1
|
Rosani U, Bortoletto E, Zhang X, Huang BW, Xin LS, Krupovic M, Bai CM. Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence. Virus Evol 2024; 10:veae088. [PMID: 39555210 PMCID: PMC11565193 DOI: 10.1093/ve/veae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ostreid herpesvirus 1 (OsHV-1), a member of the family Malacoherpesviridae (order Herpesvirales), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family Orthoherpesviridae) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, Anadara broughtonii, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across Herpesvirales likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-Herpesvirales transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Enrico Bortoletto
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr. Roux, Paris 75015, France
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Rd, Qingdao 266237, China
| |
Collapse
|
2
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
3
|
Andrade-Martínez JS, Camelo Valera LC, Chica Cárdenas LA, Forero-Junco L, López-Leal G, Moreno-Gallego JL, Rangel-Pineros G, Reyes A. Computational Tools for the Analysis of Uncultivated Phage Genomes. Microbiol Mol Biol Rev 2022; 86:e0000421. [PMID: 35311574 PMCID: PMC9199400 DOI: 10.1128/mmbr.00004-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.
Collapse
Affiliation(s)
- Juan Sebastián Andrade-Martínez
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Carolina Camelo Valera
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica Cárdenas
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Forero-Junco
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Gamaliel López-Leal
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - J. Leonardo Moreno-Gallego
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Guillermo Rangel-Pineros
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
López-Catalina A, Atxaerandio R, García-Rodríguez A, Goiri I, Gutierrez-Rivas M, Jiménez-Montero JA, González-Recio O. Characterisation of the rumen resistome in Spanish dairy cattle. Anim Microbiome 2021; 3:63. [PMID: 34551823 PMCID: PMC8456196 DOI: 10.1186/s42523-021-00125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rumen microorganisms carry antimicrobial resistance genes which pose a threaten to animals and humans in a One Health context. In order to tackle the emergence of antimicrobial resistance it is vital to understand how they appear, their relationship with the host, how they behave as a whole in the ruminal ecosystem or how they spread to the environment or humans. We sequenced ruminal samples from 416 Holstein dairy cows in 14 Spanish farms using nanopore technology, to uncover the presence of resistance genes and their potential effect on human, animal and environmental health. RESULTS We found 998 antimicrobial resistance genes (ARGs) in the cow rumen and studied the 25 most prevalent genes in the 14 dairy cattle farms. The most abundant ARGs were related to the use of antibiotics to treat mastitis, metritis and lameness, the most common diseases in dairy cattle. The relative abundance (RA) of bacteriophages was positively correlated to the ARGs RA. The heritability of the RA of the more abundant ARGs ranged between 0.10 (mupA) and 0.49 (tetW), similar to the heritability of the RA of microbes that carried those ARGs. Even though these genes are carried by the microorganisms, the host is partially controlling their RA by having a more suitable rumen pH, folds, or other physiological traits that promote the growth of those microorganisms. CONCLUSIONS We were able to determine the most prevalent ARGs (macB, msbA, parY, rpoB2, tetQ and TaeA) in the ruminal bacteria ecosystem. The rumen is a reservoir of ARGs, and strategies to reduce the ARG load from livestock must be pursued.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Raquel Atxaerandio
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Aser García-Rodríguez
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Idoia Goiri
- Department of Animal Production, Neiker-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute, 01192, Arkaute, Spain
| | - Mónica Gutierrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Crta. de la Coruña km 7.5, 28040, Madrid, Spain.
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Moreno-Gallego JL, Reyes A. Informative Regions In Viral Genomes. Viruses 2021; 13:v13061164. [PMID: 34207030 PMCID: PMC8234400 DOI: 10.3390/v13061164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses, far from being just parasites affecting hosts' fitness, are major players in any microbial ecosystem. In spite of their broad abundance, viruses, in particular bacteriophages, remain largely unknown since only about 20% of sequences obtained from viral community DNA surveys could be annotated by comparison with public databases. In order to shed some light into this genetic dark matter we expanded the search of orthologous groups as potential markers to viral taxonomy from bacteriophages and included eukaryotic viruses, establishing a set of 31,150 ViPhOGs (Eukaryotic Viruses and Phages Orthologous Groups). To do this, we examine the non-redundant viral diversity stored in public databases, predict proteins in genomes lacking such information, and used all annotated and predicted proteins to identify potential protein domains. The clustering of domains and unannotated regions into orthologous groups was done using cogSoft. Finally, we employed a random forest implementation to classify genomes into their taxonomy and found that the presence or absence of ViPhOGs is significantly associated with their taxonomy. Furthermore, we established a set of 1457 ViPhOGs that given their importance for the classification could be considered as markers or signatures for the different taxonomic groups defined by the ICTV at the order, family, and genus levels.
Collapse
Affiliation(s)
- Jaime Leonardo Moreno-Gallego
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA
- Correspondence:
| |
Collapse
|
6
|
Garmaeva S, Gulyaeva A, Sinha T, Shkoporov AN, Clooney AG, Stockdale SR, Spreckels JE, Sutton TDS, Draper LA, Dutilh BE, Wijmenga C, Kurilshikov A, Fu J, Hill C, Zhernakova A. Stability of the human gut virome and effect of gluten-free diet. Cell Rep 2021; 35:109132. [PMID: 34010651 DOI: 10.1016/j.celrep.2021.109132] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.
Collapse
Affiliation(s)
- Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Andrey N Shkoporov
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Johanne E Spreckels
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Thomas D S Sutton
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands.
| |
Collapse
|
7
|
Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021; 13:v13030506. [PMID: 33803862 PMCID: PMC8003253 DOI: 10.3390/v13030506] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophage (phage) taxonomy has been in flux since its inception over four decades ago. Genome sequencing has put pressure on the classification system and recent years have seen significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, genus, subfamily and family-level ranks of tailed phage taxonomy.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|