1
|
Xia X, Cai X, Chen J, Jiang S, Zhang J. Construction of warfarin population pharmacokinetics and pharmacodynamics model in Han population based on Bayesian method. Sci Rep 2024; 14:14846. [PMID: 38937509 PMCID: PMC11211351 DOI: 10.1038/s41598-024-65048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
The purpose of this paper is to study the genetic polymorphisms of related gene loci (CYP2C9*3, VKORC1-1639G > A) based on demographic and clinical factors, and use the maximum a posterior Bayesian method to construct a warfarin individualized dose prediction model in line with the Chinese Han population. Finally, the built model is compared and analyzed with the widely used models at home and abroad. In this study, a total of 5467 INR measurements are collected from 646 eligible subjects in our hospital, and the maximum a posterior Bayesian method is used to construct a warfarin dose prediction that conforms to the Chinese Han population on the basis of the Hamberg model. The model is verified and compared with foreign models. This study finds that body weight and concomitant use of amiodarone have a significant effect on the anticoagulant effect of warfarin. The model can provide an effective basis for individualized and rational dosing of warfarin in Han population more accurately. In the performance of comparison with different warfarin dose prediction models, the new model has the highest prediction accuracy, and the prediction percentage is as high as 72.56%. The dose predicted by the Huang model is the closest to the actual dose of warfarin. The population pharmacokinetics and pharmacodynamics model established in this study can better reflect the distribution characteristics of INR values after warfarin administration in the Han population, and performs better than the models reported in the literature.
Collapse
Affiliation(s)
- Xiaotong Xia
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China
| | - Xiaofang Cai
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China
| | - Jiana Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China
| | - Shaojun Jiang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, #18 Daoshan Road, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Faggionato E, Guazzo A, Pegolo E, Carli R, Bruschetta M, Favero SD. An Adaptive Model Predictive Controller to Address the Biovariability in Blood Clotting Response During Therapy With Warfarin. IEEE Trans Biomed Eng 2023; 70:2667-2678. [PMID: 37030797 DOI: 10.1109/tbme.2023.3261962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Effective dosing of anticoagulants aims to prevent blood clot formation while avoiding hemorrhages. This complex task is challenged by several disturbing factors and drug-effect uncertainties, requesting frequent monitoring and adjustment. Biovariability in drug absorption and action further complicates titration and calls for individualized strategies. In this paper, we propose an adaptive closed-loop control algorithm to assist in warfarin therapy management. METHODS The controller was designed and tested in silico using an established pharmacometrics model of warfarin, which accounts for inter-subject variability. The control algorithm is an adaptive Model Predictive Control (a-MPC) that leverages a simplified patient model, whose parameters are updated with a Bayesian strategy. Performance was quantitatively evaluated in simulations performed on a population of virtual subjects against an algorithm reproducing medical guidelines (MG) and an MPC controller available in the literature (l-MPC). RESULTS The proposed a-MPC significantly (p 0.05) lowers rising time (2.8 vs. 4.4 and 11.2 days) and time out of range (3.3 vs. 7.2 and 12.9 days) with respect to both MG and l-MPC, respectively. Adaptivity grants a significantly (p 0.05) lower number of subjects reaching unsafe INR values compared to when this feature is not present (8.9% vs.15% of subjects presenting an overshoot outside the target range and 0.08% vs. 0.28% of subjects reaching dangerous INR values). CONCLUSION The a-MPC algorithm improve warfarin therapy compared to the benchmark therapies. SIGNIFICANCE This in-silico validation proves effectiveness of the a-MPC algorithm for anticoagulant administration, paving the way for clinical testing.
Collapse
|
3
|
Mohan SV, Freedman J. A Review of the Evolving Landscape of Inclusive Research and Improved Clinical Trial Access. Clin Pharmacol Ther 2023; 113:518-527. [PMID: 36536992 DOI: 10.1002/cpt.2832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Current clinical research does not reflect the diversity of patient populations, despite continued recommendations to increase enrollment of under-represented racial and ethnic groups. The ramifications of this lack of trial diversity are important because of potential differences between races and ethnicities in response to therapies, which have been observed for drugs across indications. Nonrepresentative research populations limit the generalizability of study results, which may lead to questions about safety and efficacy in certain subgroups of patients and hinder regulators, healthcare providers, and patients in their ability to adequately consider the benefits and risks of a therapeutic treatment across all populations. Renewed efforts to address healthcare disparities and increase diversity in clinical trials have demonstrated that inclusive trials are achievable and can provide scientifically rigorous results, and, thus, should stimulate greater action across all stakeholders. Ensuring that studies throughout the clinical development process include representative populations is a scientific imperative to advance health equity, racial justice, and trust in the safety and efficacy of medical therapies. This article reviews the long-standing lack of diversity and barriers to enrollment of diverse and representative populations in clinical trials, outlines the current evolving trial landscape and the efforts of stakeholders, and provides examples from scientifically rigorous inclusive trials. The goal is to share learnings in a wider context of opportunities to enhance diversity, equity, and inclusion in clinical development while ensuring the safety and efficacy of medical therapies in all populations of patients, and in doing so, provide wider patient access to therapeutic treatments.
Collapse
|
4
|
Levitskaya ES, Kastanayan AA, Leonova GN, Yakovlev AA, Zatonsky SA, Ganenko LA. Warfarin hypersensitivity in the internist's practice: a case report. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2023-3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Anticoagulants are widely used in clinical practice to reduce the risk of cardiovascular events. However, there are associated clinical conditions that require coagulation system monitoring due to an increased risk of bleeding. In clinical practice, cases of warfarin hypersensitivity due to gene polymorphisms are known. Taking warfarin in such a situation is often manifested by massive bleeding that threatens the patient's life. Sixty seven-years-old female patient was admitted to the internal medicine department of Rostov State Medical University clinic in March 2022. The day before, she noted severe abdominal pain, loose bloody stool. An outpatient examination revealed an increase in international normalized ratio to 9,42, thrombin time >30 sec. There were no signs of primary gastrointestinal pathology. According to anamnesis, on January 21, 2022, the patient underwent mechanical aortic valve replacement, in connection with which warfarin was prescribed at a dose of 2,5 mg/day. After establishing hypocoagulation, warfarin was discontinued. A pharmacogenetic analysis was performed, which established the carriage of polymorphisms of cytochrome P450 system genes, the homozygous mutation 1075A>C (CYP2C9 (*3/*3)), and the heterozygous mutation of the vitamin K reductase gene VKORC1 G(-1639)A (VKORC1 GA). The individual dosage of warfarin was calculated according to International Warfarin Pharmacogenetics Consortium guidelines, which was 9 mg/week. After adjusting the dose of warfarin, the level of international normalized ratio decreased to 3,61, thrombin time to 13 sec. The patient was discharged with recommendations to follow an individual warfarin regimen and monitor coagulation parameters. The presence of hypersensitivity to warfarin is not a reason for its complete withdrawal in situations requiring longterm anticoagulation. In this regard, it is necessary for the doctor to be vigilant when prescribing warfarin to a patient, understanding the causes and methods for diagnosing hypersensitivity to warfarin, and timely correction of its dosage.
Collapse
|
5
|
Safety and efficacy of using portable coagulation monitor for INR examination after left-sided mechanical prosthetic valve replacement. J Cardiothorac Surg 2022; 17:297. [PMID: 36471365 PMCID: PMC9724327 DOI: 10.1186/s13019-022-02046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Time in therapeutic range (TTR) is an index to assess the effectiveness of anticoagulation and is important to predict the risk of bleeding and thrombosis in patients taking warfarin. In recent years, the portable coagulation monitor, a point-of-care testing device for patients to perform self-management international normalized ratio (INR) examination, has provided an opportunity to improve the quality of oral warfarin treatment. In this study, we applied TTR to evaluate the safety and efficacy of the portable coagulation monitor for patients with oral anticoagulant warfarin after left-sided mechanical prosthetic valve (MPV) replacement. METHODS It is a single-centre cohort study. From September 2019 to June 2021, a total of 243 patients who returned to our institution for outpatient clinic revisit at 3 months after left-sided MPV replacement, met the inclusion criteria and agreed to be followed up were included. Self-management group used portable coagulation monitor for INR examination, and patients in the conventional group had their INR monitored in routine outpatient visits. Clinical data of the patients would be recorded for the next 12 months, and results were compared between the two groups to assess the effect of the coagulation monitor on TTR and complications related to bleeding and thrombosis in patients with left-sided MPV replacement. RESULTS A total of 212 individuals provided complete and validated INR data spanning of 1 year. Those who applied the portable coagulation monitor had higher TTR values and larger number of tests for INR. No significant differences were seen between the two groups in postoperative bleeding and thromboembolic complications, but portable coagulation monitor showed a trend toward fewer bleeding events. CONCLUSION Portable devices for coagulation monitoring are safe and can achieve a higher TTR. Patients who use the portable coagulation monitor for home INR self-management can achieve a safe and effective warfarin therapy.
Collapse
|
6
|
Qian M, Zhao H, Lou Y, Wang J, Wang S, Wang Z, Ou H, Li J, Yang F, Bai L, Lv H, Peng X, Chen X, Yang X. Establishment of prediction algorithm for the Honghe minority group based on warfarin maintenance dose. Pharmacogenomics 2022; 23:619-626. [PMID: 35880564 DOI: 10.2217/pgs-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: CYP2C9 and VKORC1 are important factors in warfarin metabolism. The authors explored the effects of these genetic polymorphisms and clinical factors on a warfarin maintenance dose and then established the prediction algorithm for Honghe minorities in China. Materials & methods: Quantitative fluorescence PCR determined the mutation frequency of CYP2C9 and VKORC1-1639 G>A alleles. The authors collected the relevant clinical factors, including age, gender, body surface area (BSA), international normalized ratio value, daily warfarin dose, comorbidity and concomitant prescriptions. Results: The mean values of BSA and international normalized ratio in Honghe minorities were lower than in Han Chinese (p = 0.00). The genotype of CYP2C9*1/*1 and VKORC1-1639 AA was the main allele, the mutationfrequency of VKORC1-1639 AA and the number of male of Honghe minorities were lower than that of Han Chinese (p = 0.013 and p = 0.04). The significances of the effect on actual warfarin dose value were gender, VKORC1 AA mutant, CYP2C9*1/*1, age, hypertension and BSA sequentially. Conclusion: By multiple linear regression analysis with genetic and clinical factors, the authors determined a prediction algorithm for adjusting individual dosing of warfarin in this population. Clinical trial registration number: ChiCTR2100051778.
Collapse
Affiliation(s)
- Mengjiao Qian
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Huan Zhao
- Department of Neurology, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Yunli Lou
- Department of Medical Records & Statistics, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Jing Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Sibo Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Zhongyin Wang
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Haibo Ou
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Jun Li
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Fajian Yang
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Lingying Bai
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Hong Lv
- Clinical Pharmacy Laboratory, Department of Pharmacy, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xuguan Peng
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xiao Chen
- Department of Cardiothoracic Surgery, The Yunnan South Central Hospital (The First People's Hospital of Honghe Prefecture), Mengzi, Yunnan, 661100, PR China
| | - Xiubing Yang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Bejing, 100029, PR China
| |
Collapse
|
7
|
Wonkam A, Munung NS, Dandara C, Esoh KK, Hanchard NA, Landoure G. Five Priorities of African Genomics Research: The Next Frontier. Annu Rev Genomics Hum Genet 2022; 23:499-521. [PMID: 35576571 DOI: 10.1146/annurev-genom-111521-102452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals' pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans' evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and global governance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , , .,Current affiliation: McKusick-Nathans Institute of Genetic Medicine and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Nchangwi S Munung
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Collet Dandara
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Kevin K Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; , ,
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Guida Landoure
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques, and Technology of Bamako, Bamako, Mali;
| |
Collapse
|
8
|
Ma Z, Wang P, Mahesh M, Elmi CP, Atashpanjeh S, Khalighi B, Cheng G, Krishnamurthy M, Khalighi K. Warfarin sensitivity is associated with increased hospital mortality in critically Ill patients. PLoS One 2022; 17:e0267966. [PMID: 35511891 PMCID: PMC9070894 DOI: 10.1371/journal.pone.0267966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the therapeutic dose. Warfarin sensitivity has been reported to be associated with increased incidence of international normalized ratio (INR) > 5. However, whether warfarin sensitivity is a risk factor for adverse outcomes in critically ill patients remains unknown. In the present study, we aimed to evaluate the utility of different machine learning algorithms for the prediction of warfarin sensitivity and to determine the impact of warfarin sensitivity on outcomes in critically ill patients. Methods Nine different machine learning algorithms for the prediction of warfarin sensitivity were tested in the International Warfarin Pharmacogenetic Consortium cohort and Easton cohort. Furthermore, a total of 7,647 critically ill patients was analyzed for warfarin sensitivity on in-hospital mortality by multivariable regression. Covariates that potentially confound the association were further adjusted using propensity score matching or inverse probability of treatment weighting. Results We found that logistic regression (AUC = 0.879, 95% CI: 0.834–0.924) was indistinguishable from support vector machine with a linear kernel, neural network, AdaBoost and light gradient boosting trees, and significantly outperformed all the other machine learning algorithms. Furthermore, we found that warfarin sensitivity predicted by the logistic regression model was significantly associated with worse in-hospital mortality in critically ill patients with an odds ratio (OR) of 1.33 (95% CI, 1.01–1.77). Conclusions Our data suggest that the logistic regression model is the best model for the prediction of warfarin sensitivity clinically and that warfarin sensitivity is likely to be a risk factor for adverse outcomes in critically ill patients.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Medicine, St Luke’s University Health Network, Easton, PA, United States of America
- * E-mail: (ZM); (KK)
| | - Ping Wang
- Department of Computer Science, East Carolina University College of Engineering and Technology, Greenville, NC, United States of America
| | - Milan Mahesh
- Drexel University College of Arts and Sciences, Philadelphia, PA, United States of America
| | - Cyrus P. Elmi
- Lehigh University College of Arts and Sciences, Bethlehem, PA, United States of America
| | - Saeid Atashpanjeh
- Department of Biology, University of Hartford, West Hartford, CT, United States of America
| | - Bahar Khalighi
- School of Pharmacy, Temple University, Philadelphia, PA, United States of America
| | - Gang Cheng
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Mahesh Krishnamurthy
- Department of Medicine, St Luke’s University Health Network, Easton, PA, United States of America
| | - Koroush Khalighi
- Lehigh Valley Heart Institute, Easton, PA, United States of America
- * E-mail: (ZM); (KK)
| |
Collapse
|
9
|
Wang X, Tang B, Zhou M, Liu L, Feng X, Wang X, Qiu K. Efficacy and safety of genotype-guided warfarin dosing versus non-genotype-guided warfarin dosing strategies: A systematic review and meta-analysis of 27 randomized controlled trials. Thromb Res 2021; 210:42-52. [PMID: 34999431 DOI: 10.1016/j.thromres.2021.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of genotype-guided dosing (GD) strategies compared to non-genotype-guided dosing (non-GD) strategies for warfarin. METHODS Databases were searched up to July 2021. Meta-analysis was conducted with the Review Manager software (version 5.4) and R (version 4.0.5). Risk ratio (RR), mean difference (MD), and 95% confidence intervals (CIs) were used. Subgroup analyses were conducted based on ethnicity and dosing regimen in non-GD group. Meta-regression was performed to evaluate the relation of covariates. This study is registered with PROSPERO (CRD42021245654). RESULTS 27 randomized controlled trials with a total of 9906 patients were included. The GD group resulted in a significantly improved time in therapeutic range compared with non-GD group in follow-up duration within 30 days (MD: 5.95, 95%CI: 2.41-9.22, P = 0.001) and beyond 30 days (MD: 4.93, 1.40-8.47, P = 0.006), time to the first therapeutic international normalized ratio (MD: -1.80, -2.69 - -0.92, P < 0.0001), and time to reach stable dose (MD: -5.08, -7.09 - -3.07, P < 0.00001), incidence of major bleeding events (RR: 0.50, 0.33-0.75, P = 0.0008), total bleeding events (RR: 0.83, 0.73-0.95, P = 0.006), and thromboembolism (RR: 0.69, 0.49-0.96, P = 0.03). No differences were found in stable dose achievement, minor bleeding events, over anticoagulation, and all-cause mortality. Four improved efficacy outcomes were observed in GD group compared with fixed dosing group. Only time to the therapeutic INR was shortened in GD group compared with clinical adjusted dosing group. The result showed no difference of safety outcomes between GD group and fixed dosing group whereas a decreased incidence of major bleeding events was observed when comparing to clinical adjusted dosing group. CONCLUSION GD strategy was superior to fixed dosing strategy in term of efficacy outcomes and comparable to fixed dosing strategy in safety outcomes. Clinical adjusted regimen could partly substitute the genotype-guided dosing strategy for efficacy in insufficient conditions, but the risk of major bleeding events should be monitored.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Borui Tang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Pharmacy, The People's Hospital of Anyang City, Anyang 455000, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xin Feng
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Xin Wang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Kui Qiu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sun B, Wen YF, Culhane-Pera KA, Lo M, Xiong T, Lee K, Peng K, Thyagarajan B, Bishop JR, Zierhut H, Straka RJ. Differences in Predicted Warfarin Dosing Requirements Between Hmong and East Asians Using Genotype-Based Dosing Algorithms. Pharmacotherapy 2020; 41:265-276. [PMID: 33202062 DOI: 10.1002/phar.2487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Warfarin's narrow therapeutic index and high variability in dosage requirements make dosage selection critical. Genetic factors are known to impact warfarin dosage selection. The Hmong are a unique Asian subpopulation numbering over 278,000 in the United States whose participation in genetics-based research is virtually nonexistent. The translational significance of early reports of warfarin pharmacogene differences in Hmong has not been evaluated. OBJECTIVES (i) To validate previously identified allele frequency differences relevant to warfarin dosing in Hmong versus East Asians and (ii) to compare predicted warfarin sensitivity and maintenance doses between a Hmong population and an East Asian cohort. METHOD DNA collected from two independent cohorts (n=236 and n=198) of Hmong adults were genotyped for CYP2C9 (*2, *3), VKORC1 (G-1639A), and CYP4F2 (*3). Allele frequencies between the combined Hmong cohort (n=433) and East Asians (n=1165) from the 2009 International Warfarin Pharmacogenetics Consortium (IWPC) study were compared using a χ2 test. Percentages of Hmong and East Asian participants predicted to be very sensitive to warfarin were compared using a χ2 test, and the predicted mean warfarin maintenance dose was compared with a t test. RESULTS The allele frequencies of CYP2C9*3 in the combined Hmong cohort and CYP4F2*3 in the VIP-Hmong cohort are significantly different from those in East Asians (18.9% vs 3.0%, p<0.001 and 9.8% vs 22.1%, p<0.001, respectively). Comparing the combined Hmong cohort to the East Asian cohort, the percentage of participants predicted to be very sensitive to warfarin was significantly higher (28% vs 5%, p<0.01) and the mean predicted warfarin maintenance dose was significantly lower (19.8 vs 21.3 mg/week, p<0.001), respectively. CONCLUSION The unique allele frequencies related to warfarin when combined with nongenetic factors observed in the Hmong translate into clinically relevant differences in predicted maintenance dose requirements for Hmong versus East Asians.
Collapse
Affiliation(s)
- Boguang Sun
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ya-Feng Wen
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Muaj Lo
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Txia Xiong
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Koobmeej Lee
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Kerui Peng
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heather Zierhut
- Department of Genetics, Cell Biology and Development, College of Biological Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Warfarin therapy in patients with coronary heart disease and atrial fibrillation: drug interactions and genetic sensitivity to warfarin. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Chen H, Dai DP, Zhou S, Liu J, Wang SH, Wu HL, Zhou Q, Geng PW, Chong J, Lü Y, Cai JP, Yang JF. An identification and functional evaluation of a novel CYP2C9 variant CYP2C9*62. Chem Biol Interact 2020; 327:109168. [PMID: 32531309 DOI: 10.1016/j.cbi.2020.109168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
Warfarin is the most commonly used anticoagulant in the clinical treatment of thromboembolic diseases. The dose of warfarin varies significantly within populations, and the dose is closely related to the genetic polymorphisms of the CYP2C9 and VKORC1 genes. In this study, a new CYP2C9 nonsynonymous mutation (8576C > T) was detected after the genetic screening of 162 patients took warfarin. This mutation, named as the new allele CYP2C9*62, can result in an arginine to cysteine amino acid substitution at position 125 of the CYP2C9 protein (R125C). When expressed in insect cells, the protein expression of CYP2C9.62 was significantly lower than that of the wild-type, and its metabolic activity was also significantly decreased after the addition of three typical CYP2C9 probe drugs, suggesting that the new mutant can dramatically affect the metabolism of CYP2C9 drugs in vitro.
Collapse
Affiliation(s)
- Hao Chen
- Cardiovascular Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Shan Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Jian Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Shuang-Hu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang Province, 323000, PR China
| | - Hua-Lan Wu
- Cardiovascular Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang Province, 323000, PR China
| | - Pei-Wu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang Province, 323000, PR China
| | - Jia Chong
- Cardiovascular Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - You Lü
- Cardiovascular Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Jie-Fu Yang
- Cardiovascular Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
14
|
D'Ancona G, Ketterer U, Kische S, Murero M, Feickert S, Ortak J, Öner A, Ince H. Percutaneous left atrial appendage closure for cerebrovascular accident prevention: rationale, indications, technical aspects, clinical results and future perspective. Future Cardiol 2020; 16:237-250. [PMID: 32212967 DOI: 10.2217/fca-2019-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. The most feared complication of AF is thromboembolism. Oral anticoagulation (OAC) is the standard treatment to reduce thromboembolism occurrence in patients with AF. The rate of relevant bleeding, medical interactions and incompliance under OAC remains consistent. In this context, patients with AF at high risk for thromboembolism and with a contraindication to OAC may be considered as candidates for percutaneous left atrial appendage closure. In this review, we discuss the rationale, indications, technical aspects and clinical results of left atrial appendage closure by means of the WATCHMAN® (Boston Scientific, MA, USA) device.
Collapse
Affiliation(s)
- Giuseppe D'Ancona
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| | - Ulrike Ketterer
- Department of Cardiology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Stephan Kische
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| | - Monica Murero
- Department of Social Sciences, Federico II University, Naples, Italy
| | - Sebastian Feickert
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| | - Jasmin Ortak
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Vivantes Klinikum Am Urban & im Friedrichshain, Berlin, Germany & Rostock University Medical Center, Rostock, Germany
| |
Collapse
|