial side effects. Recently the high selectivity of peptides has garnered significant attention from scientists due to their reliable targeted actions and minimal adverse effects. Furthermore, keeping the significant outcomes of the existing computational models, we propose a highly reliable and effective model namely, pACP-HybDeep for the accurate prediction of anticancer peptides. In this model, training peptides are numerically encoded using an attention-based ProtBERT-BFD encoder to extract semantic features along with CTDT-based structural information. Furthermore, a k-nearest neighbor-based binary tree growth (BTG) algorithm is employed to select an optimal feature set from the multi-perspective vector. The selected feature vector is subsequently trained using a CNN + RNN-based deep learning model. Our proposed pACP-HybDeep model demonstrated a high training accuracy of 95.33%, and an AUC of 0.97. To validate the generalization capabilities of the model, our pACP-HybDeep model achieved accuracies of 94.92%, 92.26%, and 91.16% on independent datasets Ind-S1, Ind-S2, and Ind-S3, respectively. The demonstrated efficacy, and reliability of the pACP-HybDeep model using test datasets establish it as a valuable tool for researchers in academia and pharmaceutical drug design.
Collapse
Affiliation(s)
- Shahid
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad, 45750, Pakistan
| | - Rabiah Abdul Kadir
- Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Mahidur R Sarker
- Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Universidad de Dise˜no, Innovaci´on y Tecnología, UDIT, Av. Alfonso XIII, 97, 28016, Madrid, Spain
| |
Collapse
|
3
|
Boadu F, Lee A, Cheng J. Deep learning methods for protein function prediction. Proteomics 2025; 25:e2300471. [PMID: 38996351 PMCID: PMC11735672 DOI: 10.1002/pmic.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Predicting protein function from protein sequence, structure, interaction, and other relevant information is important for generating hypotheses for biological experiments and studying biological systems, and therefore has been a major challenge in protein bioinformatics. Numerous computational methods had been developed to advance protein function prediction gradually in the last two decades. Particularly, in the recent years, leveraging the revolutionary advances in artificial intelligence (AI), more and more deep learning methods have been developed to improve protein function prediction at a faster pace. Here, we provide an in-depth review of the recent developments of deep learning methods for protein function prediction. We summarize the significant advances in the field, identify several remaining major challenges to be tackled, and suggest some potential directions to explore. The data sources and evaluation metrics widely used in protein function prediction are also discussed to assist the machine learning, AI, and bioinformatics communities to develop more cutting-edge methods to advance protein function prediction.
Collapse
Affiliation(s)
- Frimpong Boadu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Ahhyun Lee
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
4
|
Li X, Zhang J, Ma D, Fan X, Zheng X, Liu YX. Exploring protein natural diversity in environmental microbiomes with DeepMetagenome. CELL REPORTS METHODS 2024; 4:100896. [PMID: 39515333 PMCID: PMC11705764 DOI: 10.1016/j.crmeth.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Protein natural diversity offers a vast sequence space for protein engineering, and deep learning enables its detection from metagenomes/proteomes without prior assumptions. DeepMetagenome, a Python-based method, explores protein diversity through modules for training and analyzing sequence datasets. The deep learning model includes Embedding, Conv1D, LSTM, and Dense layers, with sequence feature analysis for data cleaning. Applied to metallothioneins from a database of over 146 million coding features, DeepMetagenome identified over 500 high-confidence metallothionein sequences, outperforming DIAMOND and CNN-based models. It showed stable performance compared to a Transformer-based model over 25 epochs. Among 23 synthesized sequences, 20 exhibited metal resistance. The tool also successfully explored the diversity of three additional protein families and is freely available on GitHub with detailed instructions.
Collapse
Affiliation(s)
- Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Jun Zhang
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
| | - Dan Ma
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaofei Fan
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China.
| | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
5
|
Vu TTD, Kim J, Jung J. An experimental analysis of graph representation learning for Gene Ontology based protein function prediction. PeerJ 2024; 12:e18509. [PMID: 39553733 PMCID: PMC11569786 DOI: 10.7717/peerj.18509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding protein function is crucial for deciphering biological systems and facilitating various biomedical applications. Computational methods for predicting Gene Ontology functions of proteins emerged in the 2000s to bridge the gap between the number of annotated proteins and the rapidly growing number of newly discovered amino acid sequences. Recently, there has been a surge in studies applying graph representation learning techniques to biological networks to enhance protein function prediction tools. In this review, we provide fundamental concepts in graph embedding algorithms. This study described graph representation learning methods for protein function prediction based on four principal data categories, namely PPI network, protein structure, Gene Ontology graph, and integrated graph. The commonly used approaches for each category were summarized and diagrammed, with the specific results of each method explained in detail. Finally, existing limitations and potential solutions were discussed, and directions for future research within the protein research community were suggested.
Collapse
Affiliation(s)
- Thi Thuy Duong Vu
- Faculty of Fundamental Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Jeongho Kim
- Department of Information and Communication Engineering, Myongji University, Yongin, Republic of South Korea
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin, Republic of South Korea
| |
Collapse
|
6
|
Kumar V, Deepak A, Ranjan A, Prakash A. Bi-SeqCNN: A Novel Light-Weight Bi-Directional CNN Architecture for Protein Function Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1922-1933. [PMID: 38990747 DOI: 10.1109/tcbb.2024.3426491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Deep learning approaches, such as convolution neural networks (CNNs) and deep recurrent neural networks (RNNs), have been the backbone for predicting protein function, with promising state-of-the-art (SOTA) results. RNNs with an in-built ability (i) focus on past information, (ii) collect both short-and-long range dependency information, and (iii) bi-directional processing offers a strong sequential processing mechanism. CNNs, however, are confined to focusing on short-term information from both the past and the future, although they offer parallelism. Therefore, a novel bi-directional CNN that strictly complies with the sequential processing mechanism of RNNs is introduced and is used for developing a protein function prediction framework, Bi-SeqCNN. This is a sub-sequence-based framework. Further, Bi-SeqCNN is an ensemble approach to better the prediction results. To our knowledge, this is the first time bi-directional CNNs are employed for general temporal data analysis and not just for protein sequences. The proposed architecture produces improvements up to +5.5% over contemporary SOTA methods on three benchmark protein sequence datasets. Moreover, it is substantially lighter and attain these results with (0.50-0.70 times) fewer parameters than the SOTA methods.
Collapse
|
7
|
Taha K. Employing Machine Learning Techniques to Detect Protein Function: A Survey, Experimental, and Empirical Evaluations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1965-1986. [PMID: 39008392 DOI: 10.1109/tcbb.2024.3427381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This review article delves deeply into the various machine learning (ML) methods and algorithms employed in discerning protein functions. Each method discussed is assessed for its efficacy, limitations, potential improvements, and future prospects. We present an innovative hierarchical classification system that arranges algorithms into intricate categories and unique techniques. This taxonomy is based on a tri-level hierarchy, starting with the methodology category and narrowing down to specific techniques. Such a framework allows for a structured and comprehensive classification of algorithms, assisting researchers in understanding the interrelationships among diverse algorithms and techniques. The study incorporates both empirical and experimental evaluations to differentiate between the techniques. The empirical evaluation ranks the techniques based on four criteria. The experimental assessments rank: (1) individual techniques under the same methodology sub-category, (2) different sub-categories within the same category, and (3) the broad categories themselves. Integrating the innovative methodological classification, empirical findings, and experimental assessments, the article offers a well-rounded understanding of ML strategies in protein function identification. The paper also explores techniques for multi-task and multi-label detection of protein functions, in addition to focusing on single-task methods. Moreover, the paper sheds light on the future avenues of ML in protein function determination.
Collapse
|
8
|
Bai P, Li G, Luo J, Liang C. Deep learning model for protein multi-label subcellular localization and function prediction based on multi-task collaborative training. Brief Bioinform 2024; 25:bbae568. [PMID: 39489606 PMCID: PMC11531862 DOI: 10.1093/bib/bbae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The functional study of proteins is a critical task in modern biology, playing a pivotal role in understanding the mechanisms of pathogenesis, developing new drugs, and discovering novel drug targets. However, existing computational models for subcellular localization face significant challenges, such as reliance on known Gene Ontology (GO) annotation databases or overlooking the relationship between GO annotations and subcellular localization. To address these issues, we propose DeepMTC, an end-to-end deep learning-based multi-task collaborative training model. DeepMTC integrates the interrelationship between subcellular localization and the functional annotation of proteins, leveraging multi-task collaborative training to eliminate dependence on known GO databases. This strategy gives DeepMTC a distinct advantage in predicting newly discovered proteins without prior functional annotations. First, DeepMTC leverages pre-trained language model with high accuracy to obtain the 3D structure and sequence features of proteins. Additionally, it employs a graph transformer module to encode protein sequence features, addressing the problem of long-range dependencies in graph neural networks. Finally, DeepMTC uses a functional cross-attention mechanism to efficiently combine upstream learned functional features to perform the subcellular localization task. The experimental results demonstrate that DeepMTC outperforms state-of-the-art models in both protein function prediction and subcellular localization. Moreover, interpretability experiments revealed that DeepMTC can accurately identify the key residues and functional domains of proteins, confirming its superior performance. The code and dataset of DeepMTC are freely available at https://github.com/ghli16/DeepMTC.
Collapse
Affiliation(s)
- Peihao Bai
- School of Information and Software Engineering, East China Jiaotong University, No. 808 Shuanggang East Road, Nanchang 330013, China
| | - Guanghui Li
- School of Information and Software Engineering, East China Jiaotong University, No. 808 Shuanggang East Road, Nanchang 330013, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, No. 2 Lushan Road, Changsha 410082, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, No. 1 University Road, Jinan 250358, China
- Shandong Key Laboratory of Biophysics, Dezhou University, No. 566 University Road, Dezhou 253023, China
| |
Collapse
|
9
|
Lilhore UK, Simiaya S, Alhussein M, Faujdar N, Dalal S, Aurangzeb K. Optimizing protein sequence classification: integrating deep learning models with Bayesian optimization for enhanced biological analysis. BMC Med Inform Decis Mak 2024; 24:236. [PMID: 39192227 DOI: 10.1186/s12911-024-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of protein sequence classification by carefully optimizing performance through Bayesian Optimisation. ProtICNN-BiLSTM combines the power of CNN and BiLSTM architectures to effectively capture local and global protein sequence dependencies. In the proposed model, the ICNN component uses convolutional operations to identify local patterns. Captures long-range associations by analyzing sequence data forward and backwards. In advanced biological studies, Bayesian Optimisation optimizes model hyperparameters for efficiency and robustness. The model was extensively confirmed with PDB-14,189 and other protein data. We found that ProtICNN-BiLSTM outperforms traditional categorization models. Bayesian Optimization's fine-tuning and seamless integration of local and global sequence information make it effective. The precision of ProtICNN-BiLSTM improves comparative protein sequence categorization. The study improves computational bioinformatics for complex biological analysis. Good results from the ProtICNN-BiLSTM model improve protein sequence categorization. This powerful tool could improve medical and biological research. The breakthrough protein sequence classification model is ProtICNN-BiLSTM. Bayesian optimization, ICNN, and BiLSTM analyze biological data accurately.
Collapse
Affiliation(s)
- Umesh Kumar Lilhore
- School of Computing Science and Engineering, Galgotias University, Greater Noida, UP, India
| | - Sarita Simiaya
- School of Computing Science and Engineering, Galgotias University, Greater Noida, UP, India
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh, 11543, Saudi Arabia
| | - Neetu Faujdar
- Department of Computer Engineering and Applications, GLA University, 281406, UP, Mathura, India
| | | | - Khursheed Aurangzeb
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P. O. Box 51178, Riyadh, 11543, Saudi Arabia
| |
Collapse
|
10
|
Ulusoy E, Doğan T. Mutual annotation-based prediction of protein domain functions with Domain2GO. Protein Sci 2024; 33:e4988. [PMID: 38757367 PMCID: PMC11099699 DOI: 10.1002/pro.4988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 03/30/2024] [Indexed: 05/18/2024]
Abstract
Identifying unknown functional properties of proteins is essential for understanding their roles in both health and disease states. The domain composition of a protein can reveal critical information in this context, as domains are structural and functional units that dictate how the protein should act at the molecular level. The expensive and time-consuming nature of wet-lab experimental approaches prompted researchers to develop computational strategies for predicting the functions of proteins. In this study, we proposed a new method called Domain2GO that infers associations between protein domains and function-defining gene ontology (GO) terms, thus redefining the problem as domain function prediction. Domain2GO uses documented protein-level GO annotations together with proteins' domain annotations. Co-annotation patterns of domains and GO terms in the same proteins are examined using statistical resampling to obtain reliable associations. As a use-case study, we evaluated the biological relevance of examples selected from the Domain2GO-generated domain-GO term mappings via literature review. Then, we applied Domain2GO to predict unknown protein functions by propagating domain-associated GO terms to proteins annotated with these domains. For function prediction performance evaluation and comparison against other methods, we employed Critical Assessment of Function Annotation 3 (CAFA3) challenge datasets. The results demonstrated the high potential of Domain2GO, particularly for predicting molecular function and biological process terms, along with advantages such as producing interpretable results and having an exceptionally low computational cost. The approach presented here can be extended to other ontologies and biological entities to investigate unknown relationships in complex and large-scale biological data. The source code, datasets, results, and user instructions for Domain2GO are available at https://github.com/HUBioDataLab/Domain2GO. Additionally, we offer a user-friendly online tool at https://huggingface.co/spaces/HUBioDataLab/Domain2GO, which simplifies the prediction of functions of previously unannotated proteins solely using amino acid sequences.
Collapse
Affiliation(s)
- Erva Ulusoy
- Biological Data Science Lab, Department of Computer EngineeringHacettepe UniversityAnkaraTurkey
- Department of BioinformaticsGraduate School of Health Sciences, Hacettepe UniversityAnkaraTurkey
| | - Tunca Doğan
- Biological Data Science Lab, Department of Computer EngineeringHacettepe UniversityAnkaraTurkey
- Department of BioinformaticsGraduate School of Health Sciences, Hacettepe UniversityAnkaraTurkey
| |
Collapse
|
11
|
Lin B, Luo X, Liu Y, Jin X. A comprehensive review and comparison of existing computational methods for protein function prediction. Brief Bioinform 2024; 25:bbae289. [PMID: 39003530 PMCID: PMC11246557 DOI: 10.1093/bib/bbae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 07/15/2024] Open
Abstract
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-based methods, PPI network-based methods and hybrid information-based methods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.
Collapse
Affiliation(s)
- Baohui Lin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaoling Luo
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen, Guangdong, China
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| |
Collapse
|
12
|
Harrigan WL, Ferrell BD, Wommack KE, Polson SW, Schreiber ZD, Belcaid M. Improvements in viral gene annotation using large language models and soft alignments. BMC Bioinformatics 2024; 25:165. [PMID: 38664627 PMCID: PMC11046836 DOI: 10.1186/s12859-024-05779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The annotation of protein sequences in public databases has long posed a challenge in molecular biology. This issue is particularly acute for viral proteins, which demonstrate limited homology to known proteins when using alignment, k-mer, or profile-based homology search approaches. A novel methodology employing Large Language Models (LLMs) addresses this methodological challenge by annotating protein sequences based on embeddings. RESULTS Central to our contribution is the soft alignment algorithm, drawing from traditional protein alignment but leveraging embedding similarity at the amino acid level to bypass the need for conventional scoring matrices. This method not only surpasses pooled embedding-based models in efficiency but also in interpretability, enabling users to easily trace homologous amino acids and delve deeper into the alignments. Far from being a black box, our approach provides transparent, BLAST-like alignment visualizations, combining traditional biological research with AI advancements to elevate protein annotation through embedding-based analysis while ensuring interpretability. Tests using the Virus Orthologous Groups and ViralZone protein databases indicated that the novel soft alignment approach recognized and annotated sequences that both blastp and pooling-based methods, which are commonly used for sequence annotation, failed to detect. CONCLUSION The embeddings approach shows the great potential of LLMs for enhancing protein sequence annotation, especially in viral genomics. These findings present a promising avenue for more efficient and accurate protein function inference in molecular biology.
Collapse
Affiliation(s)
- William L Harrigan
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Barbra D Ferrell
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, 19713, USA
| | - K Eric Wommack
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Zachary D Schreiber
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Mahdi Belcaid
- Department of Computer Science, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
13
|
Zheng L, Shi S, Lu M, Fang P, Pan Z, Zhang H, Zhou Z, Zhang H, Mou M, Huang S, Tao L, Xia W, Li H, Zeng Z, Zhang S, Chen Y, Li Z, Zhu F. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol 2024; 25:41. [PMID: 38303023 PMCID: PMC10832132 DOI: 10.1186/s13059-024-03166-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqi Xia
- Pharmaceutical Department, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shun Zhang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
14
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Raza A, Uddin J, Almuhaimeed A, Akbar S, Zou Q, Ahmad A. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks. J Chem Inf Model 2023; 63:6537-6554. [PMID: 37905969 DOI: 10.1021/acs.jcim.3c01563] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Inflammation is a biologically resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Its purpose is to eradicate pathogenic micro-organisms or irritants and facilitate tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. However, wet-laboratory-based treatments are costly and time-consuming and may have adverse side effects on normal cells. In the past decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, we developed a highly discriminative prediction model called AIPs-SnTCN to predict anti-inflammatory peptides accurately. The peptide samples are encoded using word embedding techniques such as skip-gram and attention-based bidirectional encoder representation using a transformer (BERT). The conjoint triad feature (CTF) also collects structure-based cluster profile features. The fused vector of word embedding and sequential features is formed to compensate for the limitations of single encoding methods. Support vector machine-based recursive feature elimination (SVM-RFE) is applied to choose the ranking-based optimal space. The optimized feature space is trained by using an improved self-normalized temporal convolutional network (SnTCN). The AIPs-SnTCN model achieved a predictive accuracy of 95.86% and an AUC of 0.97 by using training samples. In the case of the alternate training data set, our model obtained an accuracy of 92.04% and an AUC of 0.96. The proposed AIPs-SnTCN model outperformed existing models with an ∼19% higher accuracy and an ∼14% higher AUC value. The reliability and efficacy of our AIPs-SnTCN model make it a valuable tool for scientists and may play a beneficial role in pharmaceutical design and research academia.
Collapse
Affiliation(s)
- Ali Raza
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Jamal Uddin
- Department of Physical and Numerical Sciences, Qurtuba University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25124, Pakistan
| | - Abdullah Almuhaimeed
- Digital Health Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Ashfaq Ahmad
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| |
Collapse
|
16
|
David KT, Halanych KM. Unsupervised Deep Learning Can Identify Protein Functional Groups from Unaligned Sequences. Genome Biol Evol 2023; 15:evad084. [PMID: 37217837 PMCID: PMC10231473 DOI: 10.1093/gbe/evad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Interpreting protein function from sequence data is a fundamental goal of bioinformatics. However, our current understanding of protein diversity is bottlenecked by the fact that most proteins have only been functionally validated in model organisms, limiting our understanding of how function varies with gene sequence diversity. Thus, accuracy of inferences in clades without model representatives is questionable. Unsupervised learning may help to ameliorate this bias by identifying highly complex patterns and structure from large datasets without external labels. Here we present DeepSeqProt, an unsupervised deep learning program for exploring large protein sequence datasets. DeepSeqProt is a clustering tool capable of distinguishing between broad classes of proteins while learning local and global structure of functional space. DeepSeqProt is capable of learning salient biological features from unaligned, unannotated sequences. DeepSeqProt is more likely to capture complete protein families and statistically significant shared ontologies within proteomes than other clustering methods. We hope this framework will prove of use to researchers and provide a preliminary step in further developing unsupervised deep learning in molecular biology.
Collapse
Affiliation(s)
- Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
17
|
Maranga M, Szczerbiak P, Bezshapkin V, Gligorijevic V, Chandler C, Bonneau R, Xavier RJ, Vatanen T, Kosciolek T. Comprehensive Functional Annotation of Metagenomes and Microbial Genomes Using a Deep Learning-Based Method. mSystems 2023; 8:e0117822. [PMID: 37010293 PMCID: PMC10134832 DOI: 10.1128/msystems.01178-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 04/04/2023] Open
Abstract
Comprehensive protein function annotation is essential for understanding microbiome-related disease mechanisms in the host organisms. However, a large portion of human gut microbial proteins lack functional annotation. Here, we have developed a new metagenome analysis workflow integrating de novo genome reconstruction, taxonomic profiling, and deep learning-based functional annotations from DeepFRI. This is the first approach to apply deep learning-based functional annotations in metagenomics. We validate DeepFRI functional annotations by comparing them to orthology-based annotations from eggNOG on a set of 1,070 infant metagenomes from the DIABIMMUNE cohort. Using this workflow, we generated a sequence catalogue of 1.9 million nonredundant microbial genes. The functional annotations revealed 70% concordance between Gene Ontology annotations predicted by DeepFRI and eggNOG. DeepFRI improved the annotation coverage, with 99% of the gene catalogue obtaining Gene Ontology molecular function annotations, although they are less specific than those from eggNOG. Additionally, we constructed pangenomes in a reference-free manner using high-quality metagenome-assembled genomes (MAGs) and analyzed the associated annotations. eggNOG annotated more genes on well-studied organisms, such as Escherichia coli, while DeepFRI was less sensitive to taxa. Further, we show that DeepFRI provides additional annotations in comparison to the previous DIABIMMUNE studies. This workflow will contribute to novel understanding of the functional signature of the human gut microbiome in health and disease as well as guiding future metagenomics studies. IMPORTANCE The past decade has seen advancement in high-throughput sequencing technologies resulting in rapid accumulation of genomic data from microbial communities. While this growth in sequence data and gene discovery is impressive, the majority of microbial gene functions remain uncharacterized. The coverage of functional information coming from either experimental sources or inferences is low. To solve these challenges, we have developed a new workflow to computationally assemble microbial genomes and annotate the genes using a deep learning-based model DeepFRI. This improved microbial gene annotation coverage to 1.9 million metagenome-assembled genes, representing 99% of the assembled genes, which is a significant improvement compared to 12% Gene Ontology term annotation coverage by commonly used orthology-based approaches. Importantly, the workflow supports pangenome reconstruction in a reference-free manner, allowing us to analyze the functional potential of individual bacterial species. We therefore propose this alternative approach combining deep-learning functional predictions with the commonly used orthology-based annotations as one that could help us uncover novel functions observed in metagenomic microbiome studies.
Collapse
Affiliation(s)
- Mary Maranga
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Szczerbiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Vladimir Gligorijevic
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Prescient Design, New York, New York, USA
| | - Chris Chandler
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Prescient Design, New York, New York, USA
| | - Ramnik J. Xavier
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tommi Vatanen
- Broad Institute, Cambridge, Massachusetts, USA
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. PLoS Comput Biol 2023; 19:e1010999. [PMID: 36947548 PMCID: PMC10069792 DOI: 10.1371/journal.pcbi.1010999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/03/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Catalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system. We did so to determine relationships between individual mutations and phenotypes and to associate phenotypes with MD simulated structural alterations. Using fitness values of mutants under various stress conditions, we modeled phenotypes along a spectrum of continual values. We found that ML could predict the phenotypes with 0.68 R2 correlation from amino acid sequences alone. It was more difficult to incorporate MD data to improve predictions from machine learning, presumably because MD data is too noisy and possibly incomplete to directly infer functional phenotypes. However, a variational auto-encoder model based on the MD data allowed the clustering of mutants with different phenotypes based on structural details. Overall, we found that a subset of loss-of-function (LOF) and lethal mutations tended to increase distances of TL residues to the NTP substrate, while another subset of LOF and lethal substitutions tended to confer an increase in distances between TL and bridge helix (BH). In contrast, some of the gain-of-function (GOF) mutants appear to cause disruption of hydrophobic contacts among TL and nearby helices.
Collapse
Affiliation(s)
- Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California Merced, Merced, California, United States of America
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
19
|
Pan T, Li C, Bi Y, Wang Z, Gasser RB, Purcell AW, Akutsu T, Webb GI, Imoto S, Song J. PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships. Bioinformatics 2023; 39:7043095. [PMID: 36794913 PMCID: PMC9978587 DOI: 10.1093/bioinformatics/btad094] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
MOTIVATION The rapid accumulation of high-throughput sequence data demands the development of effective and efficient data-driven computational methods to functionally annotate proteins. However, most current approaches used for functional annotation simply focus on the use of protein-level information but ignore inter-relationships among annotations. RESULTS Here, we established PFresGO, an attention-based deep-learning approach that incorporates hierarchical structures in Gene Ontology (GO) graphs and advances in natural language processing algorithms for the functional annotation of proteins. PFresGO employs a self-attention operation to capture the inter-relationships of GO terms, updates its embedding accordingly and uses a cross-attention operation to project protein representations and GO embedding into a common latent space to identify global protein sequence patterns and local functional residues. We demonstrate that PFresGO consistently achieves superior performance across GO categories when compared with 'state-of-the-art' methods. Importantly, we show that PFresGO can identify functionally important residues in protein sequences by assessing the distribution of attention weightings. PFresGO should serve as an effective tool for the accurate functional annotation of proteins and functional domains within proteins. AVAILABILITY AND IMPLEMENTATION PFresGO is available for academic purposes at https://github.com/BioColLab/PFresGO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tong Pan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Chen Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yue Bi
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Zhikang Wang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Geoffrey I Webb
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
20
|
Yan TC, Yue ZX, Xu HQ, Liu YH, Hong YF, Chen GX, Tao L, Xie T. A systematic review of state-of-the-art strategies for machine learning-based protein function prediction. Comput Biol Med 2023; 154:106446. [PMID: 36680931 DOI: 10.1016/j.compbiomed.2022.106446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
New drug discovery is inseparable from the discovery of drug targets, and the vast majority of the known targets are proteins. At the same time, proteins are essential structural and functional elements of living cells necessary for the maintenance of all forms of life. Therefore, protein functions have become the focus of many pharmacological and biological studies. Traditional experimental techniques are no longer adequate for rapidly growing annotation of protein sequences, and approaches to protein function prediction using computational methods have emerged and flourished. A significant trend has been to use machine learning to achieve this goal. In this review, approaches to protein function prediction based on the sequence, structure, protein-protein interaction (PPI) networks, and fusion of multi-information sources are discussed. The current status of research on protein function prediction using machine learning is considered, and existing challenges and prominent breakthroughs are discussed to provide ideas and methods for future studies.
Collapse
Affiliation(s)
- Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Sanderson T, Bileschi ML, Belanger D, Colwell LJ. ProteInfer, deep neural networks for protein functional inference. eLife 2023; 12:e80942. [PMID: 36847334 PMCID: PMC10063232 DOI: 10.7554/elife.80942] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions - Enzyme Commission (EC) numbers and Gene Ontology (GO) terms - directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user's personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.
Collapse
Affiliation(s)
| | | | | | - Lucy J Colwell
- Google AIBostonUnited States
- University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
22
|
Nallasamy V, Seshiah M. Energy Profile Bayes and Thompson Optimized Convolutional Neural Network protein structure prediction. Neural Comput Appl 2023; 35:1983-2006. [PMID: 36245797 PMCID: PMC9542649 DOI: 10.1007/s00521-022-07868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Abstract
In living organisms, proteins are considered as the executants of biological functions. Owing to its pivotal role played in protein folding patterns, comprehension of protein structure is a challenging issue. Moreover, owing to numerous protein sequence exploration in protein data banks and complication of protein structures, experimental methods are found to be inadequate for protein structural class prediction. Hence, it is very much advantageous to design a reliable computational method to predict protein structural classes from protein sequences. In the recent few years there has been an elevated interest in using deep learning to assist protein structure prediction as protein structure prediction models can be utilized to screen a large number of novel sequences. In this regard, we propose a model employing Energy Profile for atom pairs in conjunction with the Legion-Class Bayes function called Energy Profile Legion-Class Bayes Protein Structure Identification model. Followed by this, we use a Thompson Optimized convolutional neural network to extract features between amino acids and then the Thompson Optimized SoftMax function is employed to extract associations between protein sequences for predicting secondary protein structure. The proposed Energy Profile Bayes and Thompson Optimized Convolutional Neural Network (EPB-OCNN) method tested distinct unique protein data and was compared to the state-of-the-art methods, the Template-Based Modeling, Protein Design using Deep Graph Neural Networks, a deep learning-based S-glutathionylation sites prediction tool called a Computational Framework, the Deep Learning and a distance-based protein structure prediction using deep learning. The results obtained when applied with the Biopython tool with respect to protein structure prediction time, protein structure prediction accuracy, specificity, recall, F-measure, and precision, respectively, are measured. The proposed EPB-OCNN method outperformed the state-of-the-art methods, thereby corroborating the objective.
Collapse
Affiliation(s)
- Varanavasi Nallasamy
- Cognizant Technology Solutions Pvt. Ltd, CHIL SEZ IT Park, Keeranatham, Saravanam Patti, Coimbatore, Tamil Nadu 641035 India
| | - Malarvizhi Seshiah
- Department of Computer Science, Thiruvalluvar Government Arts College, Rasipuram, Namakkal, Tamil Nadu India
| |
Collapse
|
23
|
Ng JWX, Chua SK, Mutwil M. Feature importance network reveals novel functional relationships between biological features in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:944992. [PMID: 36212273 PMCID: PMC9539877 DOI: 10.3389/fpls.2022.944992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Understanding how the different cellular components are working together to form a living cell requires multidisciplinary approaches combining molecular and computational biology. Machine learning shows great potential in life sciences, as it can find novel relationships between biological features. Here, we constructed a dataset of 11,801 gene features for 31,522 Arabidopsis thaliana genes and developed a machine learning workflow to identify linked features. The detected linked features are visualised as a Feature Important Network (FIN), which can be mined to reveal a variety of novel biological insights pertaining to gene function. We demonstrate how FIN can be used to generate novel insights into gene function. To make this network easily accessible to the scientific community, we present the FINder database, available at finder.plant.tools.
Collapse
|
24
|
Özsarı G, Rifaioglu AS, Atakan A, Doğan T, Martin MJ, Çetin Atalay R, Atalay V. SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins. Bioinformatics 2022; 38:4226-4229. [PMID: 35801913 DOI: 10.1093/bioinformatics/btac458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
SUMMARY Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location. We used UniProtKB/Swiss-Prot human protein entries and their curated SL annotations as our source data. We connected all disjoint terms in the UniProt SL hierarchy based on the corresponding term relationships in the cellular component category of Gene Ontology and constructed a training dataset that is both reliable and large scale using the re-organized hierarchy. We tested SLPred on multiple benchmarking datasets including our-in house sets and compared its performance against six state-of-the-art methods. Results indicated that SLPred outperforms other tools in the majority of cases. AVAILABILITY AND IMPLEMENTATION SLPred is available both as an open-access and user-friendly web-server (https://slpred.kansil.org) and a stand-alone tool (https://github.com/kansil/SLPred). All datasets used in this study are also available at https://slpred.kansil.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gökhan Özsarı
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey.,Department of Computer Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey
| | - Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, İskenderun Technical University, Hatay 31200, Turkey.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Ahmet Atakan
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey.,Department of Computer Engineering, Erzincan Binali Yıldırım University, Erzincan 24002, Turkey
| | - Tunca Doğan
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Hinxton CB10 1SD, UK
| | - Rengül Çetin Atalay
- Graduate School of Informatics Middle East Technical University, Ankara 06800, Turkey.,Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
25
|
Ma W, Zhang S, Li Z, Jiang M, Wang S, Lu W, Bi X, Jiang H, Zhang H, Wei Z. Enhancing Protein Function Prediction Performance by Utilizing AlphaFold-Predicted Protein Structures. J Chem Inf Model 2022; 62:4008-4017. [PMID: 36006049 DOI: 10.1021/acs.jcim.2c00885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of a protein is of great importance in determining its functionality, and this characteristic can be leveraged to train data-driven prediction models. However, the limited number of available protein structures severely limits the performance of these models. AlphaFold2 and its open-source data set of predicted protein structures have provided a promising solution to this problem, and these predicted structures are expected to benefit the model performance by increasing the number of training samples. In this work, we constructed a new data set that acted as a benchmark and implemented a state-of-the-art structure-based approach for determining whether the performance of the function prediction model can be improved by putting additional AlphaFold-predicted structures into the training set and further compared the performance differences between two models separately trained with real structures only and AlphaFold-predicted structures only. Experimental results indicated that structure-based protein function prediction models could benefit from virtual training data consisting of AlphaFold-predicted structures. First, model performances were improved in all three categories of Gene Ontology terms (GO terms) after adding predicted structures as training samples. Second, the model trained only on AlphaFold-predicted virtual samples achieved comparable performances to the model based on experimentally solved real structures, suggesting that predicted structures were almost equally effective in predicting protein functionality.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Weigang Lu
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| | - Henggui Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, U.K
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China.,High Performance Computing Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
26
|
Mansoor M, Nauman M, Rehman HU, Omar M. Gene Ontology Capsule GAN: an improved architecture for protein function prediction. PeerJ Comput Sci 2022; 8:e1014. [PMID: 36092003 PMCID: PMC9454774 DOI: 10.7717/peerj-cs.1014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Proteins are the core of all functions pertaining to living things. They consist of an extended amino acid chain folding into a three-dimensional shape that dictates their behavior. Currently, convolutional neural networks (CNNs) have been pivotal in predicting protein functions based on protein sequences. While it is a technology crucial to the niche, the computation cost and translational invariance associated with CNN make it impossible to detect spatial hierarchies between complex and simpler objects. Therefore, this research utilizes capsule networks to capture spatial information as opposed to CNNs. Since capsule networks focus on hierarchical links, they have a lot of potential for solving structural biology challenges. In comparison to the standard CNNs, our results exhibit an improvement in accuracy. Gene Ontology Capsule GAN (GOCAPGAN) achieved an F1 score of 82.6%, a precision score of 90.4% and recall score of 76.1%.
Collapse
Affiliation(s)
- Musadaq Mansoor
- National University of Computer and Emerging Sciences, Islamabad, Peshawar, KPK, Pakistan
| | - Mohammad Nauman
- National University of Computer and Emerging Sciences, Islamabad, Peshawar, KPK, Pakistan
| | - Hafeez Ur Rehman
- National University of Computer and Emerging Sciences, Islamabad, Peshawar, KPK, Pakistan
| | - Maryam Omar
- National University of Computer and Emerging Sciences, Islamabad, Peshawar, KPK, Pakistan
| |
Collapse
|
27
|
Villalobos-Alva J, Ochoa-Toledo L, Villalobos-Alva MJ, Aliseda A, Pérez-Escamirosa F, Altamirano-Bustamante NF, Ochoa-Fernández F, Zamora-Solís R, Villalobos-Alva S, Revilla-Monsalve C, Kemper-Valverde N, Altamirano-Bustamante MM. Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field. Front Bioeng Biotechnol 2022; 10:788300. [PMID: 35875501 PMCID: PMC9301016 DOI: 10.3389/fbioe.2022.788300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Proteins are some of the most fascinating and challenging molecules in the universe, and they pose a big challenge for artificial intelligence. The implementation of machine learning/AI in protein science gives rise to a world of knowledge adventures in the workhorse of the cell and proteome homeostasis, which are essential for making life possible. This opens up epistemic horizons thanks to a coupling of human tacit-explicit knowledge with machine learning power, the benefits of which are already tangible, such as important advances in protein structure prediction. Moreover, the driving force behind the protein processes of self-organization, adjustment, and fitness requires a space corresponding to gigabytes of life data in its order of magnitude. There are many tasks such as novel protein design, protein folding pathways, and synthetic metabolic routes, as well as protein-aggregation mechanisms, pathogenesis of protein misfolding and disease, and proteostasis networks that are currently unexplored or unrevealed. In this systematic review and biochemical meta-analysis, we aim to contribute to bridging the gap between what we call binomial artificial intelligence (AI) and protein science (PS), a growing research enterprise with exciting and promising biotechnological and biomedical applications. We undertake our task by exploring "the state of the art" in AI and machine learning (ML) applications to protein science in the scientific literature to address some critical research questions in this domain, including What kind of tasks are already explored by ML approaches to protein sciences? What are the most common ML algorithms and databases used? What is the situational diagnostic of the AI-PS inter-field? What do ML processing steps have in common? We also formulate novel questions such as Is it possible to discover what the rules of protein evolution are with the binomial AI-PS? How do protein folding pathways evolve? What are the rules that dictate the folds? What are the minimal nuclear protein structures? How do protein aggregates form and why do they exhibit different toxicities? What are the structural properties of amyloid proteins? How can we design an effective proteostasis network to deal with misfolded proteins? We are a cross-functional group of scientists from several academic disciplines, and we have conducted the systematic review using a variant of the PICO and PRISMA approaches. The search was carried out in four databases (PubMed, Bireme, OVID, and EBSCO Web of Science), resulting in 144 research articles. After three rounds of quality screening, 93 articles were finally selected for further analysis. A summary of our findings is as follows: regarding AI applications, there are mainly four types: 1) genomics, 2) protein structure and function, 3) protein design and evolution, and 4) drug design. In terms of the ML algorithms and databases used, supervised learning was the most common approach (85%). As for the databases used for the ML models, PDB and UniprotKB/Swissprot were the most common ones (21 and 8%, respectively). Moreover, we identified that approximately 63% of the articles organized their results into three steps, which we labeled pre-process, process, and post-process. A few studies combined data from several databases or created their own databases after the pre-process. Our main finding is that, as of today, there are no research road maps serving as guides to address gaps in our knowledge of the AI-PS binomial. All research efforts to collect, integrate multidimensional data features, and then analyze and validate them are, so far, uncoordinated and scattered throughout the scientific literature without a clear epistemic goal or connection between the studies. Therefore, our main contribution to the scientific literature is to offer a road map to help solve problems in drug design, protein structures, design, and function prediction while also presenting the "state of the art" on research in the AI-PS binomial until February 2021. Thus, we pave the way toward future advances in the synthetic redesign of novel proteins and protein networks and artificial metabolic pathways, learning lessons from nature for the welfare of humankind. Many of the novel proteins and metabolic pathways are currently non-existent in nature, nor are they used in the chemical industry or biomedical field.
Collapse
Affiliation(s)
- Jalil Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luis Ochoa-Toledo
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mario Javier Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Atocha Aliseda
- Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernando Pérez-Escamirosa
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Francine Ochoa-Fernández
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ricardo Zamora-Solís
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sebastián Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nicolás Kemper-Valverde
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
28
|
Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. ELECTRONICS 2022. [DOI: 10.3390/electronics11131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Designing computer-aided diagnosis (CAD) systems that can automatically detect ocular diseases (ODs) has become an active research field in the health domain. Although the human eye might have more than one OD simultaneously, most existing systems are designed to detect specific eye diseases. Therefore, it is crucial to develop new CAD systems that can detect multiple ODs simultaneously. This paper presents a novel multi-label convolutional neural network (ML-CNN) system based on ML classification (MLC) to diagnose various ODs from color fundus images. The proposed ML-CNN-based system consists of three main phases: the preprocessing phase, which includes normalization and augmentation using several transformation processes, the modeling phase, and the prediction phase. The proposed ML-CNN consists of three convolution (CONV) layers and one max pooling (MP) layer. Then, two CONV layers are performed, followed by one MP and dropout (DO). After that, one flatten layer is performed, followed by one fully connected (FC) layer. We added another DO once again, and finally, one FC layer with 45 nodes is performed. The system outputs the probabilities of all 45 diseases in each image. We validated the model by using cross-validation (CV) and measured the performance by five different metrics: accuracy (ACC), recall, precision, Dice similarity coefficient (DSC), and area under the curve (AUC). The results are 94.3%, 80%, 91.5%, 99%, and 96.7%, respectively. The comparisons with the existing built-in models, such as MobileNetV2, DenseNet201, SeResNext50, InceptionV3, and InceptionresNetv2, demonstrate the superiority of the proposed ML-CNN model.
Collapse
|
29
|
Odrzywolek K, Karwowska Z, Majta J, Byrski A, Milanowska-Zabel K, Kosciolek T. Deep embeddings to comprehend and visualize microbiome protein space. Sci Rep 2022; 12:10332. [PMID: 35725732 PMCID: PMC9209496 DOI: 10.1038/s41598-022-14055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the function of microbial proteins is essential to reveal the clinical potential of the microbiome. The application of high-throughput sequencing technologies allows for fast and increasingly cheaper acquisition of data from microbial communities. However, many of the inferred protein sequences are novel and not catalogued, hence the possibility of predicting their function through conventional homology-based approaches is limited, which indicates the need for further research on alignment-free methods. Here, we leverage a deep-learning-based representation of proteins to assess its utility in alignment-free analysis of microbial proteins. We trained a language model on the Unified Human Gastrointestinal Protein catalogue and validated the resulting protein representation on the bacterial part of the SwissProt database. Finally, we present a use case on proteins involved in SCFA metabolism. Results indicate that the deep learning model manages to accurately represent features related to protein structure and function, allowing for alignment-free protein analyses. Technologies that contextualize metagenomic data are a promising direction to deeply understand the microbiome.
Collapse
Affiliation(s)
- Krzysztof Odrzywolek
- Ardigen, Podole 76, 30-394, Krakow, Poland
- Institute of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Zuzanna Karwowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Jan Majta
- Ardigen, Podole 76, 30-394, Krakow, Poland
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Aleksander Byrski
- Institute of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | | | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland.
| |
Collapse
|
30
|
Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jiebin Fang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
31
|
Long short term memory based functional characterization model for unknown protein sequences using ensemble of shallow and deep features. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Ma KK, Greis M, Lu J, Nolden AA, McClements DJ, Kinchla AJ. Functional Performance of Plant Proteins. Foods 2022; 11:594. [PMID: 35206070 PMCID: PMC8871229 DOI: 10.3390/foods11040594] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Increasingly, consumers are moving towards a more plant-based diet. However, some consumers are avoiding common plant proteins such as soy and gluten due to their potential allergenicity. Therefore, alternative protein sources are being explored as functional ingredients in foods, including pea, chickpea, and other legume proteins. The factors affecting the functional performance of plant proteins are outlined, including cultivars, genotypes, extraction and drying methods, protein level, and preparation methods (commercial versus laboratory). Current methods to characterize protein functionality are highlighted, including water and oil holding capacity, protein solubility, emulsifying, foaming, and gelling properties. We propose a series of analytical tests to better predict plant protein performance in foods. Representative applications are discussed to demonstrate how the functional attributes of plant proteins affect the physicochemical properties of plant-based foods. Increasing the protein content of plant protein ingredients enhances their water and oil holding capacity and foaming stability. Industrially produced plant proteins often have lower solubility and worse functionality than laboratory-produced ones due to protein denaturation and aggregation during commercial isolation processes. To better predict the functional performance of plant proteins, it would be useful to use computer modeling approaches, such as quantitative structural activity relationships (QSAR).
Collapse
Affiliation(s)
- Kai Kai Ma
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
| | - Maija Greis
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
| | - Alissa A. Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
| | - Amanda J. Kinchla
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (K.K.M.); (M.G.); (J.L.); (A.A.N.); (D.J.M.)
| |
Collapse
|
33
|
Zhou X, Song H, Li J. Residue-Frustration-Based Prediction of Protein-Protein Interactions Using Machine Learning. J Phys Chem B 2022; 126:1719-1727. [PMID: 35170967 DOI: 10.1021/acs.jpcb.1c10525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of protein-protein interactions (PPIs) is important in understanding the function of proteins. However, it is still a challenge to investigate the transient protein-protein interaction by experiments. Hence, the computational prediction for protein-protein interactions draws growing attention. Statistics-based features have been widely used in the studies of protein structure prediction and protein folding. Due to the scarcity of experimental data of PPI, it is difficult to construct a conventional statistical feature for PPI prediction, and the application of statistics-based features is very limited in this field. In this paper, we explored the application of frustration, a statistical potential, in PPI prediction. By comparing the energetic contribution of the extra stabilization energy from a given residue pair in the native protein with the statistics of the energies, we obtained the residue pair's frustration index. By calculating the number of residue pairs with a high frustration index, the highly frustrated density, a residue-frustration-based feature, was then obtained to describe the tendency of residues to be involved in PPI. Highly frustrated density, as well as structure-based features, were then used to describe protein residues and combined with the long short-term memory (LSTM) neural network to predict PPI residue pairs. Our model correctly predicted 75% dimers when only the top 2‰ residue pairs were selected in each dimer. Our model, which considers the statistics-based features, is significantly different from the models based on the chemical features of residues. We found that frustration can effectively describe the tendency of residue to be involved in PPI. Frustration-based features can replace chemical features to combine with machine learning and realize the better performance of PPI prediction. It reveals the great potential of statistical potential such as frustration in PPI prediction.
Collapse
Affiliation(s)
- Xiaozhou Zhou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haoyu Song
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
34
|
A deep learning model to detect novel pore-forming proteins. Sci Rep 2022; 12:2013. [PMID: 35132124 PMCID: PMC8821639 DOI: 10.1038/s41598-022-05970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Many pore-forming proteins originating from pathogenic bacteria are toxic against agricultural pests. They are the key ingredients in several pesticidal products for agricultural use, including transgenic crops. There is an urgent need to identify novel pore-forming proteins to combat development of resistance in pests to existing products, and to develop products that are effective against a broader range of pests. Existing computational methodologies to search for these proteins rely on sequence homology-based approaches. These approaches are based on similarities between protein sequences, and thus are limited in their usefulness for discovering novel proteins. In this paper, we outline a novel deep learning model trained on pore-forming proteins from the public domain. We compare different ways of encoding protein information during training, and contrast it with traditional approaches. We show that our model is capable of identifying known pore formers with no sequence similarity to the proteins used to train the model, and therefore holds promise for identifying novel pore formers.
Collapse
|
35
|
Xu W, Zhao Z, Zhang H, Hu M, Yang N, Wang H, Wang C, Jiao J, Gu L. Deep neural learning based protein function prediction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2471-2488. [PMID: 35240793 DOI: 10.3934/mbe.2022114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is vital for the annotation of uncharacterized proteins by protein function prediction. At present, Deep Neural Network based protein function prediction is mainly carried out for dataset of small scale proteins or Gene Ontology, and usually explore the relationships between single protein feature and function tags. The practical methods for large-scale multi-features protein prediction still need to be studied in depth. This paper proposes a DNN based protein function prediction approach IGP-DNN. This method uses Grasshopper Optimization Algorithm (GOA) and Intuitionistic Fuzzy c-Means clustering (IFCM) based protein function modules extracting algorithm to extract the features of protein modules, utilizing Kernel Principal Component Analysis (KPCA) method to reduce the dimensionality of the protein attribute information, and integrating module features and attribute features. Inputting integrated data into DNN through multiple hidden layers to classify proteins and predict protein functions. In the experiments, the F-measure value of IGP-DNN on the DIP dataset reaches 0.4436, which shows better performance.
Collapse
Affiliation(s)
- Wenjun Xu
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zihao Zhao
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Hongwei Zhang
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Minglei Hu
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ning Yang
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Chao Wang
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Jun Jiao
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Lichuan Gu
- School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Electronic Commerce, Ministry of Agriculture, Hefei 230036, China
- Institute of Intelligent Agriculture, Anhui Agricultural University, Hefei 230036, China
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
36
|
Saxena R, Bishnoi R, Singla D. Gene Ontology: application and importance in functional annotation of the genomic data. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Caudai C, Galizia A, Geraci F, Le Pera L, Morea V, Salerno E, Via A, Colombo T. AI applications in functional genomics. Comput Struct Biotechnol J 2021; 19:5762-5790. [PMID: 34765093 PMCID: PMC8566780 DOI: 10.1016/j.csbj.2021.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by "deep learning", along with a burst of "big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.
Collapse
Affiliation(s)
- Claudia Caudai
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Antonella Galizia
- CNR, Institute of Applied Mathematics and Information Technologies (IMATI), Genoa, Italy
| | - Filippo Geraci
- CNR, Institute for Informatics and Telematics (IIT), Pisa, Italy
| | - Loredana Le Pera
- CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Veronica Morea
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Emanuele Salerno
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Allegra Via
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Teresa Colombo
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| |
Collapse
|
38
|
Vu TTD, Jung J. Protein function prediction with gene ontology: from traditional to deep learning models. PeerJ 2021; 9:e12019. [PMID: 34513334 PMCID: PMC8395570 DOI: 10.7717/peerj.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Protein function prediction is a crucial part of genome annotation. Prediction methods have recently witnessed rapid development, owing to the emergence of high-throughput sequencing technologies. Among the available databases for identifying protein function terms, Gene Ontology (GO) is an important resource that describes the functional properties of proteins. Researchers are employing various approaches to efficiently predict the GO terms. Meanwhile, deep learning, a fast-evolving discipline in data-driven approach, exhibits impressive potential with respect to assigning GO terms to amino acid sequences. Herein, we reviewed the currently available computational GO annotation methods for proteins, ranging from conventional to deep learning approach. Further, we selected some suitable predictors from among the reviewed tools and conducted a mini comparison of their performance using a worldwide challenge dataset. Finally, we discussed the remaining major challenges in the field, and emphasized the future directions for protein function prediction with GO.
Collapse
Affiliation(s)
- Thi Thuy Duong Vu
- Department of Information and Communication Engineering, Myongji University, Yongin-si, Gyeonggi-do, South Korea
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin-si, Gyeonggi-do, South Korea
| |
Collapse
|
39
|
Rifaioglu AS, Cetin Atalay R, Cansen Kahraman D, Doğan T, Martin M, Atalay V. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery. Bioinformatics 2021; 37:693-704. [PMID: 33067636 DOI: 10.1093/bioinformatics/btaa858] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Identification of interactions between bioactive small molecules and target proteins is crucial for novel drug discovery, drug repurposing and uncovering off-target effects. Due to the tremendous size of the chemical space, experimental bioactivity screening efforts require the aid of computational approaches. Although deep learning models have been successful in predicting bioactive compounds, effective and comprehensive featurization of proteins, to be given as input to deep neural networks, remains a challenge. RESULTS Here, we present a novel protein featurization approach to be used in deep learning-based compound-target protein binding affinity prediction. In the proposed method, multiple types of protein features such as sequence, structural, evolutionary and physicochemical properties are incorporated within multiple 2D vectors, which is then fed to state-of-the-art pairwise input hybrid deep neural networks to predict the real-valued compound-target protein interactions. The method adopts the proteochemometric approach, where both the compound and target protein features are used at the input level to model their interaction. The whole system is called MDeePred and it is a new method to be used for the purposes of computational drug discovery and repositioning. We evaluated MDeePred on well-known benchmark datasets and compared its performance with the state-of-the-art methods. We also performed in vitro comparative analysis of MDeePred predictions with selected kinase inhibitors' action on cancer cells. MDeePred is a scalable method with sufficiently high predictive performance. The featurization approach proposed here can also be utilized for other protein-related predictive tasks. AVAILABILITY AND IMPLEMENTATION The source code, datasets, additional information and user instructions of MDeePred are available at https://github.com/cansyl/MDeePred. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A S Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey.,Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - R Cetin Atalay
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey.,Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - D Cansen Kahraman
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - T Doğan
- Department of Computer Engineering, Hacettepe University, Ankara, Turkey.,Institute of Informatics, Hacettepe University, Ankara, Turkey
| | - M Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Hinxton, UK
| | - V Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
40
|
Kulmanov M, Smaili FZ, Gao X, Hoehndorf R. Semantic similarity and machine learning with ontologies. Brief Bioinform 2021; 22:bbaa199. [PMID: 33049044 PMCID: PMC8293838 DOI: 10.1093/bib/bbaa199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Collapse
Affiliation(s)
| | | | - Xin Gao
- Computational Bioscience Research Center and lead of the Structural and Functional Bioinformatics Group at King Abdullah University of Science and Technology
| | | |
Collapse
|
41
|
In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering. Curr Opin Chem Biol 2021; 65:85-92. [PMID: 34280705 DOI: 10.1016/j.cbpa.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning. In the context of biosynthesis, supervised machine learning is being exploited to predict biological sequence activities, predict structures and engineer sequences, and optimize culture conditions. Active and reinforcement learning methods use training sets acquired through an iterative process generally involving experimental measurements. They are applied to design, engineer, and optimize metabolic pathways and bioprocesses. The nascent but promising developments with in vitro and in vivo learning comprise molecular circuits performing simple tasks such as pattern recognition and classification.
Collapse
|
42
|
King JE, Koes DR. SidechainNet: An all-atom protein structure dataset for machine learning. Proteins 2021; 89:1489-1496. [PMID: 34213059 DOI: 10.1002/prot.26169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 11/08/2022]
Abstract
Despite recent advancements in deep learning methods for protein structure prediction and representation, little focus has been directed at the simultaneous inclusion and prediction of protein backbone and sidechain structure information. We present SidechainNet, a new dataset that directly extends the ProteinNet dataset. SidechainNet includes angle and atomic coordinate information capable of describing all heavy atoms of each protein structure and can be extended by users to include new protein structures as they are released. In this article, we provide background information on the availability of protein structure data and the significance of ProteinNet. Thereafter, we argue for the potentially beneficial inclusion of sidechain information through SidechainNet, describe the process by which we organize SidechainNet, and provide a software package (https://github.com/jonathanking/sidechainnet) for data manipulation and training with machine learning models.
Collapse
Affiliation(s)
- Jonathan Edward King
- Carnegie Mellon University-University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Ryan Koes
- Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Young RB, Marcelino VR, Chonwerawong M, Gulliver EL, Forster SC. Key Technologies for Progressing Discovery of Microbiome-Based Medicines. Front Microbiol 2021; 12:685935. [PMID: 34239510 PMCID: PMC8258393 DOI: 10.3389/fmicb.2021.685935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
A growing number of experimental and computational approaches are illuminating the “microbial dark matter” and uncovering the integral role of commensal microbes in human health. Through this work, it is now clear that the human microbiome presents great potential as a therapeutic target for a plethora of diseases, including inflammatory bowel disease, diabetes and obesity. The development of more efficacious and targeted treatments relies on identification of causal links between the microbiome and disease; with future progress dependent on effective links between state-of-the-art sequencing approaches, computational analyses and experimental assays. We argue determining causation is essential, which can be attained by generating hypotheses using multi-omic functional analyses and validating these hypotheses in complex, biologically relevant experimental models. In this review we discuss existing analysis and validation methods, and propose best-practice approaches required to enable the next phase of microbiome research.
Collapse
Affiliation(s)
- Remy B Young
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emily L Gulliver
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
44
|
Queirós P, Delogu F, Hickl O, May P, Wilmes P. Mantis: flexible and consensus-driven genome annotation. Gigascience 2021; 10:giab042. [PMID: 34076241 PMCID: PMC8170692 DOI: 10.1093/gigascience/giab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The rapid development of the (meta-)omics fields has produced an unprecedented amount of high-resolution and high-fidelity data. Through the use of these datasets we can infer the role of previously functionally unannotated proteins from single organisms and consortia. In this context, protein function annotation can be described as the identification of regions of interest (i.e., domains) in protein sequences and the assignment of biological functions. Despite the existence of numerous tools, challenges remain in terms of speed, flexibility, and reproducibility. In the big data era, it is also increasingly important to cease limiting our findings to a single reference, coalescing knowledge from different data sources, and thus overcoming some limitations in overly relying on computationally generated data from single sources. RESULTS We implemented a protein annotation tool, Mantis, which uses database identifiers intersection and text mining to integrate knowledge from multiple reference data sources into a single consensus-driven output. Mantis is flexible, allowing for the customization of reference data and execution parameters, and is reproducible across different research goals and user environments. We implemented a depth-first search algorithm for domain-specific annotation, which significantly improved annotation performance compared to sequence-wide annotation. The parallelized implementation of Mantis results in short runtimes while also outputting high coverage and high-quality protein function annotations. CONCLUSIONS Mantis is a protein function annotation tool that produces high-quality consensus-driven protein annotations. It is easy to set up, customize, and use, scaling from single genomes to large metagenomes. Mantis is available under the MIT license at https://github.com/PedroMTQ/mantis.
Collapse
Affiliation(s)
- Pedro Queirós
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-sur-Alzette, Luxembourg
| | - Francesco Delogu
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-sur-Alzette, Luxembourg
| | - Oskar Hickl
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
45
|
Min S, Kim H, Lee B, Yoon S. Protein transfer learning improves identification of heat shock protein families. PLoS One 2021; 16:e0251865. [PMID: 34003870 PMCID: PMC8130922 DOI: 10.1371/journal.pone.0251865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) play a pivotal role as molecular chaperones against unfavorable conditions. Although HSPs are of great importance, their computational identification remains a significant challenge. Previous studies have two major limitations. First, they relied heavily on amino acid composition features, which inevitably limited their prediction performance. Second, their prediction performance was overestimated because of the independent two-stage evaluations and train-test data redundancy. To overcome these limitations, we introduce two novel deep learning algorithms: (1) time-efficient DeepHSP and (2) high-performance DeeperHSP. We propose a convolutional neural network (CNN)-based DeepHSP that classifies both non-HSPs and six HSP families simultaneously. It outperforms state-of-the-art algorithms, despite taking 14–15 times less time for both training and inference. We further improve the performance of DeepHSP by taking advantage of protein transfer learning. While DeepHSP is trained on raw protein sequences, DeeperHSP is trained on top of pre-trained protein representations. Therefore, DeeperHSP remarkably outperforms state-of-the-art algorithms increasing F1 scores in both cross-validation and independent test experiments by 20% and 10%, respectively. We envision that the proposed algorithms can provide a proteome-wide prediction of HSPs and help in various downstream analyses for pathology and clinical research.
Collapse
Affiliation(s)
- Seonwoo Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - HyunGi Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Byunghan Lee
- Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology, Seoul, South Korea
- * E-mail: (BL); (SY)
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Interdisciplinary Program in Bioinformatics, Interdisciplinary Program in Artificial Intelligence, ASRI, INMC, and Institute of Engineering Research, Seoul National University, Seoul, South Korea
- * E-mail: (BL); (SY)
| |
Collapse
|
46
|
Villegas-Morcillo A, Makrodimitris S, van Ham RCHJ, Gomez AM, Sanchez V, Reinders MJT. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics 2021; 37:162-170. [PMID: 32797179 PMCID: PMC8055213 DOI: 10.1093/bioinformatics/btaa701] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Protein function prediction is a difficult bioinformatics problem. Many recent methods use deep neural networks to learn complex sequence representations and predict function from these. Deep supervised models require a lot of labeled training data which are not available for this task. However, a very large amount of protein sequences without functional labels is available. RESULTS We applied an existing deep sequence model that had been pretrained in an unsupervised setting on the supervised task of protein molecular function prediction. We found that this complex feature representation is effective for this task, outperforming hand-crafted features such as one-hot encoding of amino acids, k-mer counts, secondary structure and backbone angles. Also, it partly negates the need for complex prediction models, as a two-layer perceptron was enough to achieve competitive performance in the third Critical Assessment of Functional Annotation benchmark. We also show that combining this sequence representation with protein 3D structure information does not lead to performance improvement, hinting that 3D structure is also potentially learned during the unsupervised pretraining. AVAILABILITY AND IMPLEMENTATION Implementations of all used models can be found at https://github.com/stamakro/GCN-for-Structure-and-Function. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Stavros Makrodimitris
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Keygene N.V., 6708PW Wageningen, The Netherlands
| | - Roeland C H J van Ham
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Keygene N.V., 6708PW Wageningen, The Netherlands
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| |
Collapse
|
47
|
Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A. Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. FRONTIERS IN BIOINFORMATICS 2021; 1:652286. [PMID: 36303732 PMCID: PMC9581015 DOI: 10.3389/fbinf.2021.652286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanting Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Aloysius Wong
| |
Collapse
|
48
|
Emami N, Ferdousi R. AptaNet as a deep learning approach for aptamer-protein interaction prediction. Sci Rep 2021; 11:6074. [PMID: 33727685 PMCID: PMC7971039 DOI: 10.1038/s41598-021-85629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet-a new deep neural network-to predict the aptamer-protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer-protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet .
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Abstract
RNA editing is an important posttranscriptional process that alters the genetic information of RNA encoded by genomic DNA. Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animal kingdom, catalyzed by adenosine deaminases acting on RNA (ADARs). Recently, genome-wide A-to-I RNA editing is discovered in fungi, involving adenosine deamination mechanisms distinct from animals. Aiming to draw more attention to RNA editing in fungi, here we discuss the considerations for deep sequencing data preparation and the available various methods for detecting RNA editing, with a special emphasis on their usability for fungal RNA editing detection. We describe computational protocols for the identification of candidate RNA editing sites in fungi by using two software packages REDItools and RES-Scanner with RNA sequencing (RNA-Seq) and genomic DNA sequencing (DNA-Seq) data.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
50
|
Urzúa-Traslaviña CG, Leeuwenburgh VC, Bhattacharya A, Loipfinger S, van Vugt MATM, de Vries EGE, Fehrmann RSN. Improving gene function predictions using independent transcriptional components. Nat Commun 2021; 12:1464. [PMID: 33674610 PMCID: PMC7935959 DOI: 10.1038/s41467-021-21671-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal.
Collapse
Affiliation(s)
- Carlos G Urzúa-Traslaviña
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent C Leeuwenburgh
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,The Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Loipfinger
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|