1
|
Park J, Heo S, Lee G, Hong SW, Jeong DW. Bacterial diversity of baechu- kimchi with seafood based on culture-independent investigations. Food Sci Biotechnol 2024; 33:1661-1670. [PMID: 38623433 PMCID: PMC11016024 DOI: 10.1007/s10068-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 04/17/2024] Open
Abstract
Baechu-kimchi is a traditional Korean dish of fermented vegetables, in which kimchi cabbage is the major ingredient. Seafood is added to baechu-kimchi in coastal areas, giving this dish regional diversity. However, little is known about how the addition of seafood affects the bacterial diversity of kimchi. Therefore, in this study, the bacterial diversity of five varieties of baechu-kimchi with seafood and one variety of baechu-kimchi without seafood was analyzed using culture-independent techniques. In 81.7% of all kimchi analyzed, the predominant species were members of the phylum Firmicutes and the lactic acid bacteria, Latilactobacillus sakei, Leuconostoc mesenteroides, Pediococcus inopinatus, and Weissella koreensis. These organisms were similar to those identified in baechu-kimchi without the addition of seafood, which was used as a control group, and bacterial community of previously reported kimchi. Therefore, the results of this study confirmed that the addition of seafood did not significantly affect the bacterial community in baechu-kimchi.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Sung Wook Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| |
Collapse
|
2
|
Maini ZA, Lopez CM. Transitions in bacterial communities across two fermentation-based virgin coconut oil (VCO) production processes. Heliyon 2022; 8:e10154. [PMID: 36042721 PMCID: PMC9420384 DOI: 10.1016/j.heliyon.2022.e10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Despite being one of the most used methods of virgin coconut oil (VCO) production, there is no metagenomic study that details the bacterial community shifts during fermentation-based VCO production. The identification and quantification of bacteria associated with coconut milk fermentation is useful for detecting the dominant microbial genera actively involved in VCO production which remains largely undescribed. Describing the constitutive microbial genera involved in this traditional fermentation practice can be used as a preliminary basis for improving industrial practices and developing better fermentation procedures. In this study, we utilized 16S rRNA metagenomic sequencing to trace the transitions in microbial community profiles as coconut milk is fermented to release VCO in two VCO production lines. The results show that difference in the microbiome composition between the different processing steps examined in this work was mainly due to the abundance of the Leuconostoc genus in the raw materials and its decline and transition into the lactic acid bacteria groups Weissella, Enterococcus, Lactobacillus, Lactococcus, and Streptococcus during the latter stages of fermentation. A total of 17 genera with relative abundances greater than 0.01% constitute the core microbiome of the two processing lines and account for 74%–97% of the microbial abundance in all coconut-derived samples. Significant correlations were shown through an analysis of the Spearman’s rank between and within the microbial composition and pH at the genus level. The results of the present study show that the dynamics of VCO fermentation rely on the shifts in abundances of various members of the Lactobacillales order.
Collapse
Affiliation(s)
- Zomesh A Maini
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| | - Crisanto M Lopez
- Department of Biology, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Philippines
| |
Collapse
|
3
|
Li X, Liu D. Effects of wheat bran co-fermentation on the quality and bacterial community succession during radish fermentation. Food Res Int 2022; 157:111229. [DOI: 10.1016/j.foodres.2022.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
4
|
Rastogi YR, Thakur R, Thakur P, Mittal A, Chakrabarti S, Siwal SS, Thakur VK, Saini RV, Saini AK. Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. Int J Food Microbiol 2022; 371:109666. [DOI: 10.1016/j.ijfoodmicro.2022.109666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
|
5
|
Grujović MŽ, Mladenović KG, Semedo-Lemsaddek T, Laranjo M, Stefanović OD, Kocić-Tanackov SD. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr Rev Food Sci Food Saf 2022; 21:1537-1567. [PMID: 35029033 DOI: 10.1111/1541-4337.12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Traditional fermented foods are a significant source of starter and/or non-starter lactic acid bacteria (nsLAB). Moreover, these microorganisms are also known for their role as probiotics. The potential of nsLAB is huge; however, there are still challenges to be overcome with respect to characterization and application. In the present review, the most important steps that autochthonous lactic acid bacteria isolated from fermented foods need to overcome, to qualify as novel starter cultures, or as probiotics, in food technology and biotechnology, are considered. These different characterization steps include precise identification, detection of health-promoting properties, and safety evaluation. Each of these features is strain specific and needs to be accurately determined. This review highlights the advantages and disadvantages of nsLAB, isolated from traditional fermented foods, discussing safety aspects and sensory impact.
Collapse
Affiliation(s)
- Mirjana Ž Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Katarina G Mladenović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Olgica D Stefanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Sunčica D Kocić-Tanackov
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
6
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
7
|
Comparison of Quality Characteristics of Commercial Kimchi Manufactured in Korea, China, and the United States. Foods 2021; 10:foods10102488. [PMID: 34681538 PMCID: PMC8535366 DOI: 10.3390/foods10102488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023] Open
Abstract
Recently, kimchi has been recognized as a healthy food worldwide, prompting increased interest in its health benefits and quality characteristics. Although commercial kimchi is manufactured in various countries, little is known about quality differences between the kimchi from different countries. To clarify differences in quality characteristics, minerals, free sugars, organic acids, free amino acids, and volatile compounds, commercial kimchi manufactured in Korea, China, and the United States were investigated. The composition of the microbial community and antioxidant activity were compared. Mineral and free sugar contents were high in Korean commercial kimchi, while the organic acid content was relatively low. The free amino acid content was markedly higher in Korean kimchi than that in kimchi manufactured in China and the United States. In addition, the volatile compound content differed between the kimchi produced in different countries. Considering the microbial communities, Leuconostoc and Weissella were more abundant in commercial kimchi from Korea than that from China or the United States. Commercial kimchi in Korea showed the highest antioxidant activity. These results support the high quality and antioxidant activity of commercial kimchi manufactured in Korea, emphasizing its importance in the global kimchi industry.
Collapse
|
8
|
Chung YB, Lee H, Hwang S, Seo HY, Suh HJ, Jo K. Effect of capsaicinoids in hot pepper powder on microbial community and free sugar during kimchi fermentation. J Food Sci 2021; 86:3195-3204. [PMID: 34146398 DOI: 10.1111/1750-3841.15785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
Effect of capsaicinoids in hot pepper powder (HP) contains various chemical compounds, including capsaicin and dihydrocapsaicin, which are the main ingredients of the spicy taste. To evaluate the effect of HP on the microbial community in kimchi fermentation, kimchi [kimchi-HP, kimchi-HPE and kimchi-HPER made by adding HP, HP alcohol extract (HPE) and HPE residues (HPER)] was fermented at 4°C for 28 days. The pH and titratable acidity of the samples and the number of bacteria changed with fermentation time. Kimchi-HPER had significantly higher total viable and lactic acid bacteria (LAB) than other samples after 28 days of fermentation. The capsaicinoids content did not differ before and after fermentation, whereas the major free sugar content decreased, and the mannitol content increased. The principal component analysis (PCA) biplots showed similar patterns between kimchi-HP and -HPE. It was confirmed that Leuconostoc and Weissella were related to the initial fermentation, and Lactobacillus was involved in late fermentation. Kimchi-HP and kimchi-HPE increased the ratio of Lactobacillus sakei and decreased that of Leuconostoc mesenteroides compared to kimchi-HPER. Overall, these results revealed that capsaicinoids contained in HP affected Lactobacillus proliferation and mannitol increase during kimchi fermentation.
Collapse
Affiliation(s)
- Young Bae Chung
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.,Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyojung Lee
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Sojeong Hwang
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hye-Young Seo
- Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.,Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Ryu JA, Kim E, Kim MJ, Lee S, Yoon SR, Ryu JG, Kim HY. Physicochemical Characteristics and Microbial Communities in Gochujang, a Traditional Korean Fermented Hot Pepper Paste. Front Microbiol 2021; 11:620478. [PMID: 33537020 PMCID: PMC7848209 DOI: 10.3389/fmicb.2020.620478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Gochujang is a Korean fermented hot pepper paste beneficial to human health by providing various nutrients. In this study, its physicochemical characteristics were identified, and its microbial communities were analyzed by high-throughput sequencing. The interrelationship between physicochemical characteristics and microbial composition was investigated to reveal the properties of gochujang before and after fermentation. After fermentation, all samples showed decreased salt concentration, pH, and reducing sugar content, while the acidity and amino-type nitrogen increased. The water content, salt concentration, amino-type nitrogen, and reducing sugar differed according to the batches of samples. Bacillus, Aerosakkonema, and Enterococcus were identified as the predominant bacterial genera. Furthermore, Aerosakkonema was the most abundant genus before fermentation; however, it was replaced by Bacillus as it decreased after fermentation. For the fungi, Aspergillus dominated before fermentation, whereas Zygosaccharomyces and Millerozyma dominated after fermentation. The high level of amino-type nitrogen in gochujang was related to the relative abundance of B. haynesii/B. licheniformis before fermentation. Additionally, the high abundance of Z. rouxii after fermentation was related to the flavor of gochujang. This comprehensive analysis of the microbial community associated with the physicochemical properties of gochujang could help in understanding the factors affecting the quality of the product.
Collapse
Affiliation(s)
- Jung-A Ryu
- Gyeongsangbuk-do Agricultural Research and Extension Services, Daegu, South Korea.,Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Mi-Ju Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Shinyoung Lee
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sung-Ran Yoon
- Gyeongsangbuk-do Agricultural Research and Extension Services, Daegu, South Korea
| | - Jung-Gi Ryu
- Gyeongsangbuk-do Agricultural Research and Extension Services, Daegu, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
10
|
Mannaa M, Seo YS, Park I. Addition of Coriander during Fermentation of Korean Soy Sauce (Gangjang) Causes Significant Shift in Microbial Composition and Reduction in Biogenic Amine Levels. Foods 2020; 9:foods9101346. [PMID: 32977610 PMCID: PMC7598154 DOI: 10.3390/foods9101346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
The microflora of Korean soy sauce (gangjang) play an important role in maintaining its quality and safety. Hence, it is important to study the microflora and the possible approaches to improve their composition. In this study, the effect of adding coriander during soy sauce fermentation on the microflora and biogenic amines was evaluated using metagenomics and 1H NMR analyses, respectively. The β-diversity showed a clear distinction between the microbiota of the coriander and control groups. Microbial composition analysis revealed noticeable shifts, as Firmicutes abundance was significantly higher in the coriander group (91.77%) than that in the control (38.78%). The dominant bacterial family in the coriander group was the Bacillaceae (57.94%), while Halomonadaceae was dominant in the control group (49.77%). At the species level, Chromohalobacter beijerinckii dominated the microbial community in the control group (49.54%), but not (4.43%) in the coriander group. Moreover, there was a negative correlation between the Bacillaceae and several other bacterial families, including Halomonadaceae, which indicated a possible antagonism and partly explained the reduction in Chromohalobacter abundance in the coriander group. The levels of the biogenic amines histamine, putrescine, and tyramine, which are considered potential health risk factors, were significantly lower in the coriander soy sauce than those in the control sauce. The results of this study suggest that the addition of coriander during Korean soy sauce fermentation is beneficial, as coriander significantly reduces the levels of biogenic amines and the bacteria that produce them.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Correspondence: (Y.-S.S.); (I.P.); Tel.: +82-51-510-2267 (Y.-S.S.); +82-51-540-7236 (I.P.)
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea
- Correspondence: (Y.-S.S.); (I.P.); Tel.: +82-51-510-2267 (Y.-S.S.); +82-51-540-7236 (I.P.)
| |
Collapse
|