1
|
Hsieh HC, Han Q, Brenes D, Bishop KW, Wang R, Wang Y, Poudel C, Glaser AK, Freedman BS, Vaughan JC, Allbritton NL, Liu JTC. Imaging 3D cell cultures with optical microscopy. Nat Methods 2025:10.1038/s41592-025-02647-w. [PMID: 40247123 DOI: 10.1038/s41592-025-02647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Three-dimensional (3D) cell cultures have gained popularity in recent years due to their ability to represent complex tissues or organs more faithfully than conventional two-dimensional (2D) cell culture. This article reviews the application of both 2D and 3D microscopy approaches for monitoring and studying 3D cell cultures. We first summarize the most popular optical microscopy methods that have been used with 3D cell cultures. We then discuss the general advantages and disadvantages of various microscopy techniques for several broad categories of investigation involving 3D cell cultures. Finally, we provide perspectives on key areas of technical need in which there are clear opportunities for innovation. Our goal is to guide microscope engineers and biomedical end users toward optimal imaging methods for specific investigational scenarios and to identify use cases in which additional innovations in high-resolution imaging could be helpful.
Collapse
Affiliation(s)
- Huai-Ching Hsieh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Qinghua Han
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - David Brenes
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kevin W Bishop
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Rui Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Adam K Glaser
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Benjamin S Freedman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Nephrology, Kidney Research Institute and Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
- Plurexa LLC, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan T C Liu
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Klatt A, Wollschlaeger JO, Albrecht FB, Rühle S, Holzwarth LB, Hrenn H, Melzer T, Heine S, Kluger PJ. Dynamically cultured, differentiated bovine adipose-derived stem cell spheroids as building blocks for biofabricating cultured fat. Nat Commun 2024; 15:9107. [PMID: 39438462 PMCID: PMC11496621 DOI: 10.1038/s41467-024-53486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cultured or cultivated meat, animal muscle, and fat tissue grown in vitro, could transform the global meat market, reducing animal suffering while using fewer resources than traditional meat production and no antimicrobials at all. To ensure the appeal of cultured meat to future customers, cultured fat is essential for achieving desired mouthfeel, taste, and texture, especially in beef. In this work we show the establishment of primary bovine adipose-derived stem cell spheroids in static and dynamic suspension culture. Spheroids are successfully differentiated using a single-step protocol. Differentiated spheroids from dynamic cultures maintain stability and viability during 3D bioprinting in edible gellan gum. Also, the fatty acid composition of differentiated spheroids is significantly different from control spheroids. The cells are cultured antibiotic-free to minimize the use of harmful substances. This work presents a stable and bioprintable building block for cultured fat with a high cell density in a 3D dynamic cell culture system.
Collapse
Affiliation(s)
- Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | | | | | - Sara Rühle
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany
| | - Lena B Holzwarth
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany
| | - Holger Hrenn
- Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Tanja Melzer
- Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, Reutlingen, Germany
| | - Petra J Kluger
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany.
| |
Collapse
|
3
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Guo W, Chen Z, Feng Z, Li H, Zhang M, Zhang H, Cui X. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review. MICROMACHINES 2022; 13:mi13091555. [PMID: 36144178 PMCID: PMC9505614 DOI: 10.3390/mi13091555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.
Collapse
Affiliation(s)
- Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Zejingqiu Chen
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528311, China
| | - Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Ding H, George S, Leng XI, Ihnat M, Ma JX, Jiang G, Margolis D, Dumond J, Zhang Y. Silk fibers assisted long-term 3D culture of human primary urinary stem cells via inhibition of senescence-associated genes: Potential use in the assessment of chronic mitochondrial toxicity. MATERIALS TODAY. ADVANCES 2022; 15:100261. [PMID: 36212078 PMCID: PMC9542430 DOI: 10.1016/j.mtadv.2022.100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite being widely applied in drug development, existing in vitro 2D cell-based models are not suitable to assess chronic mitochondrial toxicity. A novel in vitro assay system mimicking in vivo microenvironment for this purpose is urgently needed. The goal of this study is to establish a 3D cell platform as a reliable, sensitive, cost-efficient, and high-throughput assay to predict drug-induced mitochondrial toxicity. We evaluated a long-term culture of human primary urine-derived stem cells (USC) seeded in 3D silk fiber matrix (3D USC-SFM) and further tested chronic mitochondrial toxicity induced by Zalcitabine (ddC, a nucleoside reverse transcriptase inhibitor) as a test drug, compared to USC grown in spheroids. The numbers of USC remain steady in 3D spheroids for 4 weeks and 3D SFM for 6 weeks. However, the majority (95%) of USC survived in 3D SFM, while cell numbers significantly declined in 3D spheroids at 6 weeks. Highly porous SFM provides large-scale numbers of cells by increasing the yield of USC 125-fold/well, which enables the carrying of sufficient cells for multiple experiments with less labor and lower cost, compared to 3D spheroids. The levels of mtDNA content and mitochondrial superoxide dismutase2 [SOD2] as an oxidative stress biomarker and cell senescence genes (RB and P16, p21) of USC were all stably retained in 3D USC-SFM, while those were significantly increased in spheroids. mtDNA content and mitochondrial mass in both 3D culture models significantly decreased six weeks after treatment of ddC (0.2, 2, and 10 μM), compared to 0.1% DMSO control. Levels of complexes I, II, and III significantly decreased in 3D SFM-USC treated with ddC, compared to only complex I level which declined in spheroids. A dose- and time-dependent chronic MtT displayed in the 3D USC-SFM model, but not in spheroids. Thus, a long-term 3D culture model of human primary USC provides a cost-effective and sensitive approach potential for the assessment of drug-induced chronic mitochondrial toxicity.
Collapse
Affiliation(s)
- Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Xiaoyan Iris Leng
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Guochun Jiang
- University of North Carolina HIV Cure Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - David Margolis
- University of North Carolina HIV Cure Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Julie Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Aljadi Z, Aval NA, Kumar T, Qin T, Ramachandraiah H, Pettersson T, Russom A. Layer-by-Layer Cellulose Nanofibrils: A New Coating Strategy for Development and Characterization of Tumor Spheroids as a Model for In-Vitro Anti-Cancer Drug Screening. Macromol Biosci 2022; 22:e2200137. [PMID: 35899862 DOI: 10.1002/mabi.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) are complex structure of cellular aggregates and cell-to-matrix interaction that emulates the in-vivo microenvironment. This research field has progressively grown to develop and improve spheroid generation techniques. Here, we present a new platform for spheroid generation using Layer-by-Layer (LbL) technology. Layer-by-Layer (LbL) containing cellulose nanofibrils (CNF) assemble on a standard 96 well plate. Various LbL assembly parameters, multiple cell seeding concentration, and two tumor cell lines (HEK 293 T, HCT 116) are utilized to generate and characterize spheroids. The number and the proliferation of generated spheroids in correlation to the number of LbL-CNF bi-layers, the viability, and the response to the anti-cancer drug are examined. The spheroids are formed and proliferated on the LbL-CNF coated wells with no significant difference in connection to the number of LbL-CNF bi-layers; however, the number of formed spheroids correlates positively with the cell seeding concentration (122 ± 17) for HCT 116 and (42 ± 8) for HEK 293T cell lines at 700 cells ml-1 . The generated spheroids proliferate progressively up to (309, 663) μm of HCT 116 and HEK 293T cell lines on the 5 bi-layers coated wells respectively overtime with maintaining viability. The (HCT 116) spheroids react to the anti-cancer drug. We demonstrate a new platform (LbL-CNF) coating strategy for spheroids generation, with high performance and efficiency to test anti-cancer drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zenib Aljadi
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Negar Abbasi Aval
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tharagan Kumar
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Taoyu Qin
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Harisha Ramachandraiah
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aman Russom
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Fernandes S, Vyas C, Lim P, Pereira RF, Virós A, Bártolo P. 3D Bioprinting: An Enabling Technology to Understand Melanoma. Cancers (Basel) 2022; 14:cancers14143535. [PMID: 35884596 PMCID: PMC9318274 DOI: 10.3390/cancers14143535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a potentially fatal cancer with rising incidence over the last 50 years, associated with enhanced sun exposure and ultraviolet radiation. Its incidence is highest in people of European descent and the ageing population. There are multiple clinical and epidemiological variables affecting melanoma incidence and mortality, such as sex, ethnicity, UV exposure, anatomic site, and age. Although survival has improved in recent years due to advances in targeted and immunotherapies, new understanding of melanoma biology and disease progression is vital to improving clinical outcomes. Efforts to develop three-dimensional human skin equivalent models using biofabrication techniques, such as bioprinting, promise to deliver a better understanding of the complexity of melanoma and associated risk factors. These 3D skin models can be used as a platform for patient specific models and testing therapeutics.
Collapse
Affiliation(s)
- Samantha Fernandes
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Peggy Lim
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
| | - Rúben F. Pereira
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Amaya Virós
- Skin Cancer and Ageing Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Paulo Bártolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (S.F.); (C.V.); (P.L.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: or
| |
Collapse
|
8
|
Gündel B, Liu X, Löhr M, Heuchel R. Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models. Front Cell Dev Biol 2021; 9:741162. [PMID: 34746135 PMCID: PMC8569794 DOI: 10.3389/fcell.2021.741162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
- Department of Upper GI, C1:77, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
9
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
10
|
Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021; 9:biomedicines9070748. [PMID: 34203470 PMCID: PMC8301383 DOI: 10.3390/biomedicines9070748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Collapse
|
11
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
12
|
Mei N, Zhao N, Tian T, Jiao M, Li C. Biological features, gene expression profile, and mechanisms of drug resistance of two- and three-dimensional hepatocellular carcinoma cell cultures. Pharmacol Res Perspect 2021; 9:e00715. [PMID: 33486902 PMCID: PMC7827916 DOI: 10.1002/prp2.715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious onset and rapid progression. Its treatment is often difficult owing to tumor resistance. In this study, we aimed to understand the different biological characteristics, gene expression profiles, and drug resistance mechanisms of HCC cells cultured under different conditions. A conventional adherence method and a liquid overlay technique were used to prepare two- and three-dimensional cultures of Bel-7402 and 5-fluorouracil (5-Fu)-resistant Bel-7402 (Bel-7402/5-Fu) cells. Morphological characteristics were assessed via microscopy, and cell cycle distribution and apoptotic rate were obtained using flow cytometry. Cell sensitivity to different concentrations of drugs was detected with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Gene expression profiles and signal transduction pathways of Bel-7402 and Bel-7402/5-Fu cells under different culture conditions were determined using gene chips. Cells in three-dimensional culture were suspended and they grew into dense multicellular spheroid (MCS) structures, aggregating with each other. In contrast to cells in the two-dimensional culture, cell cycle arrest was observed in MCSs. The sensitivity of Bel-7402 cells in the two-dimensional culture to drugs at high concentrations was significantly higher than that of cells in the three-dimensional culture (p < .05). The apoptotic rate of Bel-7402 and Bel-7402/5-Fu cells was also higher in the two-dimensional culture (p < .05). Signal transduction pathway analysis showed that after Bel-7402 cells acquired resistance to 5-Fu, CCND1, MCM2, and MCM3 gene expression was upregulated in the G1 to S cell cycle control signal transduction pathway, CDKN1C and CCNG2 gene expression was downregulated, and MCM2 and MCM3 gene expression was upregulated in the DNA replication signal transduction pathway. Therefore, the liquid overlay technique is a simple, low-cost procedure to successfully construct three-dimensional culture models of HCC. This study provides new information and methods for exploring the molecular mechanisms of liver cancer resistance, clinical treatment, development of molecular information, and interventional prevention.
Collapse
Affiliation(s)
- Nan Mei
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Ni Zhao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Tao Tian
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Min Jiao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| | - Chunli Li
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvincePeople’s Republic of China
| |
Collapse
|
13
|
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020; 12:pharmaceutics12121186. [PMID: 33291351 PMCID: PMC7762220 DOI: 10.3390/pharmaceutics12121186] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
Collapse
|
14
|
Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Sci Rep 2020; 10:15915. [PMID: 32985610 PMCID: PMC7522244 DOI: 10.1038/s41598-020-72952-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) spheroidal cell cultures are now recognised as better models of cancers as compared to traditional cell cultures. However, established 3D cell culturing protocols and techniques are time-consuming, manually laborious and often expensive due to the excessive consumption of reagents. Microfluidics allows for traditional laboratory-based biological experiments to be scaled down into miniature custom fabricated devices, where cost-effective experiments can be performed through the manipulation and flow of small volumes of fluid. In this study, we characterise a 3D cell culturing microfluidic device fabricated from a 3D printed master. HT29 cells were seeded into the device and 3D spheroids were generated and cultured through the perfusion of cell media. Spheroids were treated with 5-Fluorouracil for five days through continuous perfusion and cell viability was analysed on-chip at different time points using fluorescence microscopy and Lactate dehydrogenase (LDH) assay on the supernatant. Increasing cell death was observed in the HT29 spheroids over the five-day period. The 3D cell culturing microfluidic device described in this study, permits on-chip anti-cancer treatment and viability analysis, and forms the basis of an effective platform for the high-throughput screening of anti-cancer drugs in 3D tumour spheroids.
Collapse
|