1
|
Rungsirivanich P, Parlindungan E, Mahony J, Supandee W, Thongwai N, van Sinderen D. Functional genomic insights into Floricoccus penangensis ML061-4 isolated from leaf surface of Assam tea. Sci Rep 2025; 15:2951. [PMID: 39848972 PMCID: PMC11758030 DOI: 10.1038/s41598-025-86602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F. penangensis ML061-4 genome, gene identification and annotation were undertaken by in silico analysis. The complete genome of F. penangensis ML061-4 consists of single chromosome of 2,159,127 base pairs, containing a GC content of 33.2% and encompassing 2049 predicted protein-encoding genes. A total of 1195 genes (58.0%) in the F. penangensis ML061-4 genome have assignable functions based on BlastKOALA analysis. Furthermore, 1235 genes (59.9%) were classified into six KEGG functional categories with 187 associated pathways, while 1419 genes (68.8%) were assigned a putative function by the Clusters of Orthologous Groups (COGs) database. The ML061-4 genome was evaluated for genes associated with complex carbohydrate metabolism, bacterial adhesion, virulence factors, pathogenicity, bacteriophages, antiviral defence systems as well as toxin- and antibiotic-resistance associated genes, and genes involved in toxin production, secondary metabolite biosynthesis and xenobiotics biodegradation. The obtained results support the notion of F. penangensis ML061-4 being safe for biotechnological and food industry purposes. This is the first report outlining functional genomic insights regarding a member of the genus Floricoccus.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Community Development Department, Ministry of Interior, Bangkok, 10210, Thailand
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland
| | - Witsanu Supandee
- Engineering Science Classroom, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, T12 YT20, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, T12 TP07, Ireland.
| |
Collapse
|
2
|
Vasiljevs S, Witney AA, Baines DL. The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L125-L134. [PMID: 38084404 PMCID: PMC11244689 DOI: 10.1152/ajplung.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
3
|
Husna, Kim BE, Won MH, Jeong MI, Oh KK, Park DS. Characterization and genomic insight of surfactin-producing Bacillus velezensis and its biocontrol potential against pathogenic contamination in lettuce hydroponics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121487-121500. [PMID: 37950785 DOI: 10.1007/s11356-023-30871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Due to food borne pathogen, maintaining the viability of fresh fruits and vegetable is a great concern. Several strategies including microbial and plant-based formulations to reduce their infection and maintain quality of the fresh food are in practice. Currently, Bacillus has gained significant traction as a biocontrol agent for regulating diseases affecting a variety of agricultural and horticultural crops. Food-grade citric acid and plant growth-promoting rhizobacteria (PGPR) were used as antimicrobial agent, MIC results showed that PGPR (14.87 mm) and CA (20.25 mm) exhibited notable antimicrobial activity against E. coli. Lettuce treated with PGPR showed reduction in E. coli contamination, E. coli was detected at 3.30, 3.68 in control, and 2.7 log CFU/g in random root injury lettuce inoculated with PGPR KACC 21110 respectively. Random root injury showed a trend toward increasing E. coli internalization. The strains exhibited resistance to multiple antibiotics, including Imipenem, tetracycline, ampicillin, cefotaxime, cefoxitin, and ceftriaxone. Comprehensive data analysis revealed the presence of ten putative bacteriocin or bacteriocin-like gene clusters. The structure of lipopeptide homologs was characterized by using QTOF-MS/MS. The mass ion peaks attributed to surfactin homologs, surfactin A ion at m/z 1008.66, surfactin B, C at m/z 1022.67 and 1036.69. In addition to surfactin, a polyketide oxydifficidin and lipopeptide NO were extracted and detected from the extract of B. velezensis. Both isolates are key biocontrol agents and have significant potential in combating foodborne pathogens and can be utilized to explore novel antibacterial products for preventing pathogens in fresh produce.
Collapse
Affiliation(s)
- Husna
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea
| | - Bo-Eun Kim
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea.
| | - Myeong-Hee Won
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea
| | - Myeong-In Jeong
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea
| | - Kwang-Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea
| | - Dong Suk Park
- Microbial Safety Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, 55365, Republic of Korea
| |
Collapse
|
4
|
Rungsirivanich P, Parlindungan E, Mahony J, O'Neill I, McDonnell B, Bottacini F, Supandee W, Thongwai N, van Sinderen D. Complete Genome Sequence of Floricoccus penangensis ML061-4 Isolated from Assam Tea Leaf [ Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. J Genomics 2023; 11:37-39. [PMID: 37497281 PMCID: PMC10367601 DOI: 10.7150/jgen.83521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 07/28/2023] Open
Abstract
Floricoccus penangensis is a Gram-positive coccoid organism that is a member of the lactic acid bacteria. F. penangensis ML061-4 was originally isolated from the surface of an Assam tea leaf, and its genome is herein shown to contain gene clusters predicted to be involved in complex carbohydrate metabolism and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Community Development Department, Ministry of Interior, Bangkok, Thailand
- School of Microbiology, University College Cork, Cork, Ireland
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ian O'Neill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Brian McDonnell
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- Biological Sciences and ADAPT Research Centre, Munster Technological University, Cork, Ireland
| | - Witsanu Supandee
- Darunsikkhalai School, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Thongwai N, Futui W, Ladpala N, Sirichai B, Weechan A, Kanklai J, Rungsirivanich P. Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms 2022; 10:microorganisms10030528. [PMID: 35336103 PMCID: PMC8955979 DOI: 10.3390/microorganisms10030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter maltaceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20–30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8–16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.
Collapse
Affiliation(s)
- Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| | - Wirapong Futui
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthiwa Ladpala
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Benjamat Sirichai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Anuwat Weechan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Jirapat Kanklai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| |
Collapse
|
6
|
Rungsirivanich P, Parlindungan E, O'Connor PM, Field D, Mahony J, Thongwai N, van Sinderen D. Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [ Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Front Microbiol 2021; 12:789362. [PMID: 34899671 PMCID: PMC8653701 DOI: 10.3389/fmicb.2021.789362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bacillus velezensis ML122-2 is an antimicrobial-producing strain isolated from the leaf of Assam tea or Miang [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. The cell-free supernatant (CFS) of strain ML122-2 exhibits a broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative bacteria as well as the mold Penicillium expansum. The genome of B. velezensis ML122-2 was sequenced and in silico analysis identified three potential bacteriocin-associated gene clusters, that is, those involved in the production of mersacidin, amylocyclicin, and LCI. Furthermore, six gene clusters exhibiting homology (75–100% DNA sequence identity) to those associated with the secondary metabolites bacilysin, bacillibactin, surfactin, macrolactin H, bacillaene, and plipastatin were identified. Individual antimicrobial activities produced by B. velezensis ML122-2 were purified and characterized by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis, revealing three antimicrobial peptides with molecular masses corresponding to surfactin, plipastatin, and amylocyclicin. Transcriptional analysis of specific genes associated with mersacidin (mrsA), amylocyclicin (acnA), plipastatin (ppsA), and surfactin (srfAA) production by B. velezensis ML122-2 showed that the first was not transcribed under the conditions tested, while the latter three were consistent with the presence of the associated peptides as determined by mass spectrometry analysis. These findings demonstrate that B. velezensis ML122-2 has the genetic capacity to produce a wide range of antimicrobial activities that may support a specific community structure and highlight the biotechnological properties of Assam tea.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Wang J, Zhang J, Chen Y, Yu L, Teng J, Xia N, Wei B, Xiao S, Huang L. The relationship between microbial dynamics and dominant chemical components during Liupao tea processing. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Culturable Bacterial Community on Leaves of Assam Tea ( Camellia sinensis var. assamica) in Thailand and Human Probiotic Potential of Isolated Bacillus spp. Microorganisms 2020; 8:microorganisms8101585. [PMID: 33066699 PMCID: PMC7602384 DOI: 10.3390/microorganisms8101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Assam tea plants (Camellia sinensis var. assamica) or Miang are found in plantations and forests of Northern Thailand. Leaf fermentation has been performed for centuries, but little information is available about their associated microbial community. One hundred and fifty-seven bacterial isolates were isolated from 62 Assam tea leaf samples collected from 6 provinces of Northern Thailand and classified within the phyla of Firmicutes, Actinobacteria, and Proteobacteria. Phayao and Phrae provinces exhibited the highest and the lowest bacterial diversities, respectively. The bacterial community structural pattern demonstrated significant differences between the west and the east sides. Since some Bacillus spp. have been reported to be involved in fermented Miang, Bacillus spp. isolated in this study were chosen for further elucidation. Bacillus siamensis ML122-2 exhibited a growth inhibitory effect against Staphylococcus aureus ATCC 25923 and MRSA DMST 20625, and the highest survival ability in simulated gastric and intestinal fluids (32.3 and 99.7%, respectively), autoaggregation (93.2%), cell surface hydrophobicity (50.0%), and bacterial adherence with Vero cells (75.8% of the control Lactiplantibacillusplantarum FM03-1). This B. siamensis ML122-2 is a promising probiotic to be used in the food industry and seems to have potential antibacterial properties relevant for the treatment of antibiotic-resistant infections.
Collapse
|