1
|
Gu J, Wang X, Liu C, Zhuang K, Fan L, Zhang J, Sun J, Qiu J. Semantic memory structure mediates the role of brain functional connectivity in creative writing. BRAIN AND LANGUAGE 2025; 264:105551. [PMID: 39955819 DOI: 10.1016/j.bandl.2025.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Associative theories of creativity posit that high-creativity individuals possess flexible semantic memory structures that allow broad access to varied information. However, the semantic memory structure characteristics and neural substrates of creative writing are unclear. Here, we explored the semantic network features and the predictive whole-brain functional connectivity associated with creative writing and generated mediation models. Participants completed two creative story continuation tasks. We found that keywords from written texts with superior creative writing performance encompassed more semantic categories and were highly interconnected and transferred efficiently. Connectome predictive modeling (CPM) was conducted with resting-state functional magnetic resonance imaging (fMRI) data to identify whole-brain functional connectivity patterns related to creative writing, dominated by default mode network (DMN). Semantic network features were found to mediate the relationship between brain functional connectivity and creative writing performance. These results highlight how semantic memory structure and the DMN-driven brain functional connectivity patterns support creative writing performance. Our findings extend prior research on the role of semantic memory structure and the DMN in creativity, expand upon previous research on semantic creativity, and provide insight into the cognitive and neural foundations of creative writing.
Collapse
Affiliation(s)
- Jing Gu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Li Fan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiangzhou Sun
- College of International Studies, Southwest University, Chongqing, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China.
| |
Collapse
|
2
|
Dzianok P, Wojciechowski J, Wolak T, Kublik E. Alzheimer's disease-like features in resting state EEG/fMRI of cognitively intact and healthy middle-aged APOE/ PICALM risk carriers. J Alzheimers Dis 2025; 104:509-524. [PMID: 40095677 DOI: 10.1177/13872877251317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundGenetic susceptibility is a primary factor contributing to etiology of late-onset Alzheimer's disease (LOAD). The exact mechanisms and timeline through which APOE/PICALM influence brain functions and contribute to LOAD remain unidentified. This includes their effects on individuals prior to the development of the disease.ObjectiveTo investigate the effects of APOE and PICALM risk genes on brain health and function in non-demented individuals. This study aims to differentiate the combined risk effects of both genes from the risk associated solely with APOE, and to examine how PICALM alleles influence the risk linked to APOE.MethodsAPOE/PICALM alleles were assessed to determine the genetic risk of LOAD in 79 healthy, middle-aged participants who underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The resting-state signal was analyzed to estimate relative spectral power, complexity (Higuchi's algorithm), and connectivity (coherence in EEG and independent component analysis-based connectivity in fMRI).ResultsThe main findings indicated that individuals at risk for LOAD exhibited reduced signal complexity and the so-called "slowing of EEG" which are well-known EEG markers of Alzheimer's disease. Additionally, these individuals showed altered functional connectivity in fMRI (within attention-related areas).ConclusionsRisk alleles of APOE/PICALM may affect brain integrity and function prior to the clinical onset of the disease.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wojciechowski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Wallace RS, Mckeown B, Goodall-Halliwell I, Chitiz L, Forest P, Karapanagiotidis T, Mulholland B, Turnbull A, Vanderwal T, Hardikar S, Gonzalez Alam TRJ, Bernhardt BC, Wang HT, Strawson W, Milham M, Xu T, Margulies DS, Poerio GL, Jefferies E, Skipper JI, Wammes JD, Leech R, Smallwood J. Mapping patterns of thought onto brain activity during movie-watching. eLife 2025; 13:RP97731. [PMID: 39792001 PMCID: PMC11723579 DOI: 10.7554/elife.97731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better-on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.
Collapse
Affiliation(s)
| | - Bronte Mckeown
- Department of Psychology, Queen's UniversityKingstonCanada
| | | | - Louis Chitiz
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Philippe Forest
- Mathematical and Electrical Engineering Department, IMT AtlantiqueBrestFrance
| | | | | | - Adam Turnbull
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Tamara Vanderwal
- Faculty of Medicine, University of British ColumbiaVancouverCanada
| | - Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck School of CognitionLeipzigGermany
| | | | - Boris C Bernhardt
- Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| | - Hao-Ting Wang
- Centre de Recherche de l'Institut Universitaire de Geriatrie de MontrealMontrealCanada
| | - Will Strawson
- School of Psychology, University of SussexBrightonUnited Kingdom
| | | | - Ting Xu
- Child Mind InstituteNew YorkUnited States
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, University of ParisParisFrance
| | - Giulia L Poerio
- School of Psychology, University of SussexBrightonUnited Kingdom
| | - Elizabeth Jefferies
- Division of Psychology & Language Sciences, University College LondonLondonUnited Kingdom
| | - Jeremy I Skipper
- Institute of Psychiatry, Psychology & Neuroscience, University College LondonLondonUnited Kingdom
| | | | - Robert Leech
- Department of Neuroimaging at the Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | | |
Collapse
|
4
|
Shao X, Krieger-Redwood K, Zhang M, Hoffman P, Lanzoni L, Leech R, Smallwood J, Jefferies E. Distinctive and Complementary Roles of Default Mode Network Subsystems in Semantic Cognition. J Neurosci 2024; 44:e1907232024. [PMID: 38589231 PMCID: PMC11097276 DOI: 10.1523/jneurosci.1907-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.
Collapse
Affiliation(s)
- Ximing Shao
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | | | - Meichao Zhang
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- CAS Key Laboratory of Behavioural Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul Hoffman
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Lucilla Lanzoni
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RT, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
5
|
Flores-Gallegos R, Fernández T, Alcauter S, Pasaye E, Albarrán-Cárdenas L, Barrera-Díaz B, Rodríguez-Leis P. Functional connectivity is linked to working memory differences in children with reading learning disability. BMC Pediatr 2024; 24:318. [PMID: 38720281 PMCID: PMC11077889 DOI: 10.1186/s12887-024-04791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Reading learning disability (RLD) is characterized by a specific difficulty in learning to read that is not better explained by an intellectual disability, lack of instruction, psychosocial adversity, or a neurological disorder. According to the domain-general hypothesis, a working memory deficit is the primary problem. Working memory in this population has recently been linked to altered resting-state functional connectivity within the default mode network (DMN), salience network (SN), and frontoparietal network (FPN) compared to that in typically developing individuals. The main purpose of the present study was to compare the within-network functional connectivity of the DMN, SN, FPN, and reading network in two groups of children with RLD: a group with lower-than-average working memory (LWM) and a group with average working memory (AWM). All subjects underwent resting-state functional magnetic resonance imaging (fMRI), and data were analyzed from a network perspective using the network brain statistics framework. The results showed that the LWM group had significantly weaker connectivity in a network that involved brain regions in the DMN, SN, and FPN than the AWM group. Although there was no significant difference between groups in reading network in the present study, other studies have shown relationship of the connectivity of the angular gyrus, supramarginal gyrus, and inferior parietal lobe with the phonological process of reading. The results suggest that although there are significant differences in functional connectivity in the associated networks between children with LWM and AWM, the distinctive cognitive profile has no specific effect on the reading network.
Collapse
Affiliation(s)
- Rodrigo Flores-Gallegos
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México.
| | - Sarael Alcauter
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Erick Pasaye
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Lucero Albarrán-Cárdenas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Bertha Barrera-Díaz
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| | - Paulina Rodríguez-Leis
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230, México
| |
Collapse
|
6
|
Rozovsky R, Bertocci M, Iyengar S, Stiffler RS, Bebko G, Skeba AS, Brady T, Aslam H, Phillips ML. Identifying tripartite relationship among cortical thickness, neuroticism, and mood and anxiety disorders. Sci Rep 2024; 14:8449. [PMID: 38600283 PMCID: PMC11006921 DOI: 10.1038/s41598-024-59108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The number of young adults seeking help for emotional distress, subsyndromal-syndromal mood/anxiety symptoms, including those associated with neuroticism, is rising and can be an early manifestation of mood/anxiety disorders. Identification of gray matter (GM) thickness alterations and their relationship with neuroticism and mood/anxiety symptoms can aid in earlier diagnosis and prevention of risk for future mood and anxiety disorders. In a transdiagnostic sample of young adults (n = 252;177 females; age 21.7 ± 2), Hypothesis (H) 1:regularized regression followed by multiple regression examined relationships among GM cortical thickness and clinician-rated depression, anxiety, and mania/hypomania; H2:the neuroticism factor and its subfactors as measured by NEO Personality Inventory (NEO-PI-R) were tested as mediators. Analyses revealed positive relationships between left parsopercularis thickness and depression (B = 4.87, p = 0.002), anxiety (B = 4.68, p = 0.002), mania/hypomania (B = 6.08, p ≤ 0.001); negative relationships between left inferior temporal gyrus (ITG) thickness and depression (B = - 5.64, p ≤ 0.001), anxiety (B = - 6.77, p ≤ 0.001), mania/hypomania (B = - 6.47, p ≤ 0.001); and positive relationships between left isthmus cingulate thickness (B = 2.84, p = 0.011), and anxiety. NEO anger/hostility mediated the relationship between left ITG thickness and mania/hypomania; NEO vulnerability mediated the relationship between left ITG thickness and depression. Examining the interrelationships among cortical thickness, neuroticism and mood and anxiety symptoms enriches the potential for identifying markers conferring risk for mood and anxiety disorders and can provide targets for personalized intervention strategies for these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| |
Collapse
|
7
|
Yoon N, Kim S, Oh MR, Kim M, Lee JM, Kim BN. Intrinsic network abnormalities in children with autism spectrum disorder: an independent component analysis. Brain Imaging Behav 2024; 18:430-443. [PMID: 38324235 DOI: 10.1007/s11682-024-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Aberrant intrinsic brain networks are consistently observed in individuals with autism spectrum disorder. However, studies examining the strength of functional connectivity across brain regions have yielded conflicting results. Therefore, this study aimed to investigate the functional connectivity of the resting brain in children with low-functioning autism, including during the early developmental stages. We explored the functional connectivity of 43 children with autism spectrum disorder and 54 children with typical development aged 2 to 12 years using resting-state functional magnetic resonance imaging data. We used independent component analysis to classify the brain regions into six intrinsic networks and analyzed the functional connectivity within each network. Moreover, we analyzed the relationship between functional connectivity and clinical scores. In children with autism, the under-connectivities were observed within several brain networks, including the cognitive control, default mode, visual, and somatomotor networks. In contrast, we found over-connectivities between the subcortical, visual, and somatomotor networks in children with autism compared with children with typical development. Moderate effect sizes were observed in entire networks (Cohen's d = 0.43-0.77). These network alterations were significantly correlated with clinical scores such as the communication sub-score (r = - 0.442, p = 0.045) and the calibrated severity score (r = - 0.435, p = 0.049) of the Autism Diagnostic Observation Schedule. These opposing results observed based on the brain areas suggest that aberrant neurodevelopment proceeds in various ways depending on the functional brain regions in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Narae Yoon
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea
| | - Sohui Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Mee Rim Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Minji Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Sanhak-kisulkwan Bldg., #319, 222 Wangsipri-ro, Sungdong-gu, Seoul, 133-791, Republic of Korea.
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, 101 Daehakno, Jongno-gu, Seoul, Korea.
| |
Collapse
|
8
|
Wang W, Li H, Wang Y, Liu L, Qian Q. Changes in effective connectivity during the visual-motor integration tasks: a preliminary f-NIRS study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:4. [PMID: 38468270 DOI: 10.1186/s12993-024-00232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Visual-motor integration (VMI) is an essential skill in daily life. The present study aimed to use functional near-infrared spectroscopy (fNIRS) technology to explore the effective connectivity (EC) changes among brain regions during VMI activities of varying difficulty levels. METHODS A total of 17 healthy participants were recruited for the study. Continuous Performance Test (CPT), Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), and Beery VMI test were used to evaluate attention performance, executive function, and VMI performance. Granger causality analysis was performed for the VMI task data to obtain the EC matrix for all participants. One-way ANOVA analysis was used to identify VMI load-dependent EC values among different task difficulty levels from brain network and channel perspectives, and partial correlation analysis was used to explore the relationship between VMI load-dependent EC values and behavioral performance. RESULTS We found that the EC values of dorsal attention network (DAN) → default mode network (DMN), DAN → ventral attention network (VAN), DAN → frontoparietal network (FPN), and DAN → somatomotor network (SMN) in the complex condition were higher than those in the simple and moderate conditions. Further channel analyses indicated that the EC values of the right superior parietal lobule (SPL) → right superior frontal gyrus (SFG), right middle occipital gyrus (MOG) → left SFG, and right MOG → right postcentral gyrus (PCG) in the complex condition were higher than those in the simple and moderate conditions. Subsequent partial correlation analysis revealed that the EC values from DAN to DMN, VAN, and SMN were positively correlated with executive function and VMI performance. Furthermore, the EC values of right MOG → left SFG and right MOG → right PCG were positively correlated with attention performance. CONCLUSIONS The DAN is actively involved during the VMI task and thus may play a critical role in VMI processes, in which two key brain regions (right SPL, right MOG) may contribute to the EC changes in response to increasing VMI load. Meanwhile, bilateral SFG and right PCG may also be closely related to the VMI performance.
Collapse
Affiliation(s)
- Wenchen Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lu Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
9
|
Sharma D, Sharma M, Kaur P, Awasthy S, Kaushal S, D'Souza M, Bagler G, Modi S. Camouflage Detection and Its Association with Cognitive Style: A Functional Connectivity Study. Brain Connect 2023; 13:598-609. [PMID: 37847159 DOI: 10.1089/brain.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Background: Individual differences exist in performance in tasks that require visual search, such as camouflage detection (CD). Field dependence/independence (FD/I), as assessed using the Group Embedded Figures Test (GEFT), is an extensively studied dimension of cognitive style that classifies participants based on their visual perceptual styles. Materials and Methods: In the present study, we utilized fMRI on 46 healthy participants to investigate the underlying neural mechanisms specific to the cognitive styles of FD/FI while performing a CD task using both activation magnitude and an exploratory functional connectivity (FC) analysis. Group differences between high and low performers on the two extremes of the accuracy continuum of GEFT were studied. Results: No statistically significant group differences were observed using whole-brain voxel-wise comparison. However, the exploratory FC analysis revealed an enhanced communication between various regions subserving the cognitive traits required for visual search by FI participants over and above their FD counterparts. Conclusion: These enhanced connectivities suggest additional recruitment of cognitive functions to provide computational support that might facilitate superior performance in CD task by the participants who display a field-independent cognitive style.
Collapse
Affiliation(s)
- Deepak Sharma
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
- Birla Institute of Technology and Science, Pilani, India
| | - Mini Sharma
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Prabhjot Kaur
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Soumi Awasthy
- Defence Institute of Psychological Research, Lucknow Road, Timarpur, Delhi, India
| | - Shubham Kaushal
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Maria D'Souza
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Ganesh Bagler
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Shilpi Modi
- Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| |
Collapse
|
10
|
Kilpatrick LA, Siddarth P, Krause-Sorio B, Milillo MM, Aguilar-Faustino Y, Ercoli L, Narr KL, Khalsa DS, Lavretsky H. Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer's Disease. J Alzheimers Dis 2023; 95:149-159. [PMID: 37482992 PMCID: PMC10578221 DOI: 10.3233/jad-221159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Yoga may be an ideal early intervention for those with modifiable risk factors for Alzheimer's disease (AD) development. OBJECTIVE To examine the effects of Kundalini yoga (KY) training versus memory enhancement training (MET) on the resting-state connectivity of hippocampal subregions in women with subjective memory decline and cardiovascular risk factors for AD. METHODS Participants comprised women with subjective memory decline and cardiovascular risk factors who participated in a parent randomized controlled trial (NCT03503669) of 12-weeks of KY versus MET and completed pre- and post-intervention resting-state magnetic resonance imaging scans (yoga: n = 11, age = 61.45±6.58 years; MET: n = 11, age = 64.55±6.41 years). Group differences in parcellated (Cole-anticevic atlas) hippocampal connectivity changes (post- minus pre-intervention) were evaluated by partial least squares analysis, controlling for age. Correlations between hippocampal connectivity and perceived stress and frequency of forgetting (assessed by questionnaires) were also evaluated. RESULTS A left anterior hippocampal subregion assigned to the default mode network (DMN) in the Cole-anticevic atlas showed greater increases in connectivity with largely ventral visual stream regions with KY than with MET (p < 0.001), which showed associations with lower stress (p < 0.05). Several posterior hippocampal subregions assigned to sensory-based networks in the Cole-anticevic atlas showed greater increases in connectivity with regions largely in the DMN and frontoparietal network with MET than with KY (p < 0.001), which showed associations with lower frequency of forgetting (p < 0.05). CONCLUSION KY training may better target stress-related hippocampal connectivity, whereas MET may better target hippocampal sensory-integration supporting better memory reliability, in women with subjective memory decline and cardiovascular risk factors.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Beatrix Krause-Sorio
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michaela M. Milillo
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Yesenia Aguilar-Faustino
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Linda Ercoli
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | - Helen Lavretsky
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
The impact of aging on human brain network target controllability. Brain Struct Funct 2022; 227:3001-3015. [DOI: 10.1007/s00429-022-02584-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
|
12
|
Varela-López B, Cruz-Gómez ÁJ, Lojo-Seoane C, Díaz F, Pereiro A, Zurrón M, Lindín M, Galdo-Álvarez S. Cognitive reserve, neurocognitive performance, and high-order resting-state networks in cognitively unimpaired aging. Neurobiol Aging 2022; 117:151-164. [DOI: 10.1016/j.neurobiolaging.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
13
|
Udochi AL, Blain SD, Sassenberg TA, Burton PC, Medrano L, DeYoung CG. Activation of the default network during a theory of mind task predicts individual differences in agreeableness and social cognitive ability. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:383-402. [PMID: 34668171 DOI: 10.3758/s13415-021-00955-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Social cognitive processes, such as emotion perception and empathy, allow humans to navigate complex social landscapes and are associated with specific neural systems. In particular, theory of mind (ToM), which refers to our ability to decipher the mental states of others, is related to the dorsal medial prefrontal cortex and temporoparietal junction, which include portions of the default network. Both social cognition and the default network have been linked to the personality trait Agreeableness. We hypothesized that default network activity during a ToM task would positively predict social cognitive abilities and Agreeableness. In a 3T fMRI scanner, participants (N = 1050) completed a ToM task in which they observed triangles displaying random or social (i.e., human-like) movement. Participants also completed self-report measures of Agreeableness and tests of intelligence and social cognitive ability. In each participant, average blood oxygen level dependent responses were calculated for default network regions associated with social cognition, and structural equation modeling was used to test associations of personality and task performance with activation in those brain regions. Default network activation in the dorsal medial subsystem was greater for social versus random animations. Default network activation in response to social animations predicted better performance on social cognition tasks and, to a lesser degree, higher Agreeableness. Neural response to social stimuli in the default network may be associated with effective social processing and could have downstream effects on social interactions. We discuss theoretical and methodological implications of this work for social and personality neuroscience.
Collapse
Affiliation(s)
- Aisha L Udochi
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States.
| | - Scott D Blain
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States.
| | - Tyler A Sassenberg
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Philip C Burton
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Leroy Medrano
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| |
Collapse
|
14
|
Zhang M, Bernhardt BC, Wang X, Varga D, Krieger-Redwood K, Royer J, Rodríguez-Cruces R, Vos de Wael R, Margulies DS, Smallwood J, Jefferies E. Perceptual coupling and decoupling of the default mode network during mind-wandering and reading. eLife 2022; 11:74011. [PMID: 35311643 PMCID: PMC8937216 DOI: 10.7554/elife.74011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
While reading, our mind can wander to unrelated autobiographical information, creating a perceptually decoupled state detrimental to narrative comprehension. To understand how this mind-wandering state emerges, we asked whether retrieving autobiographical content necessitates functional disengagement from visual input. In Experiment 1, brain activity was recorded using functional magnetic resonance imaging (fMRI) in an experimental situation mimicking naturally occurring mind-wandering, allowing us to precisely delineate neural regions involved in memory and reading. Individuals read expository texts and ignored personally relevant autobiographical memories, as well as the opposite situation. Medial regions of the default mode network (DMN) were recruited during memory retrieval. In contrast, left temporal and lateral prefrontal regions of the DMN, as well as ventral visual cortex, were recruited when reading for comprehension. Experiment two used functional connectivity both at rest and during tasks to establish that (i) DMN regions linked to memory are more functionally decoupled from regions of ventral visual cortex than regions in the same network engaged when reading; and (ii) individuals with more self-generated mental contents and poorer comprehension, while reading in the lab, showed more decoupling between visually connected DMN sites important for reading and primary visual cortex. A similar pattern of connectivity was found in Experiment 1, with greater coupling between this DMN site and visual cortex when participants reported greater focus on reading in the face of conflict from autobiographical memory cues; moreover, the retrieval of personally relevant memories increased the decoupling of these sites. These converging data suggest we lose track of the narrative when our minds wander because generating autobiographical mental content relies on cortical regions within the DMN which are functionally decoupled from ventral visual regions engaged during reading. As your eyes scan these words, you may be thinking about what to make for dinner, how to address an unexpected hurdle at work, or how many emails are sitting, unread, in your inbox. This type of mind-wandering disrupts our focus and limits how much information we comprehend, whilst also being conducive to creative thinking and problem-solving. Despite being an everyday occurrence, exactly how our mind wanders remains elusive. One possible explanation is that the brain disengages from visual information from the external world and turns its attention inwards. A greater understanding of which neural circuits are involved in this process could reveal insights about focus, attention, and reading comprehension. Here, Zhang et al. investigated whether the brain becomes disengaged from visual input when our mind wanders while reading. Recalling personal events was used as a proxy for mind-wandering. Brain activity was recorded as participants were shown written statements; sometimes these were preceded by cues to personal memories. People were asked to focus on reading the statements or they were instructed to concentrate on their memories while ignoring the text. The analyses showed that recalling memories and reading stimulated distinct parts of the brain, which were in direct competition during mind-wandering. Further work examined how these regions were functionally connected. In individuals who remained focused on reading despite memory cues, the areas activated by reading showed strong links to the visual cortex. Conversely, these reading-related areas became ‘decoupled’ from visual processing centres in people who were focusing more on their internal thoughts. These results shed light on why we lose track of what we are reading when our mind wanders: recalling personal memories activates certain brain areas which are functionally decoupled from the regions involved in processing external information – such as the words on a page. In summary, the work by Zhang et al. builds a mechanistic understanding of mind-wandering, a natural feature of our daily brain activity. These insights may help to inform future interventions in education to improve reading, comprehension and focus.
Collapse
Affiliation(s)
- Meichao Zhang
- Department of Psychology, University of York, York, United Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Xiuyi Wang
- Department of Psychology, University of York, York, United Kingdom
| | - Dominika Varga
- Department of Psychology, University of York, York, United Kingdom
| | | | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Raúl Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Centre (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | | | | |
Collapse
|
15
|
Nyrup R, Robinson D. Explanatory pragmatism: a context-sensitive framework for explainable medical AI. ETHICS AND INFORMATION TECHNOLOGY 2022; 24:13. [PMID: 35250370 PMCID: PMC8885497 DOI: 10.1007/s10676-022-09632-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Explainable artificial intelligence (XAI) is an emerging, multidisciplinary field of research that seeks to develop methods and tools for making AI systems more explainable or interpretable. XAI researchers increasingly recognise explainability as a context-, audience- and purpose-sensitive phenomenon, rather than a single well-defined property that can be directly measured and optimised. However, since there is currently no overarching definition of explainability, this poses a risk of miscommunication between the many different researchers within this multidisciplinary space. This is the problem we seek to address in this paper. We outline a framework, called Explanatory Pragmatism, which we argue has two attractive features. First, it allows us to conceptualise explainability in explicitly context-, audience- and purpose-relative terms, while retaining a unified underlying definition of explainability. Second, it makes visible any normative disagreements that may underpin conflicting claims about explainability regarding the purposes for which explanations are sought. Third, it allows us to distinguish several dimensions of AI explainability. We illustrate this framework by applying it to a case study involving a machine learning model for predicting whether patients suffering disorders of consciousness were likely to recover consciousness.
Collapse
Affiliation(s)
- Rune Nyrup
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| | - Diana Robinson
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Department of Computer Science, University of Cambridge, Cambridge, UK
- Microsoft Research, Cambridge, UK
| |
Collapse
|
16
|
Menardi A, Reineberg AE, Smith LL, Favaretto C, Vallesi A, Banich MT, Santarnecchi E. Topographical functional correlates of interindividual differences in executive functions in young healthy twins. Brain Struct Funct 2021; 227:49-62. [PMID: 34865178 PMCID: PMC8741656 DOI: 10.1007/s00429-021-02388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
Executive functions (EF) are a set of higher-order cognitive abilities that enable goal-directed behavior by controlling lower-level operations. In the brain, those functions have been traditionally associated with activity in the Frontoparietal Network, but recent neuroimaging studies have challenged this view in favor of more widespread cortical involvement. In the present study, we aimed to explore whether the network that serves as critical hubs at rest, which we term network reliance, differentiate individuals as a function of their level of EF. Furthermore, we investigated whether such differences are driven by genetic as compared to environmental factors. For this purpose, resting-state functional magnetic resonance imaging data and the behavioral testing of 453 twins from the Colorado Longitudinal Twins Study were analyzed. Separate indices of EF performance were obtained according to a bifactor unity/diversity model, distinguishing between three independent components representing: Common EF, Shifting-specific and Updating-specific abilities. Through an approach of step-wise in silico network lesioning of the individual functional connectome, we show that interindividual differences in EF are associated with different dependencies on neural networks at rest. Furthermore, these patterns show evidence of mild heritability. Such findings add knowledge to the understanding of brain states at rest and their connection with human behavior, and how they might be shaped by genetic influences.
Collapse
Affiliation(s)
- Arianna Menardi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Padova Neuroscience Center & Department of Neuroscience, University of Padova, Padua, PD, Italy
| | - Andrew E Reineberg
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Louisa L Smith
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Chiara Favaretto
- Padova Neuroscience Center & Department of Neuroscience, University of Padova, Padua, PD, Italy
| | - Antonino Vallesi
- Padova Neuroscience Center & Department of Neuroscience, University of Padova, Padua, PD, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Song H, Park BY, Park H, Shim WM. Cognitive and Neural State Dynamics of Narrative Comprehension. J Neurosci 2021; 41:8972-8990. [PMID: 34531284 PMCID: PMC8549535 DOI: 10.1523/jneurosci.0037-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Narrative comprehension involves a constant interplay of the accumulation of incoming events and their integration into a coherent structure. This study characterizes cognitive states during narrative comprehension and the network-level reconfiguration occurring dynamically in the functional brain. We presented movie clips of temporally scrambled sequences to human participants (male and female), eliciting fluctuations in the subjective feeling of comprehension. Comprehension occurred when processing events that were highly causally related to the previous events, suggesting that comprehension entails the integration of narratives into a causally coherent structure. The functional neuroimaging results demonstrated that the integrated and efficient brain state emerged during the moments of narrative integration with the increased level of activation and across-modular connections in the default mode network. Underlying brain states were synchronized across individuals when comprehending novel narratives, with increased occurrences of the default mode network state, integrated with sensory processing network, during narrative integration. A model based on time-resolved functional brain connectivity predicted changing cognitive states related to comprehension that are general across narratives. Together, these results support adaptive reconfiguration and interaction of the functional brain networks on causal integration of the narratives.SIGNIFICANCE STATEMENT The human brain can integrate temporally disconnected pieces of information into coherent narratives. However, the underlying cognitive and neural mechanisms of how the brain builds a narrative representation remain largely unknown. We showed that comprehension occurs as the causally related events are integrated to form a coherent situational model. Using fMRI, we revealed that the large-scale brain states and interaction between brain regions dynamically reconfigure as comprehension evolves, with the default mode network playing a central role during moments of narrative integration. Overall, the study demonstrates that narrative comprehension occurs through a dynamic process of information accumulation and causal integration, supported by the time-varying reconfiguration and brain network interaction.
Collapse
Affiliation(s)
- Hayoung Song
- Center for Neuroscience Imaging Research, IBS, Suwon, Korea, 16419
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea, 16419
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, IBS, Suwon, Korea, 16419
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea, 16419
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec Canada, H3A 2B4
- Department of Data Science, Inha University, Incheon, Korea, 22201
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, IBS, Suwon, Korea, 16419
- School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon, Korea, 16419
| | - Won Mok Shim
- Center for Neuroscience Imaging Research, IBS, Suwon, Korea, 16419
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea, 16419
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea, 16419
| |
Collapse
|
18
|
Song H, Finn ES, Rosenberg MD. Neural signatures of attentional engagement during narratives and its consequences for event memory. Proc Natl Acad Sci U S A 2021; 118:e2021905118. [PMID: 34385312 PMCID: PMC8379980 DOI: 10.1073/pnas.2021905118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As we comprehend narratives, our attentional engagement fluctuates over time. Despite theoretical conceptions of narrative engagement as emotion-laden attention, little empirical work has characterized the cognitive and neural processes that comprise subjective engagement in naturalistic contexts or its consequences for memory. Here, we relate fluctuations in narrative engagement to patterns of brain coactivation and test whether neural signatures of engagement predict subsequent memory. In behavioral studies, participants continuously rated how engaged they were as they watched a television episode or listened to a story. Self-reported engagement was synchronized across individuals and driven by the emotional content of the narratives. In functional MRI datasets collected as different individuals watched the same show or listened to the same story, engagement drove neural synchrony, such that default mode network activity was more synchronized across individuals during more engaging moments of the narratives. Furthermore, models based on time-varying functional brain connectivity predicted evolving states of engagement across participants and independent datasets. The functional connections that predicted engagement overlapped with a validated neuromarker of sustained attention and predicted recall of narrative events. Together, our findings characterize the neural signatures of attentional engagement in naturalistic contexts and elucidate relationships among narrative engagement, sustained attention, and event memory.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Psychology, University of Chicago, Chicago, IL 60637;
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL 60637;
- Neuroscience Institute, University of Chicago, Chicago, IL 60637
| |
Collapse
|
19
|
The default mode network in cognition: a topographical perspective. Nat Rev Neurosci 2021; 22:503-513. [PMID: 34226715 DOI: 10.1038/s41583-021-00474-4] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.
Collapse
|
20
|
Smallwood J, Turnbull A, Wang HT, Ho NS, Poerio GL, Karapanagiotidis T, Konu D, Mckeown B, Zhang M, Murphy C, Vatansever D, Bzdok D, Konishi M, Leech R, Seli P, Schooler JW, Bernhardt B, Margulies DS, Jefferies E. The neural correlates of ongoing conscious thought. iScience 2021; 24:102132. [PMID: 33665553 PMCID: PMC7907463 DOI: 10.1016/j.isci.2021.102132] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A core goal in cognitive neuroscience is identifying the physical substrates of the patterns of thought that occupy our daily lives. Contemporary views suggest that the landscape of ongoing experience is heterogeneous and can be influenced by features of both the person and the context. This perspective piece considers recent work that explicitly accounts for both the heterogeneity of the experience and context dependence of patterns of ongoing thought. These studies reveal that systems linked to attention and control are important for organizing experience in response to changing environmental demands. These studies also establish a role of the default mode network beyond task-negative or purely episodic content, for example, implicating it in the level of vivid detail in experience in both task contexts and in spontaneous self-generated experiential states. Together, this work demonstrates that the landscape of ongoing thought is reflected in the activity of multiple neural systems, and it is important to distinguish between processes contributing to how the experience unfolds from those linked to how these experiences are regulated.
Collapse
Affiliation(s)
- Jonathan Smallwood
- Department of Psychology / York Imaging Centre, University of York, York, England
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Adam Turnbull
- Department of Psychology / York Imaging Centre, University of York, York, England
- University of Rochester School of Nursing, Rochester, NY, USA
| | | | - Nerissa S.P. Ho
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Giulia L. Poerio
- Department of Psychology, University of Essex, Colchester, England
| | | | - Delali Konu
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Brontë Mckeown
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Meichao Zhang
- Department of Psychology / York Imaging Centre, University of York, York, England
| | | | | | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mahiko Konishi
- Laboratoire de Sciences Cognitives et de Psycholinguistique, Department d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, Paris, France
| | | | | | - Jonathan W. Schooler
- Department of Psychology, duke University, Durham, NC, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Daniel S. Margulies
- Centre Nationale de la Researche Scientifique, Institute du Cerveau et de la Moelle epiniere, Paris, France
| | - Elizabeth Jefferies
- Department of Psychology / York Imaging Centre, University of York, York, England
| |
Collapse
|
21
|
Breukelaar IA, Griffiths KR, Harris A, Foster SL, Williams LM, Korgaonkar MS. Intrinsic functional connectivity of the default mode and cognitive control networks relate to change in behavioral performance over two years. Cortex 2020; 132:180-190. [PMID: 32987241 DOI: 10.1016/j.cortex.2020.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Understanding how brain circuitry mediates cognitive control of behavior is crucial for understanding both mental health and disease. Cognitive control describes the group of behaviors that guide goal-directed action such as sustaining attention, processing information and inhibiting impulsive responses. We rely on these behaviors for daily social, occupational and emotional functioning. Two brain networks, the cognitive control network (CCN) and default mode network (DMN), are thought to cooperate in an inverse relationship to support these functions. However, we do not yet know how connectivity within and between these networks directly relates to healthy cognitive control behaviors, and whether these interactions change over time. Here, we employed a longitudinal design to investigate if change in intrinsic connectivity in these networks will correlate with change in a range of cognitive control functions. Over two years, 109 healthy individuals, aged eight to thirty-eight, were tested twice using fMRI to assess intrinsic functional connectivity of the CCN and DMN and a validated cognitive battery. We found that increased within-network connectivity through central and left DMN was associated with increased memory performance. Additionally, decreased connectivity between posterior parietal CCN and DMN nodes and decreased connectivity between left and right dorsolateral prefrontal nodes was associated with increased cognitive performance. These findings were age and gender controlled, suggesting that age-independent plastic change in intrinsic connectivity through these networks directly relate to changing behavior. This has implications for targeting intrinsic connectivity as a possible mechanism to improve cognitive function.
Collapse
Affiliation(s)
- Isabella A Breukelaar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
| | - Kristi R Griffiths
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Anthony Harris
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia; The Discipline of Medical Radiation Sciences, Faculty of Health Science, The University of Sydney, NSW, Australia
| | - Leanne M Williams
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; MIRECC, Palo Alto VA, Palo Alto, CA, USA
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia.
| |
Collapse
|
22
|
Controlled semantic summation correlates with intrinsic connectivity between default mode and control networks. Cortex 2020; 129:356-375. [DOI: 10.1016/j.cortex.2020.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
|
23
|
Ho NSP, Poerio G, Konu D, Turnbull A, Sormaz M, Leech R, Bernhardt B, Jefferies E, Smallwood J. Facing up to the wandering mind: Patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. Neuroimage 2020; 214:116765. [PMID: 32213314 PMCID: PMC7284321 DOI: 10.1016/j.neuroimage.2020.116765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/02/2022] Open
Abstract
Human cognition is not always tethered to events in the external world. Laboratory and real world experience sampling studies reveal that attention is often devoted to self-generated mental content rather than to events taking place in the immediate environment. Recent studies have begun to explicitly examine the consistency between states of off-task thought in the laboratory and in daily life, highlighting differences in the psychological correlates of these states across the two contexts. Our study used neuroimaging to further understand the generalizability of off-task thought across laboratory and daily life contexts. We examined (1) whether context (daily life versus laboratory) impacts on individuals' off-task thought patterns and whether individual variations in these patterns are correlated across contexts; (2) whether neural correlates for the patterns of off-task thoughts in the laboratory show similarities with those thoughts in daily life, in particular, whether differences in cortical grey matter associated with detail and off-task thoughts in the para-hippocampus, identified in a prior study on laboratory thoughts, were apparent in real life thought patterns. We also measured neural responses to common real-world stimuli (faces and scenes) and examined how neural responses to these stimuli were related to experiences in the laboratory and in daily life - finding evidence of both similarities and differences. There were consistent patterns of off-task thoughts reported across the two contexts, and both patterns had a commensurate relationship with medial temporal lobe architecture. However, compared to real world off-task thoughts, those in the laboratory focused more on social content and showed a stronger correlation with neural activity when viewing faces compared to scenes. Overall our results show that off-task thought patterns have broad similarities in the laboratory and in daily life, and the apparent differences may be, in part, driven by the richer environmental context in the real world. More generally, our findings are broadly consistent with emerging evidence that shows off-task thoughts emerge through the prioritisation of information that has greater personal relevance than events in the here and now.
Collapse
Affiliation(s)
| | - Giulia Poerio
- Department of Psychology, University of Essex, England, UK
| | - Delali Konu
- Department of Psychology, University of York, England, UK
| | - Adam Turnbull
- Department of Psychology, University of York, England, UK
| | - Mladen Sormaz
- Department of Psychology, University of York, England, UK
| | | | | | | | | |
Collapse
|
24
|
Jin CY, Borst JP, van Vugt MK. Distinguishing vigilance decrement and low task demands from mind-wandering: A machine learning analysis of EEG. Eur J Neurosci 2020; 52:4147-4164. [PMID: 32538509 PMCID: PMC7689771 DOI: 10.1111/ejn.14863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
Mind‐wandering is a ubiquitous mental phenomenon that is defined as self‐generated thought irrelevant to the ongoing task. Mind‐wandering tends to occur when people are in a low‐vigilance state or when they are performing a very easy task. In the current study, we investigated whether mind‐wandering is completely dependent on vigilance and current task demands, or whether it is an independent phenomenon. To this end, we trained support vector machine (SVM) classifiers on EEG data in conditions of low and high vigilance, as well as under conditions of low and high task demands, and subsequently tested those classifiers on participants' self‐reported mind‐wandering. Participants' momentary mental state was measured by means of intermittent thought probes in which they reported on their current mental state. The results showed that neither the vigilance classifier nor the task demands classifier could predict mind‐wandering above‐chance level, while a classifier trained on self‐reports of mind‐wandering was able to do so. This suggests that mind‐wandering is a mental state different from low vigilance or performing tasks with low demands—both which could be discriminated from the EEG above chance. Furthermore, we used dipole fitting to source‐localize the neural correlates of the most import features in each of the three classifiers, indeed finding a few distinct neural structures between the three phenomena. Our study demonstrates the value of machine‐learning classifiers in unveiling patterns in neural data and uncovering the associated neural structures by combining it with an EEG source analysis technique.
Collapse
Affiliation(s)
- Christina Yi Jin
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Jelmer P Borst
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Marieke K van Vugt
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| |
Collapse
|