1
|
Sarlin PJ, Morris S, Geethambika SB, Gopi L, Muraleedharan M, Thomas JA, Savitha G, Joseph P. Halocercus lagenorhynchi infection in a stranded striped dolphin Stenella coeruleoalba (Meyen, 1833) on the Southwest coastline of India. J Parasit Dis 2024; 48:168-179. [PMID: 38440750 PMCID: PMC10908710 DOI: 10.1007/s12639-024-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/29/2023] [Indexed: 03/06/2024] Open
Abstract
Necropsy on a striped dolphin Stenella coeruleoalba (Meyen, 1833) entangled in ghost fishing net and dead while rescuing yielded some helminth parasites, later identified as Halocercus lagenorhynchi. DNA barcoding of the host and parasite and the phylogenetic analysis of the parasite was conducted. This study provides valuable information towards establishing basal data of marine mammal parasite diversity and distribution in the Indian waters. We believe this is the first report of the occurrence of Halocercus lagenorhynchi in marine mammals in India.
Collapse
Affiliation(s)
- Pathissery John Sarlin
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Sancia Morris
- Institute of Chemical Technology Mumbai, IOC Bhuvneshwar Odisha, Bhubaneswar, India
| | | | - Lijin Gopi
- School of Medicine and Public Health, Department of Medicine, University of Wisconsin, Madison, USA
| | - Megha Muraleedharan
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Jeniffer Ann Thomas
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | - Gayathry Savitha
- PG and Research Department of Zoology, Fatima Mata National College (Autonomous), University of Kerala, Kollam, India
| | | |
Collapse
|
2
|
Garcia-Bustos V, Acosta-Hernández B, Cabañero-Navalón MD, Pemán J, Ruiz-Gaitán AC, Rosario Medina I. The Ecology of Non- Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. J Fungi (Basel) 2024; 10:111. [PMID: 38392783 PMCID: PMC10889755 DOI: 10.3390/jof10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cetaceans, which are integral to marine ecosystems, face escalating anthropogenic threats, including climate change and pollution, positioning them as critical sentinel species for ocean and human health. This review explores the neglected realm of non-Candida yeasts in cetaceans, addressing the gaps in the understanding of their prevalence, pathogenicity, and environmental impacts. By examining identified species such as Cryptococcus spp., Paracoccidioides spp., and several dimorphic fungi, this review emphasizes global prevalence, epidemiology and ecology, pathogenicity, and potential zoonotic implications. It also discusses the fine line between yeast commensalism and pathogenicity by considering environmental influences such as pollution, climate shifts, and immune suppression. Environmental impact discussions delve into how rising ocean temperatures and pollution can modify yeast mycobiota, potentially affecting marine host health and broader ecosystem dynamics. The cetacean's unique physiology and ecological niches are considered, highlighting potential impacts on behaviors, reproductive success, and survival rates. Identifying crucial knowledge gaps, the review calls for intensified research efforts, employing advanced molecular techniques to unravel the cetacean mycobiome. Systematic studies on yeast diversity, antifungal susceptibility, and their influence on environmental and ecosystem health are proposed, and the balance between commensal and pathogenic species emphasizes the significance of the One Health approach. In conclusion, as marine mammals face unprecedented challenges, unveiling non-Candida yeasts in cetaceans emerges as a critical endeavor with far-reaching implications for the conservation of marine ecosystems and for both animal and human public health.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Begoña Acosta-Hernández
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | | | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | | | - Inmaculada Rosario Medina
- Universitary Institute of Animal Health and Food Security (ULPGC-IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| |
Collapse
|
3
|
Gulla S, Colquhoun DJ, Olsen AB, Spilsberg B, Lagesen K, Åkesson CP, Strøm S, Manji F, Birkbeck TH, Nilsen HK. Phylogeography and host specificity of Pasteurellaceae pathogenic to sea-farmed fish in the north-east Atlantic. Front Microbiol 2023; 14:1236290. [PMID: 37808299 PMCID: PMC10556747 DOI: 10.3389/fmicb.2023.1236290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The present study was undertaken to address the recent spate of pasteurellosis outbreaks among sea-farmed Atlantic salmon (Salmo salar) in Norway and Scotland, coinciding with sporadic disease episodes in lumpfish (Cyclopterus lumpus) used for delousing purposes in salmon farms. Genome assemblies from 86 bacterial isolates cultured from diseased salmon or lumpfish confirmed them all as bona fide members of the Pasteurellaceae family, with phylogenetic reconstruction dividing them into two distinct branches sharing <88% average nucleotide identity. These branches therefore constitute two separate species, namely Pasteurella skyensis and the as-yet invalidly named "Pasteurella atlantica". Both species further stratify into multiple discrete genomovars (gv.) and/or lineages, each being nearly or fully exclusive to a particular host, geographic region, and/or time period. Pasteurellosis in lumpfish is, irrespective of spatiotemporal origin, linked almost exclusively to the highly conserved "P. atlantica gv. cyclopteri" (Pac). In contrast, pasteurellosis in Norwegian sea-farmed salmon, dominated since the late-1980s by "P. atlantica gv. salmonicida" (Pas), first saw three specific lineages (Pas-1, -2, and -3) causing separate, geographically restricted, and short-lived outbreaks, before a fourth (Pas-4) emerged recently and became more widely disseminated. A similar situation involving P. skyensis (Ps) has apparently been unfolding in Scottish salmon farming since the mid-1990s, where two historic (Ps-1 and -2) and one contemporary (Ps-3) lineages have been recorded. While the epidemiology underlying all these outbreaks/epizootics remains unclear, repeated detection of 16S rRNA gene amplicons very closely related to P. skyensis and "P. atlantica" from at least five cetacean species worldwide raises the question as to whether marine mammals may play a part, possibly as reservoirs. In fact, the close relationship between the studied isolates and Phocoenobacter uteri associated with harbor porpoise (Phocoena phocoena), and their relatively distant relationship with other members of the genus Pasteurella, suggests that both P. skyensis and "P. atlantica" should be moved to the genus Phocoenobacter.
Collapse
Affiliation(s)
| | - Duncan J. Colquhoun
- Norwegian Veterinary Institute, Ås, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | | | | | - Sverri Strøm
- FoMAS – Fiskehelse og Miljø AS, Karmsund, Norway
| | | | - Thomas H. Birkbeck
- Division of Infection and Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
4
|
Olmstead ARB, Mathieson OL, McLellan WA, Pabst DA, Keenan TF, Goldstein T, Erwin PM. Gut bacterial communities in Atlantic bottlenose dolphins (Tursiops truncatus) throughout a disease-driven (Morbillivirus) unusual mortality event. FEMS Microbiol Ecol 2023; 99:fiad097. [PMID: 37591660 DOI: 10.1093/femsec/fiad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
Gut microbiomes are important determinants of animal health. In sentinel marine mammals where animal and ocean health are connected, microbiome impacts can scale to ecosystem-level importance. Mass mortality events affect cetacean populations worldwide, yet little is known about the contributory role of their gut bacterial communities to disease susceptibility and progression. Here, we characterized bacterial communities from fecal samples of common bottlenose dolphins, Tursiops truncatus, across an unusual mortality event (UME) caused by dolphin Morbillivirus (DMV). 16S rRNA gene sequence analysis revealed similar diversity and structure of bacterial communities in individuals stranding before, during, and after the 2013-2015 Mid-Atlantic Bottlenose Dolphin UME and these trends held in a subset of dolphins tested by PCR for DMV infection. Fine-scale shifts related to the UME were not common (10 of 968 bacterial taxa) though potential biomarkers for health monitoring were identified within the complex bacterial communities. Accordingly, acute DMV infection was not associated with a distinct gut bacterial community signature in T. truncatus. However, temporal stratification of DMV-positive dolphins did reveal changes in bacterial community composition between early and late outbreak periods, suggesting that gut community disruptions may be amplified by the indirect effects of accumulating health burdens associated with chronic morbidity.
Collapse
Affiliation(s)
- Alyssa R B Olmstead
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Olivia L Mathieson
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - William A McLellan
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - D Ann Pabst
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Tiffany F Keenan
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Tracey Goldstein
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, 3300 Golf Road, Brookfield, IL 60513, United States
| | - Patrick M Erwin
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| |
Collapse
|
5
|
Zhang X, Ying C, Jiang M, Lin D, You L, Yin D, Zhang J, Liu K, Xu P. The bacteria of Yangtze finless porpoise ( Neophocaena asiaeorientalis asiaeorientalis) are site-specific and distinct from freshwater environment. Front Microbiol 2022; 13:1006251. [PMID: 36605503 PMCID: PMC9808046 DOI: 10.3389/fmicb.2022.1006251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria play an essential role in the health of marine mammals, and the bacteria of marine mammals are widely concerned, but less is known about freshwater mammals. In this study, we investigated the bacteria of various body sites of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) and analyzed their association with freshwater environmental bacteria. The bacterial community and function of Yangtze finless porpoise showed apparent site-specificity. Various body sites have distinct differences in bacteria and have their dominant bacteria. Romboutsia, Plesiomonas, Actinobacillus, Candidatus Arthromitus dominated in the intestine (fecal and rectal samples). Fusobacterium, Streptococcus, and Acinetobacter dominated in the oral. The dominant genera in the blowhole include Suttonella, Psychrobacter, and two uncultured genera. Psychrobacter, Flavobacterium, and Acinetobacter were dominant in the skin. The alpha diversity of intestinal (fecal and rectal) bacteria was the lowest, while that of skin was the highest. The oral and skin bacteria of Yangtze finless porpoise significantly differed between the natural and semi-natural conditions, but no sex difference was observed. A clear boundary was found between the animal and the freshwater environmental bacteria. Even the skin bacteria, which are more affected by the environment, are significantly different from the environmental bacteria and harbor indigenous bacteria. Our results provide a comprehensive preliminary exploration of the bacteria of Yangtze finless porpoise and its association with bacteria in the freshwater environment.
Collapse
Affiliation(s)
- Xizhao Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Min Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Danqing Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei You
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jialu Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,*Correspondence: Kai Liu,
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China,Pao Xu,
| |
Collapse
|
6
|
Moraitou M, Forsythe A, Fellows Yates JA, Brealey JC, Warinner C, Guschanski K. Ecology, Not Host Phylogeny, Shapes the Oral Microbiome in Closely Related Species. Mol Biol Evol 2022; 39:msac263. [PMID: 36472532 PMCID: PMC9778846 DOI: 10.1093/molbev/msac263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.
Collapse
Affiliation(s)
- Markella Moraitou
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Adrian Forsythe
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, 07745 Jena, Germany
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Science for Life Laboratory, 75237 Uppsala, Sweden
| |
Collapse
|
7
|
Saldaña A, López C, López A, Covelo P, Remesar S, Martínez-Calabuig N, García-Dios D, Díaz P, Morrondo P, Díez-Baños P, Panadero R. Specificity of Stenurus (Metastrongyloidea: Pseudaliidae) infections in odontocetes stranded along the north-west Spanish coast. Int J Parasitol Parasites Wildl 2022; 19:148-154. [PMID: 36133958 PMCID: PMC9483633 DOI: 10.1016/j.ijppaw.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Parasites extracted from the lungs and the pterygoid sinus complex of 6 species of odontocetes stranded along the north-west Spanish coast (Northeast Atlantic) between 2009 and 2019 were morphologically identified. The samples belonged to 14 specimens, including 3 harbour porpoises, Phocoena phocoena, 6 short-finned pilot whales, Globicephala macrorhynchus, 1 long-finned pilot whale, Globicephala melas, 1 Risso's dolphin, Grampus griseus, 1 striped dolphin, Stenella coeruleoalba and 2 bottlenose dolphins, Tursiops truncatus. All animals (14/14) were infected by nematodes of the genus Stenurus spp.; moreover, two of them presented a mixed lung nematode infection by Stenurus spp. and Halocercus spp., and another two a mixed infection by Stenurus spp. and the trematode Nasitrema spp. in the pterygoid sinuses. The morphological characterization of the Stenurus specimens revealed the existence of three different species: Stenurus minor, present in the pterygoid sinuses of harbour porpoises with a mean intensity of 43.0 ± 9.0; Stenurus globicephalae, in the pterygoid sinuses of pilot whales and the Risso's dolphin (370.3 ± 579.4); and Stenurus ovatus infecting bottlenose and striped dolphins’ lungs (47.7 ± 76.5). This is the first citation of S. minor and S. ovatus in odontoceti from the Galician coast. Nematodes of the genus Stenurus are frequent in odontocetes stranded along the north-west Spanish coast. A clear host-parasite association was observed between S. minor and the Phocoenidae family, between S. globicephalae and the subfamily Globicephalinae and between S. ovatus and subfamily Delphininae. Different trophic position and niche segregation may lead to different patterns of specificity. Stenurus is the most prevalent lungworm in odontoceti. First description of S. minor and S. ovatus in Galician waters. Short-finned whales are the most intensely infected odontocetes. Stenurus infection is favored by the greater length of the host. Stenurus spp show a clear pattern of specificity with their hosts.
Collapse
|
8
|
Filek K, Trotta A, Gračan R, Di Bello A, Corrente M, Bosak S. Characterization of oral and cloacal microbial communities of wild and rehabilitated loggerhead sea turtles (Caretta caretta). Anim Microbiome 2021; 3:59. [PMID: 34479653 PMCID: PMC8417999 DOI: 10.1186/s42523-021-00120-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Microbial communities of wild animals are being increasingly investigated to provide information about the hosts’ biology and promote conservation. Loggerhead sea turtles (Caretta caretta) are a keystone species in marine ecosystems and are considered vulnerable in the IUCN Red List, which led to growing efforts in sea turtle conservation by rescue centers around the world. Understanding the microbial communities of sea turtles in the wild and how affected they are by captivity, is one of the stepping stones in improving the conservation efforts. Describing oral and cloacal microbiota of wild animals could shed light on the previously unknown aspects of sea turtle holobiont biology, ecology, and contribute to best practices for husbandry conditions. Results We describe the oral and cloacal microbiota of Mediterranean loggerhead sea turtles by 16S rRNA gene sequencing to compare the microbial communities of wild versus turtles in, or after, rehabilitation at the Adriatic Sea rescue centers and clinics. Our results show that the oral microbiota is more sensitive to environmental shifts than the cloacal microbiota, and that it does retain a portion of microbial taxa regardless of the shift from the wild and into rehabilitation. Additionally, Proteobacteria and Bacteroidetes dominated oral and cloacal microbiota, while Kiritimatiellaeota were abundant in cloacal samples. Unclassified reads were abundant in the aforementioned groups, which indicates high incidence of yet undiscovered bacteria of the marine reptile microbial communities. Conclusions We provide the first insights into the oral microbial communities of wild and rehabilitated loggerhead sea turtles, and establish a framework for quick and non-invasive sampling of oral and cloacal microbial communities, useful for the expansion of the sample collection in wild loggerhead sea turtles. Finally, our investigation of effects of captivity on the gut-associated microbial community provides a baseline for studying the impact of husbandry conditions on turtles’ health and survival upon their return to the wild. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00120-5.
Collapse
Affiliation(s)
- Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia
| | - Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Romana Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia
| | - Antonio Di Bello
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000, Zagreb, Croatia.
| |
Collapse
|
9
|
Exploring the signature gut and oral microbiome in individuals of specific Ayurveda prakriti. J Biosci 2021. [DOI: 10.1007/s12038-021-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Keller AG, Apprill A, Lebaron P, Robbins J, Romano TA, Overton E, Rong Y, Yuan R, Pollara S, Whalen KE. Characterizing the culturable surface microbiomes of diverse marine animals. FEMS Microbiol Ecol 2021; 97:6157762. [PMID: 33681975 PMCID: PMC8012112 DOI: 10.1093/femsec/fiab040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/01/2021] [Indexed: 11/14/2022] Open
Abstract
Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.
Collapse
Affiliation(s)
- Abigail G Keller
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Philippe Lebaron
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Université (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jooke Robbins
- Center for Coastal Studies, 5 Holway Ave., Provincetown, MA, 02657, USA
| | - Tracy A Romano
- Mystic Aquarium, a division of Sea Research Foundation Inc., 55 Coogan Blvd., Mystic, CT, 06355, USA
| | - Ellysia Overton
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Yuying Rong
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Ruiyi Yuan
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Scott Pollara
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Kristen E Whalen
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| |
Collapse
|
11
|
Wild whale faecal samples as a proxy of anthropogenic impact. Sci Rep 2021; 11:5822. [PMID: 33712645 PMCID: PMC7955090 DOI: 10.1038/s41598-021-84966-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
The occurrence of protozoan parasite, bacterial communities, organic pollutants and heavy metals was investigated in free-ranging species of fin (Balaenoptera physalus, n. 2) and sperm (Physeter macrocephalus, n. 2) whales from the Pelagos Sanctuary, Corsican-Ligurian Provencal Basin (Northern-Western Mediterranean Sea). Out of four faecal samples investigated, two from fin whales and one from sperm whale were found positive to Blastocystis sp. A higher number of sequences related to Synergistetes and Spirochaetae were found in sperm whales if compared with fin whales. Moreover, As, Co and Hg were found exclusively in sperm whale faecal samples, while Pb was found only in fin whale faecal samples. The concentration of both PAH and PCB was always below the limit of detection. This is the first report in which the presence of these opportunistic pathogens, bacteria and chemical pollutants have been investigated in faecal samples of free-ranging whale species and the first record of Blastocystis in fin and sperm whales. Thus, this study may provide baseline data on new anthropozoonotic parasite, bacterial records and heavy metals in free-ranging fin and sperm whales, probably as a result of an increasing anthropogenic activity. This survey calls for more integrated research to perform regular monitoring programs supported by national and/or international authorities responsible for preservation of these still vulnerable and threatened whale species in the Mediterranean Sea.
Collapse
|
12
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
13
|
Nasoori A. Tusks, the extra-oral teeth. Arch Oral Biol 2020; 117:104835. [PMID: 32668361 DOI: 10.1016/j.archoralbio.2020.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present review aims to: a) describe the features that support tusks in extra-oral position, and b) represent distinctive features of tusks, which provide insights into tusks adaptation to ambient conditions. DESIGN A comprehensive review of scientific literature relevant to tusks and comparable dental tissues was conducted. RESULTS The oral cavity provides a desirable condition which is conducive to tooth health. Therefore, it remains questionable how the bare (exposed) tusks resist the extra-oral conditions. The common features among tusked mammals indicate that the structural (e.g. the peculiar dentinal alignment), cellular (e.g. low or lack of cell populations in the tusk), hormonal (e.g. androgens), and behavioral traits have impact on a tusk's preservation and occurrence. CONCLUSIONS Understanding of bare mineralized structures, such as tusks and antlers, and their compatibility with different environments, can provide important insight into oral biology.
Collapse
Affiliation(s)
- Alireza Nasoori
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|