1
|
Erşan T, Dilgin DG, Oral A, Skrzypek S, Brycht M, Dilgin Y. Highly sensitive voltammetric determination of the fungicide fenhexamid using a cost-effective and disposable pencil graphite electrode. Mikrochim Acta 2024; 191:773. [PMID: 39612027 PMCID: PMC11607022 DOI: 10.1007/s00604-024-06804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
A differential pulse voltammetric (DPV) method is proposed for the highly sensitive determination of fenhexamid (FHX) based on both electrooxidation and electroreduction processes using a disposable and cost-effective pencil graphite electrode (PGE). The electrochemical oxidation and reduction mechanisms of FHX at the PGE were elucidated by recording cyclic voltammograms at various pH values of Britton-Robinson buffer (BRB) solutions at a scan rate of 50 mV s-1 and different scan rate values in the range 10-400 mV s-1 at selected pH of BRB (pH 2.0). Differential pulse voltammograms recorded under optimized conditions revealed an oxidation peak of FHX around + 0.65 V and a reduction peak of FHX around + 0.45 V. The DPV analysis of FHX revealed two linear ranges: 0.001-0.01 µmol L-1 and 0.01-5.0 µmol L-1 for the anodic peak, and 0.001-0.1 µmol L-1 and 0.1-5.0 µmol L-1 for the cathodic peak. The limits of detection were 0.34 nmol L-1 and 0.32 nmol L-1 for the anodic and cathodic peaks, respectively. The proposed methodology demonstrated satisfactory selectivity, as selected pesticides, certain electroactive compounds, and cationic species tested did not interfere with the voltammetric determination of FHX, particularly during its reduction. The recovery results, showing values close to 100% obtained from the analysis of real samples spiked with FHX, indicated that this methodology can accurately determine FHX in water and soil samples.
Collapse
Affiliation(s)
- Teslime Erşan
- Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Türkiye
| | - Didem Giray Dilgin
- Secondary Science and Mathematics Education Department, Faculty of Education, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Türkiye
| | - Ayhan Oral
- Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Türkiye
| | - Sławomira Skrzypek
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Mariola Brycht
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Tamka 12, 91-403, Lodz, Poland.
| | - Yusuf Dilgin
- Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Türkiye.
| |
Collapse
|
2
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
3
|
El-Said WA, Saleh TS, Al-Bogami AS, Wani MY, Choi JW. Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from Pseudomonas aeruginosa. BIOSENSORS 2024; 14:399. [PMID: 39194628 DOI: 10.3390/bios14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Pyocyanin is considered a maker of Pseudomonas aeruginosa (P. aeruginosa) infection. Pyocyanin is among the toxins released by the P. aeruginosa bacteria. Therefore, the development of a direct detection of PYO is crucial due to its importance. Among the different optical techniques, the Raman technique showed unique advantages because of its fingerprint data, no sample preparation, and high sensitivity besides its ease of use. Noble metal nanostructures were used to improve the Raman response based on the surface-enhanced Raman scattering (SERS) technique. Anodic metal oxide attracts much interest due to its unique morphology and applications. The porous metal structure provides a large surface area that could be used as a hard template for periodic nanostructure array fabrication. Porous shapes and sizes could be controlled by controlling the anodization parameters, including the anodization voltage, current, temperature, and time, besides the metal purity and the electrolyte type/concentration. The anodization of aluminum foil results in anodic aluminum oxide (AAO) formation with different roughness. Here, we will use the roughness as hotspot centers to enhance the Raman signals. Firstly, a thin film of gold was deposited to develop gold/alumina (Au/AAO) platforms and then applied as SERS-active surfaces. The morphology and roughness of the developed substrates were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The Au/AAO substrates were used for monitoring pyocyanin secreted from Pseudomonas aeruginosa microorganisms based on the SERS technique. The results showed that the roughness degree affects the enhancement efficiency of this sensor. The high enhancement was obtained in the case of depositing a 30 nm layer of gold onto the second anodized substrates. The developed sensor showed high sensitivity toward pyocyanin with a limit of detection of 96 nM with a linear response over a dynamic range from 1 µM to 9 µM.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
4
|
Malecka-Baturo K, Żółtowska P, Jackowska A, Kurzątkowska-Adaszyńska K, Grabowska I. Electrochemical Aptasensing Platform for the Detection of Retinol Binding Protein-4. BIOSENSORS 2024; 14:101. [PMID: 38392020 PMCID: PMC10887324 DOI: 10.3390/bios14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Here, we present the results of our the electrochemical aptasensing strategy for retinol binding protein-4 (RBP-4) detection based on a thiolated aptamer against RBP-4 and 6-mercaptohexanol (MCH) directly immobilized on a gold electrode surface. The most important parameters affecting the magnitude of the analytical signal generated were optimized: (i) the presence of magnesium ions in the immobilization and measurement buffer, (ii) the concentration of aptamer in the immobilization solution and (iii) its folding procedure. In this work, a systematic assessment of the electrochemical parameters related to the optimization of the sensing layer of the aptasensor was carried out (electron transfer coefficients (α), electron transfer rate constants (k0) and surface coverage of the thiolated aptamer probe (ΓApt)). Then, under the optimized conditions, the analytical response towards RBP-4 protein, in the presence of an Fe(CN)63-/4- redox couple in the supporting solution was assessed. The proposed electrochemical strategy allowed for RBP-4 detection in the concentration range between 100 and 1000 ng/mL with a limit of detection equal to 44 ng/mL based on electrochemical impedance spectroscopy (EIS). The specificity studies against other diabetes biomarkers, including vaspin and adiponectin, proved the selectivity of the proposed platform. These preliminary results will be used in the next step to miniaturize and test the sensor in real samples.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Paulina Żółtowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Agnieszka Jackowska
- Department of Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-721 Olsztyn, Poland; (P.Ż.); (A.J.)
| | - Katarzyna Kurzątkowska-Adaszyńska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (K.M.-B.); (K.K.-A.)
| |
Collapse
|
5
|
Alahmadi N, El-Said WA. Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode. BIOSENSORS 2023; 13:578. [PMID: 37366943 PMCID: PMC10295939 DOI: 10.3390/bios13060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The electrochemical sensing of biomarkers has attracted more and more attention due to the advantages of electrochemical biosensors, including their ease of use, excellent accuracy, and small analyte volumes. Thus, the electrochemical sensing of biomarkers has a potential application in early disease diagnosis diagnosis. Dopamine neurotransmitters have a vital role in the transmission of nerve impulses. Here, the fabrication of a polypyrrole/molybdenum dioxide nanoparticle (MoO3 NP)-modified ITO electrode based on a hydrothermal technique followed by electrochemical polymerization is reported. Several techniques were used to investigate the developed electrode's structure, morphology, and physical characteristics, including SEM, FTIR, EDX, N2 adsorption, and Raman spectroscopy. The results imply the formation of tiny MoO3 NPs with an average diameter of 29.01 nm. The developed electrode was used to determine low concentrations of dopamine neurotransmitters based on cyclic voltammetry and square wave voltammetry techniques. Furthermore, the developed electrode was used for monitoring dopamine in a human serum sample. The LOD for detecting dopamine by using MoO3 NPs/ITO electrodes based on the SWV technique was around 2.2 nmol L-1.
Collapse
Affiliation(s)
- Nadiyah Alahmadi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Waleed Ahmed El-Said
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
Patel SK, Surve J, Parmar J, Ahmed K, Bui FM, Al-Zahrani FA. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev Biomed Eng 2023; 16:22-37. [PMID: 36197867 PMCID: PMC10009816 DOI: 10.1109/rbme.2022.3212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.
Collapse
Affiliation(s)
- Shobhit K. Patel
- Department of Computer EngineeringMarwadi UniversityRajkot360003India
| | - Jaymit Surve
- Department of Electrical EngineeringMarwadi UniversityRajkot360003India
| | - Juveriya Parmar
- Department of Mechanical and Materials EngineeringUniversity of Nebraska - LincolnNebraska68588USA
- Department of Electronics and Communication EngineeringMarwadi UniversityRajkot360003India
| | - Kawsar Ahmed
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
- Group of Bio-PhotomatiX, Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantoshTangail1902Bangladesh
| | - Francis M. Bui
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
| | | |
Collapse
|
7
|
Zhou K, Kammarchedu V, Butler D, Soltan Khamsi P, Ebrahimi A. Electrochemical Sensors Based on MoS x -Functionalized Laser-Induced Graphene for Real-Time Monitoring of Phenazines Produced by Pseudomonas aeruginosa. Adv Healthc Mater 2022; 11:e2200773. [PMID: 35853169 PMCID: PMC9547893 DOI: 10.1002/adhm.202200773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Indexed: 01/27/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser-induced graphene (LIG) for developing flexible electrochemical sensors for P. aeruginosa based on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx ). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments with Escherichia coli, which does not produce phenazines, demonstrate specificity of sensors for P. aeruginosa. The LOD for pyocyanin (PYO) and phenazine-1-carboxylic acid (PCA) is 0.19 × 10-6 and 1.2 × 10-6 m, respectively. Furthermore, the highly stable sensors enable real-time monitoring of P. aeruginosa biofilms over several days. Comparing square wave voltammetry data over time shows time-dependent generation of phenazines. In particular, two configurations-"Normal" and "Flipped"-are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis of P. aeruginosa infection.
Collapse
Affiliation(s)
- Keren Zhou
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vinay Kammarchedu
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Derrick Butler
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pouya Soltan Khamsi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aida Ebrahimi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022; 27:molecules27123841. [PMID: 35744967 PMCID: PMC9229873 DOI: 10.3390/molecules27123841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Nanoengineering biosensors have become more precise and sophisticated, raising the demand for highly sensitive architectures to monitor target analytes at extremely low concentrations often required, for example, for biomedical applications. We review recent advances in functional nanomaterials, mainly based on novel organic-inorganic hybrids with enhanced electro-physicochemical properties toward fulfilling this need. In this context, this review classifies some recently engineered organic-inorganic metallic-, silicon-, carbonaceous-, and polymeric-nanomaterials and describes their structural properties and features when incorporated into biosensing systems. It further shows the latest advances in ultrasensitive electrochemical biosensors engineered from such innovative nanomaterials highlighting their advantages concerning the concomitant constituents acting alone, fulfilling the gap from other reviews in the literature. Finally, it mentioned the limitations and opportunities of hybrid nanomaterials from the point of view of current nanotechnology and future considerations for advancing their use in enhanced electrochemical platforms.
Collapse
|
10
|
Zare-Bakheir E, Ahghari MR, Maleki A, Ghafuri H. Synthesis of Cu(OH) 2 nanowires modified by Fe 3O 4@SiO 2 nanocomposite via green and innovative method with antibacterial activity and investigation of magnetic behaviours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212025. [PMID: 35706673 PMCID: PMC9156904 DOI: 10.1098/rsos.212025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 05/03/2023]
Abstract
In this study, green synthesis of modified Cu(OH)2 nanowires by Fe3O4@SiO2 core-shell nanospheres was easily performed via chemical reduction. In other words, the direct coating of Cu(OH)2 on Fe3O4@SiO2 was successfully realized without the extra complicated procedures. Various concentrations of synthesized nanocomposites were tested on pathogenic and nosocomial bacteria. In this study, the structural information and characterization of Fe3O4@SiO2/Cu(OH)2 nanowires (FSCNWs) were obtained using FE-SEM, FT-IR, EDX and X-ray diffraction. This nanocomposite can effectively kill important infectious bacteria, including Staphylococcus aureus, Escherichia coli, Staphylococcus saprophyticus, Pseudomonas aeruginosa and Klebsiella pneumoniae. Studies have shown that FSCNW nanocomposites affect common antibiotic-resistant bacteria. This result confirms the function of FSCNW as an effective, beneficial and environmentally friendly antibacterial agent that can used in a wide range of applications in medicine. FSCNWs can be separated conveniently from bacteria-containing solutions using a magnet. Compared with nanocomposites based on other metals such as silver and gold, the use of FSCNWs in water treatment has been recommended because of the precursor of copper for its low price and less toxicity. In addition to its special properties such as mild reaction conditions, green synthesis methods, admissible magnetic properties, easy separation, high antibacterial activity and beneficial efficiency.
Collapse
Affiliation(s)
- Ensiye Zare-Bakheir
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
11
|
Cheng L, He Y, Yang Y, Chen J, He H, Liu Y, Lin Z, Hong G. Highly reproducible and sensitive electrochemical biosensor for Chlamydia trachomatis detection based on duplex-specific nuclease-assisted target-responsive DNA hydrogels and bovine serum albumin carrier platform. Anal Chim Acta 2022; 1197:339496. [DOI: 10.1016/j.aca.2022.339496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/23/2023]
|
12
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
13
|
Li Y, Hu Y, Chen T, Chen Y, Li Y, Zhou H, Yang D. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022; 240:123210. [PMID: 35026633 DOI: 10.1016/j.talanta.2022.123210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous opportunistic pathogen, can frequently cause chronic obstructive pulmonary disease, cystic fibrosis and chronic wounds, and potentially lead to severe morbidity and mortality. Timely and adequate treatment of nosocomial infection in clinic depends on rapid detection and accurate identification of P. aeruginosa and its early-stage antibiotic susceptibility test. Traditional methods like plating culture, polymerase chain reaction, and enzyme-linked immune sorbent assays are time-consuming and require expensive equipment, limiting the rapid diagnostic application. Advanced sensing strategy capable of fast, sensitive and simple detection with low cost has therefore become highly desired in point of care testing (POCT) of nosocomial pathogens. Within this review, advanced detection and sensing strategies for P. aeruginosa cells along with associated quorum sensing (QS) molecules over the last ten years are discussed and summarized. Firstly, the principles of four commonly used sensing strategies including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), electrochemistry, and fluorescence are briefly overviewed. Then, the advancement of the above sensing techniques for P. aeruginosa cells and its QS biomarkers detection are introduced, respectively. In addition, the integration with novel compatible platforms towards clinical application is highlighted in each section. Finally, the current achievements are summarized along with proposed challenges and prospects.
Collapse
Affiliation(s)
- Yingying Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yang Hu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Tao Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yan Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yi Li
- Graduate School of Biomedical Engineering and ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Danting Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
14
|
El-Said WA, Al-Bogami AS, Alshitari W. Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120237. [PMID: 34352502 PMCID: PMC8327772 DOI: 10.1016/j.saa.2021.120237] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 05/05/2023]
Abstract
Here, we reported the synthesis of reduced porous graphene oxide (rPGO) decorated with gold nanoparticles (Au NPs) to modify the ITO electrode. Then we used this highly uniform Au NPs@rPGO modified ITO electrode as a surface-enhanced Raman spectroscopy-active surface and a working electrode. The uses of the Au nanoparticles and porous graphene enhance the Raman signals and the electrochemical conductivity. COVID-19 protein-based biosensor was developed based on immobilization of anti-COVID-19 antibodies onto the modified electrode and its uses as a probe for capturing the COVID-19 protein. The developed biosensor showed the capability of monitoring the COVID-19 protein within a concentration range from 100 nmol/L to 1 pmol/L with a limit of detection (LOD) of 75 fmol/L. Furthermore, COVID-19 protein was detected based on electrochemical techniques within a concentration range from 100 nmol/L to 500 fmol/L that showed a LOD of 39.5 fmol/L. Finally, three concentrations of COVID-19 protein spiked in human serum were investigated. Thus, the present sensor showed high efficiency towards the detection of COVID-19.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
El-Said WA, Al‐Bogami AS, Alshitari W, El-Hady DA, Saleh TS, El-Mokhtar MA, Choi JW. Electrochemical Microbiosensor for Detecting COVID-19 in a Patient Sample Based on Gold Microcuboids Pattern. BIOCHIP JOURNAL 2021; 15:287-295. [PMID: 34394845 PMCID: PMC8350553 DOI: 10.1007/s13206-021-00030-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
As continues increasing the COVID-19 infections, there is an urgent need for developing fast, simple, selective, and accurate COVID-19 biosensors. A highly uniform gold (Au) microcuboid pattern was used as a microelectrode that allowed monitoring a small analyte. The electrochemical biosensor was used to monitor the COVID-19 S protein within a concentration range from 100 to 5 pmol L−1; it showed a lower detection limit of 276 fmol L−1. Finally, the developed COVID-19 sensor was used to detect a positive sample from a human patient obtained through a nasal swab; the results were confirmed using the PCR technique. The results showed that the SWV technique showed high sensitivity towards detecting COVID-19 and good efficiency for detecting COVID-19 in a positive human sample.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589 Saudi Arabia
| | - Abdullah S. Al‐Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589 Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589 Saudi Arabia
| | - Deia A. El-Hady
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589 Saudi Arabia
| | - Tamer S. Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589 Saudi Arabia
| | - Mohamed A. El-Mokhtar
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Republic of Korea
| |
Collapse
|
16
|
|
17
|
Rajpal S, Bhakta S, Mishra P. Biomarker imprinted magnetic core-shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J Mater Chem B 2021; 9:2436-2446. [PMID: 33625438 DOI: 10.1039/d0tb02842h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rapid and selective detection of microorganisms in complex biological systems draws huge attention to address the rising issue of antimicrobial resistance. Diagnostics based on the identification of whole microorganisms are laborious, time-consuming and costly, thus alternative strategies for early clinical diagnosis include biomarker based microbial detection. This paper describes a low-cost, easy-to-use method for the detection of Pseudomonas aeruginosa infections by specifically identifying a biomarker pyocyanin, using surface-molecularly imprinted nanoparticles or "plastibodies". The selective nanopockets are created by templating pyocyanin onto 20 nm allyl-functionalized magnetic nanoparticles coated with a thin layer of the acrylamide-based polymer. This functional material with an impressive imprinting factor (IF) of 5 and a binding capacity of ∼2.5 mg g-1 of polymers can be directly applied for the detection of bacteria in complex biological samples based on the presence of pyocyanin. These MIPs are highly selective and sensitive to pyocyanin and can consistently bind with pyocyanin in repeated use. Finally, the facile and efficient capture of pyocyanin has versatile applications ranging from biomarker based culture free detection of P. aeruginosa to monitoring of the therapeutic regime, in addition to developing a new class of antibiotics.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Snehasis Bhakta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India. and Department of Chemistry, Cooch Behar College, West Bengal 736101, India and Nanoscale Research Facilities, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
18
|
Molina BG, Valle LJ, Casanovas J, Lanzalaco S, Pérez‐Madrigal MM, Turon P, Armelin E, Alemán C. Plasma-Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Adv Healthc Mater 2021; 10:e2100425. [PMID: 33893723 DOI: 10.1002/adhm.202100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 01/08/2023]
Abstract
Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PPf /CP2 , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm-2 and a detection limit up to 0.14 × 10-3 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains.
Collapse
Affiliation(s)
- Brenda G. Molina
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
| | - Luis J. Valle
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
| | - Jordi Casanovas
- Departament de Química Universitat de Lleida Escola Politècnica Superior C/ Jaume II no. 69 Lleida E‐25001 Spain
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
| | - Maria M. Pérez‐Madrigal
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 Barcelona 08028 Spain
| | - Pau Turon
- B. Braun Surgical S.A.U. Carretera de Terrassa 121, Rubí Barcelona 08191 Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/Eduard Maristany, 10–14 Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 Barcelona 08028 Spain
| |
Collapse
|
19
|
El-Said WA, Abdelshakour M, Choi JH, Choi JW. Application of Conducting Polymer Nanostructures to Electrochemical Biosensors. Molecules 2020; 25:E307. [PMID: 31940924 PMCID: PMC7024285 DOI: 10.3390/molecules25020307] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/11/2023] Open
Abstract
Over the past few decades, nanostructured conducting polymers have received great attention in several application fields, including biosensors, microelectronics, polymer batteries, actuators, energy conversion, and biological applications due to their excellent conductivity, stability, and ease of preparation. In the bioengineering application field, the conducting polymers were reported as excellent matrixes for the functionalization of various biological molecules and thus enhanced their performances as biosensors. In addition, combinations of metals or metal oxides nanostructures with conducting polymers result in enhancing the stability and sensitivity as the biosensing platform. Therefore, several methods have been reported for developing homogeneous metal/metal oxide nanostructures thin layer on the conducting polymer surfaces. This review will introduce the fabrications of different conducting polymers nanostructures and their composites with different shapes. We will exhibit the different techniques that can be used to develop conducting polymers nanostructures and to investigate their chemical, physical and topographical effects. Among the various biosensors, we will focus on conducting polymer-integrated electrochemical biosensors for monitoring important biological targets such as DNA, proteins, peptides, and other biological biomarkers, in addition to their applications as cell-based chips. Furthermore, the fabrication and applications of the molecularly imprinted polymer-based biosensors will be addressed in this review.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (W.A.E.-S.); (M.A.)
| | - Muhammad Abdelshakour
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (W.A.E.-S.); (M.A.)
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea;
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea;
| |
Collapse
|