1
|
Kasprzak D, Gaweł-Bęben K, Kukula-Koch W, Strzępek-Gomółka M, Wawruszak A, Woźniak S, Chrzanowska M, Czech K, Borzyszkowska-Bukowska J, Głowniak K, Matosiuk D, Orihuela-Campos RC, Jodłowska-Jędrych B, Laskowski T, Meissner HO. Lepidium peruvianum as a Source of Compounds with Anticancer and Cosmetic Applications. Int J Mol Sci 2024; 25:10816. [PMID: 39409148 PMCID: PMC11476809 DOI: 10.3390/ijms251910816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Lepidium peruvianum-an edible herbaceous biennial plant distributed in the Andes-has been used for centuries as food and as a natural medicine in treating hormonal disorders, as an antidepressant, and as an anti-osteoporotic agent. The presented study aims to prove its beneficial cosmetic and chemopreventive properties by testing the antiradical, whitening, cytotoxic, and anticancer properties of differently colored phenotypes that were extracted using three solvents: methanol, water, and chloroform, with the help of the chemometric approach to provide evidence on the impact of single glucosinolanes (seven identified compounds in the HPLC-ESI-QTOF-MS/MS analysis) on the biological activity of the total extracts. The tested extracts exhibited moderate antiradical activity, with the methanolic extract from yellow and grey maca phenotypes scavenging 49.9 ± 8.96% and 48.8% ± 0.44% of DPPH radical solution at a concentration of 1 mg/mL, respectively. Grey maca was the most active tyrosinase inhibitor, with 72.86 ± 3.42% of the enzyme activity calculated for the water extract and 75.66 ± 6.21% for the chloroform extract. The studies in cells showed no cytotoxicity towards the human keratinocyte line HaCaT in all studied extracts and a marked inhibition of cell viability towards the G361 melanoma cell line, which the presence of pent-4-enylglucosinolate, glucotropaeolin, and glucoalyssin in the samples could have caused. Given all biological activity tests combined, the three mentioned compounds were shown to be the most significant positive contributors to the results obtained, and the grey maca water extract was found to be the best source of the former compound among the tested samples.
Collapse
Affiliation(s)
- Dorota Kasprzak
- Department of Cosmetology, Faculty of Health Sciences, Wincenty Pol Academy of Applied Sciences in Lublin, Choiny 2 Street, 20-816 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Sylwia Woźniak
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Marcelina Chrzanowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Karolina Czech
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Kazimierz Głowniak
- Department of Cosmetology, The University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (K.G.-B.); (M.S.-G.); (K.C.); (K.G.)
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 4a Chodzki Str., 20-93 Lublin, Poland; (S.W.); (D.M.)
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru;
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland;
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (M.C.); (J.B.-B.); (T.L.)
| | - Henry O. Meissner
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora, Gold Coast, QLD 4221, Australia;
| |
Collapse
|
2
|
Minich DM, Ross K, Frame J, Fahoum M, Warner W, Meissner HO. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024; 16:530. [PMID: 38398854 PMCID: PMC10892513 DOI: 10.3390/nu16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.
Collapse
Affiliation(s)
- Deanna M. Minich
- Human Nutrition and Functional Medicine, Adjunct Faculty, University of Western States, Portland, OR 97213, USA
- Food & Spirit, LLC, Port Orchard, WA 98366, USA
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
| | - Kim Ross
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
- Kim Ross Consulting, LLC, Lakewood Ranch, FL 34211, USA
- College of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
| | - James Frame
- Symphony Natural Health Holdings Inc., Craigmuir Chambers, Road Town, Tortola VG1110, (BVI), UK;
- Natural Health International Pty Ltd., Sydney, NSW 2000, Australia
| | - Mona Fahoum
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Meridian Medicine, Seattle, WA 98133, USA
- Bastyr Center for Natural Health, Bastyr University, Kenmore, WA 98028, USA
| | - Wendy Warner
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Wendy Warner, MD, PC, Yardley, PA 19067, USA
| | - Henry O. Meissner
- National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Building J, 158-160 Hawkesbury Road, Westmead, NSW 2145, Australia;
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora-Gold Coast, QLD 4221, Australia
| |
Collapse
|
3
|
Rapid and Nondestructive Identification of Origin and Index Component Contents of Tiegun Yam Based on Hyperspectral Imaging and Chemometric Method. J FOOD QUALITY 2023. [DOI: 10.1155/2023/6104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Tiegun yam is a typical food and medicine agricultural product, which has the effects of nourishing the kidney and benefitting the lungs. The quality and price of Tiegun yam are affected by its origin, and counterfeiting and adulteration are common. Therefore, it is necessary to establish a method to identify the origin and index component contents of Tiegun yam. Hyperspectral imaging combined with chemometrics was used, for the first time, to explore and implement the identification of origin and index component contents of Tiegun yam. The origin identification models were established by partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF) using full wavelength and feature wavelength. Compared with other models, MSC-PLS-DA is the best model, and the accuracy of the training set and prediction set is 100% and 98.40%. Partial least squares regression (PLSR), random forest (RF), and support vector regression (SVR) models were used to predict the contents of starch, polysaccharide, and protein in Tiegun yam powder. The optimal residual predictive deviation (RPD) values of starch, polysaccharide, and protein prediction models selected in this study were 5.21, 3.21, and 2.94, respectively. The characteristic wavelength extracted by the successive projections algorithm (SPA) method can achieve similar results as the full-wavelength model. These results confirmed the application of hyperspectral imaging (HSI) in the identification of the origin and the rapid nondestructive prediction of starch, polysaccharide, and protein contents of Tiegun yam powder. Therefore, the HSI combined with the chemometric method was available for conveniently and accurately determining the origin and index component contents of Tiegun yam, which can expect to be an attractive alternative method for identifying the origin of other food.
Collapse
|
4
|
Comparison of Volatile Compositions among Four Related Ligusticum chuanxiong Herbs by HS-SPME-GC-MS. Processes (Basel) 2023. [DOI: 10.3390/pr11010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chuanxiong (CX, Ligusticum chuanxiong), Japanese Chuanxiong (JCX, Cnidium officinale), Fuxiong (FX, Ligusticum sinense ‘Fuxiong’), and Jinxiong (JX, Ligusticum sinense ‘Jinxiong’) are aromatic herbs used in China, Japan, and other regions. Their morphology and aromatic odor are similar, resulting in confused and mixed uses. This study compares the volatile compositions of these herbs for defining their medical uses. Headspace solid-phase microextraction–gas chromatography–triple quadrupole–mass spectrometry was employed to separate, identify, and quantify the compounds in the volatile gas of the four herbs. A total of 128 volatile compounds were identified and quantified in 23 these herbal samples. The sums of 106, 115, 116, and 120 compounds were detected in the volatile gas of CX, JCX, FX, and JX, with the mean contents of 4.80, 7.12, 7.67, and 12.0 μg/g, respectively. Types and contents of the main compounds were found to be different in the volatile gas of these herbs. The orthogonal partial least squares discriminant analysis and hierarchical clustering analysis showed the four herbs located in different confined areas or clusters. It is concluded that the volatile compositions in the four herbs are generally similar, but the contents of main volatile compounds are different. These herbs should be clearly differentiated in medical use.
Collapse
|
5
|
Palumbo M, Attolico G, Capozzi V, Cozzolino R, Corvino A, de Chiara MLV, Pace B, Pelosi S, Ricci I, Romaniello R, Cefola M. Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview. Foods 2022; 11:3925. [PMID: 36496732 PMCID: PMC9737221 DOI: 10.3390/foods11233925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Quality losses in fresh produce throughout the postharvest phase are often due to the inappropriate use of preservation technologies. In the last few decades, besides the traditional approaches, advanced postharvest physical and chemical treatments (active packaging, dipping, vacuum impregnation, conventional heating, pulsed electric field, high hydrostatic pressure, and cold plasma) and biocontrol techniques have been implemented to preserve the nutritional value and safety of fresh produce. The application of these methodologies after harvesting is useful when addressing quality loss due to the long duration when transporting products to distant markets. Among the emerging technologies and contactless and non-destructive techniques for quality monitoring (image analysis, electronic noses, and near-infrared spectroscopy) present numerous advantages over the traditional, destructive methods. The present review paper has grouped original studies within the topic of advanced postharvest technologies, to preserve quality and reduce losses and waste in fresh produce. Moreover, the effectiveness and advantages of some contactless and non-destructive methodologies for monitoring the quality of fruit and vegetables will also be discussed and compared to the traditional methods.
Collapse
Affiliation(s)
- Michela Palumbo
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Giovanni Attolico
- Institute on Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council of Italy (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, Italy
| | - Antonia Corvino
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Maria Lucia Valeria de Chiara
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Sergio Pelosi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Ilde Ricci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Roberto Romaniello
- Department of Science of Agriculture, Food and Environment, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Maria Cefola
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| |
Collapse
|
6
|
Galvan D, Aquino A, Effting L, Mantovani ACG, Bona E, Conte-Junior CA. E-sensing and nanoscale-sensing devices associated with data processing algorithms applied to food quality control: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6605-6645. [PMID: 33779434 DOI: 10.1080/10408398.2021.1903384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Devices of human-based senses such as e-noses, e-tongues and e-eyes can be used to analyze different compounds in several food matrices. These sensors allow the detection of one or more compounds present in complex food samples, and the responses obtained can be used for several goals when different chemometric tools are applied. In this systematic review, we used Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, to address issues such as e-sensing with chemometric methods for food quality control (FQC). A total of 109 eligible articles were selected from PubMed, Scopus and Web of Science. Thus, we predicted that the association between e-sensing and chemometric tools is essential for FQC. Most studies have applied preliminary approaches like exploratory analysis, while the classification/regression methods have been less investigated. It is worth mentioning that non-linear methods based on artificial intelligence/machine learning, in most cases, had classification/regression performances superior to non-liner, although their applications were seen less often. Another approach that has generated promising results is the data fusion between e-sensing devices or in conjunction with other analytical techniques. Furthermore, some future trends in the application of miniaturized devices and nanoscale sensors are also discussed.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology Paraná (UTFPR), Campo Mourão, PR, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Rusinek R, Kmiecik D, Gawrysiak-Witulska M, Malaga-Toboła U, Tabor S, Findura P, Siger A, Gancarz M. Identification of the Olfactory Profile of Rapeseed Oil as a Function of Heating Time and Ratio of Volume and Surface Area of Contact with Oxygen Using an Electronic Nose. SENSORS 2021; 21:s21010303. [PMID: 33466306 PMCID: PMC7794714 DOI: 10.3390/s21010303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/01/2023]
Abstract
The process of deep fat frying is the most common technological procedure applied to rapeseed oil. During heat treatment, oil loses its nutritional properties and its original consumer quality is lowered, which is often impossible to determine by organoleptic assessment. Therefore, the aim of the study was to correlate markers of the loss of the nutritional properties by rapeseed oil related to the frying time and the surface area of contact with oxygen with changes in the profile of volatile compounds. The investigations involved the process of 6-, 12-, and 18-h heating of oil with a surface-to-volume ratio (s/v ratio) of 0.378 cm−1, 0.189 cm−1, and 0.126 cm−1. Samples were analysed to determine changes in the content of polar compounds, colour, fatty acid composition, iodine value, and total chromanol content. The results were correlated with the emission of volatile compounds determined using gas chromatography and an electronic nose. The results clearly show a positive correlation between the qualitative degradation of the oil induced by prolonged heating and the response of the electronic nose to these changes. The three volumes, the maximum reaction of the metal oxide semiconductor chemoresistors, and the content of polar compounds increased along the extended frying time.
Collapse
Affiliation(s)
- Robert Rusinek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Correspondence: ; Tel.: +48-81-744-50-61
| | - Dominik Kmiecik
- Department of Gastronomy Science and Functional Food, Faculty of Food Science and Nutrition, Poznan, University of Life Sciences, Wojska Polskiego 31, 60-634 Poznan, Poland;
| | - Marzena Gawrysiak-Witulska
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Science, Wojska Polskiego 28, 60-637 Poznan, Poland;
| | - Urszula Malaga-Toboła
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.); (M.G.)
| | - Sylwester Tabor
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.); (M.G.)
| | - Pavol Findura
- Department of Machines and Production Biosystems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Hlinku 2, 949 76 Nitra, Slovakia;
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznan, Poland;
| | - Marek Gancarz
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.); (M.G.)
| |
Collapse
|
8
|
Analysis of Volatile Components of Auricularia auricula from Different Origins by GC-MS Combined with Electronic Nose. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8858093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Auricularia auricula is a kind of nutrient-rich edible fungus, which has the reputation of “king of vegetarians.” In this paper, the electronic nose combined with GC-MS technology was used to analyze the volatile components of A. auricula in Heilongjiang, Jilin, Shanghai, and Sichuan provinces to investigate the differences and characteristics of A. auricula in different origins. The results showed that the electronic nose could obviously distinguish the samples from Jilin and Shanghai with a high degree of discrimination, while it was inappropriate to distinguish the samples from Heilongjiang and Sichuan Province. GC-MS was used to further analyze the volatile compounds in A. auricula qualitatively and quantitatively. The results showed that 98 volatile components were detected and 23 of them were common components, including alcohols, aldehydes, acids, esters, hydrocarbons, and other volatile components. The relative content of acetic acid and diethyl azodicarboxylate in A. auricula from the four origins was relatively high. According to the relative odor activity value (ROAV), it was found that the key compounds that caused the aroma difference between different origins were 1-octene-3-ol, cis-3-nonene-1-ol, (E)-2-octenal, (E)-2-nonenal, (E,E)-2,4-nonadienal, and 3-methyl butanal.
Collapse
|