1
|
Rossetti GG, Dommann N, Karamichali A, Dionellis VS, Asensio Aldave A, Yarahmadov T, Rodriguez-Carballo E, Keogh A, Candinas D, Stroka D, Halazonetis TD. In vivo DNA replication dynamics unveil aging-dependent replication stress. Cell 2024; 187:6220-6234.e13. [PMID: 39293447 DOI: 10.1016/j.cell.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Noëlle Dommann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Ainhoa Asensio Aldave
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
2
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Zane F, Bouzid H, Sosa Marmol S, Brazane M, Besse S, Molina JL, Cansell C, Aprahamian F, Durand S, Ayache J, Antoniewski C, Todd N, Carré C, Rera M. Smurfness-based two-phase model of ageing helps deconvolve the ageing transcriptional signature. Aging Cell 2023; 22:e13946. [PMID: 37822253 PMCID: PMC10652310 DOI: 10.1111/acel.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ageing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age. We show that transcriptional heterogeneity increases with chronological age in non-Smurf individuals preceding the other five hallmarks of ageing that are specifically associated with the Smurf state. Using this approach, we also devise targeted pro-longevity genetic interventions delaying entry in the Smurf state. We anticipate that increased attention to the evolutionary conserved Smurf phenotype will bring about significant advances in our understanding of the mechanisms of ageing.
Collapse
Affiliation(s)
- Flaminia Zane
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Hayet Bouzid
- Université Paris Cité, INSERM UMR U1284ParisFrance
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | - Mira Brazane
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | | | | | - Céline Cansell
- Université Paris‐Saclay, AgroParisTech, INRAE, UMR PNCAPalaiseauFrance
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICaInstitut Gustave RoussyVillejuifFrance
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le CancerUniversité de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de FranceParisFrance
| | - Jessica Ayache
- Institut Jacques Monod, CNRS UMR 7592, Université Paris CitéParisFrance
| | | | - Nicolas Todd
- Eco‐Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRSUniversité de Paris, Musée de l'HommeParisFrance
| | - Clément Carré
- Institut de Biologie Paris Seine, Sorbonne UniversitéParisFrance
| | - Michael Rera
- Université Paris Cité, INSERM UMR U1284ParisFrance
| |
Collapse
|
4
|
Salvi PS, Shaughnessy MP, Sumigray KD, Cowles RA. Antibiotic-induced microbial depletion enhances murine small intestinal epithelial growth in a serotonin-dependent manner. Am J Physiol Gastrointest Liver Physiol 2023; 325:G80-G91. [PMID: 37158470 DOI: 10.1152/ajpgi.00113.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 05/10/2023]
Abstract
Regulation of small intestinal epithelial growth by endogenous and environmental factors is critical for intestinal homeostasis and recovery from insults. Depletion of the intestinal microbiome increases epithelial proliferation in small intestinal crypts, similar to the effects observed in animal models of serotonin potentiation. Based on prior evidence that the microbiome modulates serotonin activity, we hypothesized that microbial depletion-induced epithelial proliferation is dependent on host serotonin activity. A mouse model of antibiotic-induced microbial depletion (AIMD) was employed. Serotonin potentiation was achieved through either genetic knockout of the serotonin transporter (SERT) or pharmacological SERT inhibition, and inhibition of serotonin synthesis was achieved with para-chlorophenylalanine. AIMD and serotonin potentiation increased intestinal villus height and crypt proliferation in an additive manner, but the epithelial proliferation observed after AIMD was blocked in the absence of endogenous serotonin. Using Lgr5-EGFP-reporter mice, we evaluated intestinal stem cell (ISC) quantity and proliferation. AIMD increased the number of ISCs per crypt and ISC proliferation compared with controls, and changes in ISC number and proliferation were dependent on the presence of host serotonin. Furthermore, Western blotting demonstrated that AIMD reduced epithelial SERT protein expression compared with controls. In conclusion, host serotonin activity is necessary for microbial depletion-associated changes in villus height and ISC proliferation in crypts, and microbial depletion produces a functional serotonin-potentiated state through reduced SERT protein expression. These findings provide an understanding of how changes to the microbiome contribute to intestinal pathology and can be applied therapeutically.NEW & NOTEWORTHY Antibiotic-induced microbial depletion of the murine small intestine results in a state of potentiated serotonin activity through reduced epithelial expression of the serotonin transporter. Specifically, serotonin-dependent mechanisms lead to increased intestinal surface area and intestinal stem cell proliferation. Furthermore, the absence of endogenous serotonin leads to blunting of small intestinal villi, suggesting that serotonin signaling is required for epithelial homeostasis.
Collapse
Affiliation(s)
- Pooja S Salvi
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew P Shaughnessy
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kaelyn D Sumigray
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Robert A Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
5
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Voluntary Wheel Running in Old C57BL/6 Mice Reduces Age-Related Inflammation in the Colon but Not in the Brain. Cells 2022; 11:cells11030566. [PMID: 35159375 PMCID: PMC8834481 DOI: 10.3390/cells11030566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation is considered a possible cause of cognitive decline during aging. This study investigates the influence of physical activity and social isolation in old mice on their cognitive functions and inflammation. The Barnes maze task was performed to assess spatial learning and memory in 3, 9, 15, 24, and 28 months old male C57BL/6 mice as well as following voluntary wheel running (VWR) and social isolation (SI) in 20 months old mice. Inflammatory gene expression was analyzed in hippocampal and colonic samples by qPCR. Cognitive decline occurs in mice between 15 and 24 months of age. VWR improved cognitive functions while SI had negative effects. Expression of inflammatory markers changed during aging in the hippocampus (Il1a/Il6/S100b/Iba1/Adgre1/Cd68/Itgam) and colon (Tnf/Il6/Il1ra/P2rx7). VWR attenuates inflammaging specifically in the colon (Ifng/Il10/Ccl2/S100b/Iba1), while SI regulates intestinal Il1b and Gfap. Inflammatory markers in the hippocampus were not altered following VWR and SI. The main finding of our study is that both the hippocampus and colon exhibit an increase in inflammatory markers during aging, and that voluntary wheel running in old age exclusively attenuates intestinal inflammation. Based on the existence of the gut-brain axis, our results extend therapeutic approaches preserving cognitive functions in the elderly to the colon.
Collapse
|
7
|
Donaldson DS, Shih BB, Mabbott NA. Aging-Related Impairments to M Cells in Peyer's Patches Coincide With Disturbances to Paneth Cells. Front Immunol 2021; 12:761949. [PMID: 34938288 PMCID: PMC8687451 DOI: 10.3389/fimmu.2021.761949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer’s patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer’s patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer’s patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.
Collapse
Affiliation(s)
- David S Donaldson
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Barbara B Shih
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
8
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, Stellato C, Fraser C, Corrêa RO, Célestine M, Mattiuz R, Okkenhaug H, Miller JR, Vinolo MAR, Veldhoen M, Varga-Weisz P. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol 2020; 21:64. [PMID: 32160911 PMCID: PMC7065452 DOI: 10.1186/s13059-020-01976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND How intestinal epithelial cells interact with the microbiota and how this is regulated at the gene expression level are critical questions. Smarcad1 is a conserved chromatin remodeling factor with a poorly understood tissue function. As this factor is highly expressed in the stem and proliferative zones of the intestinal epithelium, we explore its role in this tissue. RESULTS Specific deletion of Smarcad1 in the mouse intestinal epithelium leads to colitis resistance and substantial changes in gene expression, including a striking increase of expression of several genes linked to innate immunity. Absence of Smarcad1 leads to changes in chromatin accessibility and significant changes in histone H3K9me3 over many sites, including genes that are differentially regulated upon Smarcad1 deletion. We identify candidate members of the gut microbiome that elicit a Smarcad1-dependent colitis response, including members of the poorly understood TM7 phylum. CONCLUSIONS Our study sheds light onto the role of the chromatin remodeling machinery in intestinal epithelial cells in the colitis response and shows how a highly conserved chromatin remodeling factor has a distinct role in anti-microbial defense. This work highlights the importance of the intestinal epithelium in the colitis response and the potential of microbial species as pharmacological and probiotic targets in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Juri Kazakevych
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jérémy Denizot
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Université Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, F-63000, Clermont-Ferrand, France
| | - Anke Liebert
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | - Mia Mosavie
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Payal Jain
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Claire Fraser
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | | | - Raphaël Mattiuz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - J Ross Miller
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Marc Veldhoen
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Instituto de Medicina Molecular
- Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Patrick Varga-Weisz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK. .,School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|