1
|
da Silva WJ, Diel LF, Pilz-Júnior HL, de Lemos AB, de Freitas Milagres T, Pereira ILG, Bernardi L, Ribeiro BM, Lamers ML, Schrekker HS, da Silva OS. Imidazolium salt's toxic effects in larvae and cells of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Sci Rep 2024; 14:15421. [PMID: 38965297 PMCID: PMC11224238 DOI: 10.1038/s41598-024-66404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Leonardo Francisco Diel
- Faculty of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Bittencourt de Lemos
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tarcísio de Freitas Milagres
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Igor Luiz Gonçalves Pereira
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lisiane Bernardi
- Department of Morphological Sciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bergmann Morais Ribeiro
- Department of Celular Biology, Institute of Biological Sciences, Universidade de Brasília, Brasília-DF, Brazil
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Dong Y, Chen D, Zhou S, Mao Z, Fan J. Identification of Attractants from Three Host Plants and How to Improve Attractiveness of Plant Volatiles for Monochamus saltuarius. PLANTS (BASEL, SWITZERLAND) 2024; 13:1732. [PMID: 38999572 PMCID: PMC11243586 DOI: 10.3390/plants13131732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
As a new vector insect of pine wood nematodes in China, the Monochamus saltuarius (Coleoptera: Cerambycidae) vectors pine wilt nematodes into healthy pine trees through feeding and oviposition, resulting in huge economic losses to forestry. A promising control strategy is to develop safe and efficient attractants. This study aims to screen for the key active volatiles of Pinus koraiensis (Pinales: Pinaceae), Pinus tabuliformis (Pinales: Pinaceae), and Picea asperata (Pinales: Pinaceae) that can attract M. saltuarius, and to study the synergistic attraction of the main attractant plant volatiles with ethanol and insect aggregation pheromones. The preference of M. saltuarius for three hosts is P. koraiensis > P. tabuliformis > Picea asperata. We detected 18 organic volatiles from three host plants. Through EAG assays and indoor Y-tube behavioral experiments, 3-carene, (-)-camphor, β-pinene, α-phellandrene, terpinolene, α-pinene, D-limonene, and myrcene were screened to have attractive effects on M. saltuarius. We found that 3-carene, β-pinene, and α-pinene are the most attractive kairomones in field experiments, which may play a crucial role in the host localization of M. saltuarius. Ethanol has a synergistic effect on the attractant activity of 3-carene and β-pinene, and the synergistic effect on β-pinene is the best. The mixture of ethanol, 2-undecyloxy-1-ethanol, and ipsdienol can significantly enhance the attraction effect of β-pinene on M. saltuarius. These new findings provide a theoretical basis for the development of attractants for adult M. saltuarius and contribute to the green control of M. saltuarius.
Collapse
Affiliation(s)
| | | | | | | | - Jianting Fan
- School of Forestry and Biotechnology, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A & F University, Lin’an 311300, China; (Y.D.); (D.C.); (S.Z.); (Z.M.)
| |
Collapse
|
3
|
de Lima AMDL, de Lima Rosa G, Guzzo EFM, Padilha RB, de Araujo MC, da Silva RC, Coitinho AS, Van Der Sand ST. Effect of prednisolone in a kindling model of epileptic seizures in rats on cytokine and intestinal microbiota diversity. Epilepsy Behav 2024; 155:109800. [PMID: 38657485 DOI: 10.1016/j.yebeh.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1β concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1β concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1β concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1β cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Cargnin JMR, Júnior HLP, João JJ. Sustainable technology: potential of biomass (Bambusa tuldoides) for biological denitrification of wastewater generated in shrimp farming. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:736. [PMID: 37233845 DOI: 10.1007/s10661-023-11351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Wastewater from shrimp farming is rich in organic material, solids, and nutrients, which cause a series of environmental problems when released into the environment. Currently, for the removal of nitrogen compounds from wastewater, among the most studied methods is biological denitrification. The objective of this study was to evaluate the operational parameters for the development of a more sustainable technology for the removal of nitrogen compounds from shrimp farm wastewater, using Bambusa tuldoides (a species of bamboo) as a source of carbon and a material conducive to the development of selected denitrifying bacteria. To optimize the process, biological denitrification assays were performed varying the following parameters: bamboo length (cm), pH, temperature, and stoichiometric proportions of C and N. The operational stability of the process with the reuse of the bamboo biomass was also evaluated. Cronobacter sakazakii and Bacillus cereus were identified as denitrifying microorganisms present in reactor with bamboo biomass. The best operational conditions observed were pH 6 to 7 and temperature 30 to 35 °C, and the addition of an external carbon source was not necessary for the denitrification process to occur efficiently. Under these conditions, biological denitrification occurred with an average efficiency above 90% based on the removal of the nitrogen contaminants evaluated (NO3-N and NO2-N). Regarding operational stability, 8 cycles were performed using the same source of carbon without reducing the efficiency of the process.
Collapse
Affiliation(s)
| | - Harry Luiz Pilz Júnior
- Postgraduate Program in Environmental Microbiology, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Jair Juarez João
- Postgraduate Program in Environmental Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Martins Leal Schrekker C, Sokolovicz YCA, Raucci MG, Leal CAM, Ambrosio L, Lettieri Teixeira M, Meneghello Fuentefria A, Schrekker HS. Imidazolium Salts for Candida spp. Antibiofilm High-Density Polyethylene-Based Biomaterials. Polymers (Basel) 2023; 15:polym15051259. [PMID: 36904500 PMCID: PMC10007465 DOI: 10.3390/polym15051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The species of Candida present good capability to form fungal biofilms on polymeric surfaces and are related to several human diseases since many of the employed medical devices are designed using polymers, especially high-density polyethylene (HDPE). Herein, HDPE films containing 0; 0.125; 0.250 or 0.500 wt% of 1-hexadecyl-3-methylimidazolium chloride (C16MImCl) or its analog 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS) were obtained by melt blending and posteriorly mechanically pressurized into films. This approach resulted in more flexible and less brittle films, which impeded the Candida albicans, C. parapsilosis, and C. tropicalis biofilm formation on their surfaces. The employed imidazolium salt (IS) concentrations did not present any significant cytotoxic effect, and the good cell adhesion/proliferation of human mesenchymal stem cells on the HDPE-IS films indicated good biocompatibility. These outcomes combined with the absence of microscopic lesions in pig skin after contact with HDPE-IS films demonstrated their potential as biomaterials for the development of effective medical device tools that reduce the risk of fungal infections.
Collapse
Affiliation(s)
- Clarissa Martins Leal Schrekker
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Yuri Clemente Andrade Sokolovicz
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Claudio Alberto Martins Leal
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Mário Lettieri Teixeira
- Laboratory of Biochemistry and Toxicology, Instituto Federal Catarinense (IFC), Rodovia SC 283—km 17, Concórdia 89703-720, SC, Brazil
| | - Alexandre Meneghello Fuentefria
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| |
Collapse
|
6
|
Garcia ADC, de Menezes OT, Mariano LA, Santiago LC, Araújo ÂR, Monfardini JD, Simões RDC, de Oliveira AC, Roque RA, Tadei WP, Teles HL, de Oliveira CM. Endophytic fungus Phomopsis sp. as a source of 3-nitropropionic acid with larvicidal activity against Aedes aegypti (Linnaeus 1762, Diptera: Culicidae). Rev Soc Bras Med Trop 2022; 55:e00182022. [PMID: 36287467 PMCID: PMC9592098 DOI: 10.1590/0037-8682-0018-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Aedes aegypti is the primary vector of viruses, such as Zika, chikungunya, yellow fever, and dengue. In this context, a biomonitored chemical study was conducted to evaluate the activity of the crude extract of the endophytic fungus Phomopsis sp. against the larvae of Aedes aegypti. Methods: Crude extract, fractions, and isolated substances were evaluated in in-vitro assays against third-stage larvae of Aedes aegypti. Results: We isolated 3-nitropropionic acid with an LC50 of 15.172 ppm and LC90 of 18.178 ppm after 24 hours of larval exposure. Conclusions: The results indicated that 3-nitropropionic acid exerted larvicidal activity.
Collapse
Affiliation(s)
- Armando da Costa Garcia
- Universidade Federal do Amazonas, Instituto de Ciências Exatas e Tecnologia, Itacoatiara, AM, Brasil
| | | | - Lissa Apolonia Mariano
- Universidade Federal do Amazonas, Instituto de Ciências Exatas e Tecnologia, Itacoatiara, AM, Brasil
| | - Letícia Corrêa Santiago
- Universidade Federal do Amazonas, Instituto de Ciências Exatas e Tecnologia, Itacoatiara, AM, Brasil
| | | | | | | | | | | | | | - Helder Lopes Teles
- Universidade Federal de Rondonópolis, Instituto de Ciências Exatas e Naturais, Rondonópolis, MT, Brasil
| | | |
Collapse
|
7
|
de Campos PS, Menti LD, Pazutti L, Bortoli NÂ, Ferreira LA, van Wyk JL, Darkwa J, Schrekker HS, Lamers ML. The anti-tumor effects of imidazolium salts on oral squamous cell carcinoma. J Oral Pathol Med 2020; 50:470-477. [PMID: 33340378 DOI: 10.1111/jop.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/21/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Imidazolium salts (IS), ionic derivatives of neutral imidazoles, have properties that can be adjusted by structural modifications to their cations and anions, which makes this particular class of compounds a promising option for developing biologically active compounds. The anti-tumor effects of the IS 1-n-butyl-3-methylimidazolium chloride (C4 MImCl), 1-n-decyl-3-methylimidazolium chloride (C10 MImCl), 1-n-hexadecyl-3-methylimidazolium chloride (C16 MImCl), 1-n-hexadecyl-2,3-dimethylimidazolium chloride (C16 M2 ImCl), 1-n-octadecyl-3-methylimidazolium chloride (C18 MImCl), 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16 MImMeS), and 1-n-hexadecyl-2,3- dimethylimidazolium methanesulfonate (C16 M2 ImMeS) on oral squamous cell carcinoma (OSCC) have been studied here. METHODS Oral squamous cell carcinoma cells (CAL27) were incubated with increasing IS doses and then submitted to proliferation (2D), cell death (2D) and spheroid assay (3D). RESULTS The IS anti-tumor effect was dependent on both its N-alkyl chain length and anion, whereby C16 MImCl proved to be more effective in combination for inhibiting cell proliferation and cell-cell adhesion, outperforming the methylated C16 M2 ImCl derivative and, most importantly, the gold standard-cisplatin. In addition, C16 MImCl had little effect on keratinocytes and more pronounced effects on more aggressive tumor cells. It also exhibited similar effects on inducing cell death when compared to Cisplatin. This compound spread to a greater area of the tumor sphere and produced an enhanced number of apoptotic and necrotic cells in the tumor cell line, demonstrating only a small rise in the healthy cells. CONCLUSION These data indicate that the effect of C16 MlmCl on OSCC is promising, as it is selective for cancer cells.
Collapse
Affiliation(s)
- Paloma Santos de Campos
- Dentistry School, Basic Research Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Deitos Menti
- Dentistry School, Basic Research Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luise Pazutti
- Dentistry School, Basic Research Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Ângela Bortoli
- Dentistry School, Basic Research Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonildo Alves Ferreira
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juanita Lizele van Wyk
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Chemistry, Molecular Science Institute, University of Witswatersrand, Johannesburg, South Africa
| | - James Darkwa
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Dentistry School, Basic Research Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Neves YF, Eloi ACL, de Freitas HMM, Soares EGO, Rivillo D, Demétrio da Silva V, Schrekker HS, Badel JL. Imidazolium salts as alternative compounds to control diseases caused by plant pathogenic bacteria. J Appl Microbiol 2020; 128:1236-1247. [PMID: 31922640 DOI: 10.1111/jam.14575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
AIMS To evaluate the inhibitory effect of five structurally different imidazolium salts on the in vitro growth of plant pathogenic bacteria that belong to divergent taxonomic genera as well as their ability to reduce the severity of common bacterial blight of common bean caused by Xanthomonas axonopodis pv. phaseoli and bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. METHODS AND RESULTS Growth inhibition of Xanthomonas, Pseudomonas, Erwinia, Pectobacterium and Dickeya strains by imidazolium salts was assessed in vitro by radial diffusion on agar medium and by ressazurin reduction in liquid medium. The reduction of common bacterial blight and bacterial speck symptoms and the area under de disease progress curves were determined by spraying two selected imidazolium salts on healthy plants 48 h prior to inoculation with virulent strains of the bacterial pathogens. All imidazolium salts inhibited the growth of all plant pathogenic bacteria when tested by radial diffusion on agar medium. The strength of inhibition differed among imidazolium salts when tested on the same bacterial strain and among bacterial strains when tested with the same imidazolium salt. In liquid medium, most imidazolium salts presented the same minimum inhibitory concentration (MIC) and minimum bactericidal concentration values (200 µmol l-1 ), the most notable exception of which was the MIC (at least 1000 µmol l-1 ) for the dicationic MImC10 MImBr2 . The imidazolium salts C16 MImBr and C16 MImCl caused significant reductions in the severity of common bacterial blight symptoms when compared with nontreated plants. CONCLUSION Imidazolium salts inhibit the in vitro growth of plant pathogenic bacteria and reduce plant disease symptoms to levels comparable to an authorized commercial antibiotic product. SIGNIFICANCE AND IMPACT OF THE STUDY New compounds exhibiting broad-spectrum antibacterial activity with potential use in agriculture were identified.
Collapse
Affiliation(s)
- Y F Neves
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - A C L Eloi
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - H M M de Freitas
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - E G O Soares
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D Rivillo
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - V Demétrio da Silva
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H S Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J L Badel
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|