1
|
Liu Y, Cheng Y, Chen T, Wang J, He J, Yan F, Yan L. Basal ganglia connectivity and network asymmetry in Parkinson's disease: A resting-state fMRI study. Brain Res 2025; 1856:149576. [PMID: 40113192 DOI: 10.1016/j.brainres.2025.149576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
This study investigates the impact of basal ganglia network asymmetry on motor function in Parkinson's Disease (PD). Using resting-state functional magnetic resonance imaging (rs-fMRI), functional connectivity and network asymmetry were analyzed in 15 non-demented PD patients and 15 healthy controls. Sixteen basal ganglia substructures, including the caudate, putamen, and globus pallidus, were selected for a unified analysis of variance framework to evaluate inter-hemispheric connectivity differences. After spatial preprocessing, regions of interest were defined, and time-series data were extracted for functional connectivity and network asymmetry analysis. The results revealed significant alterations in the functional connectivity of the caudate, putamen, and nucleus accumbens (NAc) in PD patients. Notably, the absence of intra-network asymmetry in the left NAc and bilateral amygdala correlated with motor dysfunction, likely due to overactivity of the inhibitory indirect pathway. Furthermore, pronounced asymmetry in the left putamen and right frontal gyrus suggested a compensatory neural mechanism supporting motor performance. These findings highlight the critical role of basal ganglia network asymmetry in the pathophysiology of PD. The identified asymmetry characteristics may serve as potential biomarkers for early diagnosis and disease progression monitoring, offering new directions for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yan Liu
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Cheng
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tianran Chen
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jiajin He
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fuwu Yan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lirong Yan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; Department of Information, General Hospital of Central Theater Command, Wuhan 430070, China.
| |
Collapse
|
2
|
Sato SD, Shah VA, Fettrow T, Hall KG, Tays GD, Cenko E, Roy A, Clark DJ, Ferris DP, Hass CJ, Manini TM, Seidler RD. Resting state brain network segregation is associated with walking speed and working memory in older adults. Neuroimage 2025; 310:121155. [PMID: 40101865 DOI: 10.1016/j.neuroimage.2025.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m walk test at participants' self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular) was higher in older adults with higher physical function compared to older adults with lower physical function. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. The interaction of left sensorimotor network segregation and age groups was associated with higher working memory function. Higher left sensorimotor, left vestibular, right anterior cingulate cortex, and interaction of left anterior cingulate cortex network segregation and age groups were associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.
Collapse
Affiliation(s)
- Sumire D Sato
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA.
| | - Valay A Shah
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Tyler Fettrow
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA; NASA Langley Research Center, Hampton, VA, USA
| | - Kristina G Hall
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Grant D Tays
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Ueda M, Ueno K, Inoue T, Sakiyama M, Shiroma C, Ishii R, Naito Y. Detection of motor-related mu rhythm desynchronization by ear EEG. PLoS One 2025; 20:e0321107. [PMID: 40198632 PMCID: PMC11977992 DOI: 10.1371/journal.pone.0321107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/01/2025] [Indexed: 04/10/2025] Open
Abstract
Event-related desynchronization (ERD) of the mu rhythm (8-13 Hz) is an important indicator of motor execution, neurofeedback, and brain-computer interface in EEG. This study investigated the feasibility of an ear electroencephalography (EEG) device monitoring mu-ERD during hand grasp and release movements. The EEG data of the right hand movement and the eye opened resting condition were measured with an ear EEG device. We calculated and compared mu rhythm power and time-frequency data from 20 healthy participants during right hand movement and eye opened resting. Our results showed a significant difference of mean mu rhythm power between the eye opened rest condition and the right hand movement condition and significant suppression in the 9-12.5 Hz frequency band in the time-frequency data. These results support the utility of ear EEG in detecting motor activity-related mu-ERD. Ear EEG could be instrumental in refining rehabilitation strategies by providing in-situ assessment of motor function and tailored feedback.
Collapse
Affiliation(s)
- Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Misao Sakiyama
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - China Shiroma
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Rehabilitation Unit, Murata Hospital, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
4
|
Ma X, Shi B. Enhancing the quality of kinesthetic motor imagery for complex motor skills through simulated muscle activation color visualization: Evidence from time-frequency and functional connectivity analyses. Neuroimage 2025; 309:121051. [PMID: 39914512 DOI: 10.1016/j.neuroimage.2025.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025] Open
Abstract
It is well established that providing visual guidance within demonstration models positively influences the quality of kinesthetic motor imagery (kMI) for complex motor skills. Given that action execution and kMI share several underlying mechanisms, we hypothesize that color-coded visual cues indicating muscle activation in demonstration models can enhance the quality of kMI in the acquisition of complex motor skills. To test this hypothesis. We employed AnyBody Modeling System to develop demonstration model videos of complex motor skills. Thirty participants (mean age = 20.3 ± 0.6 years; 7 men and 8 women per group) were assigned to an experimental group, which engaged in kMI after viewing demonstration videos supplemented with simulated muscle activation color cues, or to a control group, which performed kMI following videos without such cues. All participants scored above 5 on the Motor Imagery Questionnaire-2 (MIQ-2). The vividness of kMI was assessed using the Vividness of Motor Imagery Questionnaire-2 (VMIQ-2). A 64-channel EEG cap was utilized for data acquisition. Changes in alpha and beta range oscillations during kMI were examined, and region of interest (ROI) analysis was conducted to extract the correlation coefficient matrix among kMI-related subcortical nuclei. Our results demonstrated that the vividness of kMI in the experimental group was significantly higher than that in the control group by 19.9 % (P < 0.05). Conversely, alpha event-related synchronization (ERS) in the parietal and occipital regions, as well as ERS in the frontal, central, and temporal regions, were significantly lower in the experimental group compared to the control group. The source-functional connectivity results revealed that the primary differences between the experimental and control groups were concentrated between the left V1 and right V1, as well as among the posterior parietal cortex (PPC), dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1). In conclusion, the demonstration model, which incorporates simulated muscle activation and color visualization, enhances the vividness of kMI in complex motor skills. This enhancement is associated with the selective inhibition of the frontal, central, and temporal brain regions, the activation of the occipital and parietal regions within brain rhythmic activity, and increased information flow between the occipital-parietal and frontal-parietal brain regions.
Collapse
Affiliation(s)
- Xiaogang Ma
- College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| | - Bing Shi
- College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Wang J, Gao S, Tian J, Hong H, Zhou C. The role of cerebellar-cortical connectivity in modulating attentional abilities: insight from football athletes. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:9. [PMID: 40128842 PMCID: PMC11934456 DOI: 10.1186/s12993-025-00272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Neuroplasticity, a phenomenon present throughout the lifespan, is thought to be influenced by physical training. However, the relationship between neuroplastic differences and attentional abilities remains unclear. This study explored the differences in brain function and attentional abilities between professional football athletes and novices, and further investigated the relationship between the two. To address this question, we included 49 football athletes and 63 novices in our study, collecting data on resting-state functional connectivity and Attention Network Test (ANT). Behavioral results from the ANT indicated that football experts had superior orienting attention but weaker alerting functions compared to novices, with no difference in executive control attention. fMRI results revealed that football experts exhibited higher fractional Amplitude of Low-Frequency Fluctuations (fALFF) values in the bilateral anterior cerebellar lobes, bilateral insula, and left superior temporal gyrus. Functional connectivity analysis showed increased connectivity between the left anterior cerebellar lobe and various cortical regions, including the right supramarginal gyrus, left precuneus, left superior frontal gyrus, bilateral posterior cerebellar lobes, and bilateral precentral gyri in experts compared to novices. More importantly, in the expert group but not in novice group, functional connectivity differences significantly predicted attentional orienting scores. Graph theoretical analysis showed that experts exhibited higher betweenness centrality and node efficiency in the right cerebellar lobule III (Cerebelum_3_R) node. Our findings demonstrate that long-term professional football training may significantly affect neuroplasticity and attentional functions. Importantly, our analysis reveals a substantive connection between these two aspects, suggesting that the integration of neuroplastic and attentional changes is likely mediated by cerebellar-cortical connectivity.
Collapse
Affiliation(s)
- Jian Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Siyu Gao
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Junfu Tian
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Hao Hong
- College of Wushu, Henan University, Kaifeng, 475001, China.
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Sato SD, Shah VA, Fettrow T, Hall KG, Tays GD, Cenko E, Roy A, Clark DJ, Ferris DP, Hass CJ, Manini TM, Seidler RD. Resting state brain network segregation is associated with walking speed and working memory in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.07.592861. [PMID: 38766046 PMCID: PMC11100712 DOI: 10.1101/2024.05.07.592861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m-walk test at participants' self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular) was higher in older adults with higher physical function compared to older adults with lower physical function. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. The interaction of left sensorimotor network segregation and age groups was associated with higher working memory function. Higher left sensorimotor, left vestibular, right anterior cingulate cortex, and interaction of left anterior cingulate cortex network segregation and age groups were associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.
Collapse
Affiliation(s)
- Sumire D Sato
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Valay A Shah
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Tyler Fettrow
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
- NASA Langley Research Center, Hampton, VA, USA
| | - Kristina G Hall
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Grant D Tays
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Adham A, Bessaguet H, Struber L, Rimaud D, Ojardias E, Giraux P. Distinct and additive effects of visual and vibratory feedback for motor rehabilitation: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:158. [PMID: 39267092 PMCID: PMC11391611 DOI: 10.1186/s12984-024-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The use of visual and proprioceptive feedback is a key property of motor rehabilitation techniques. This feedback can be used alone, for example, for vision in mirror or video therapy, for proprioception in focal tendon vibration therapy, or in combination, for example, in robot-assisted training. This Electroencephalographic (EEG) study in healthy subjects explored the distinct neurophysiological impact of adding visual (video therapy), proprioceptive (focal tendinous vibration), or combined feedback (video therapy and focal tendinous vibration) to a motor imagery task. METHODS Sixteen healthy volunteers performed 20 mental imagery (MI) tasks involving right wrist extension and flexion under four conditions: MI alone (IA), MI + video feedback observation (IO), MI + vibratory feedback (IV), and MI + observation + vibratory feedback (IOV). Brain activity was monitored with EEG, and time-frequency neurophysiological markers of movement were computed. The emotions of the patients were also measured during the task. RESULTS In the alpha band, we observed bilateral ERD in the visual feedback conditions (IO, IOV). In the beta band, the ERD was bilateral in the IA, IV and IOV but more lateralized in the IV and IOV. After movement, we observed strong ERS in the IO and IOV but not in the IA or IV. Embodiment was stronger in conditions with vibratory feedback (IOV > IV > IA and IO) CONCLUSION: Conditions with visual feedback (IO, IOV) recruit the mirror neurons system (alpha ERD) and provide more accurate feedback of the task than IA and IV, which triggers motor validation pathways (beta rebound analysis). Vibratory feedback enhances the recruitment of the left sensorimotor areas, with a synergistic effect in the IOV (beta ERD analysis), thus maximizing embodiment. Visual and vibratory feedback recruits the sensorimotor cortex during motor imagery in different ways and can be combined to maximize the benefits of both techniques TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04449328 .
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Inter-University Laboratory of Human Movement Biology, "Physical Ability and Fatigue in Health and Disease" Team, Saint-Etienne "Jean Monnet" & Lyon 1 & "Savoie Mont- Blanc" Universities, Saint- Etienne, F-42023, France
| | - Lucas Struber
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Diana Rimaud
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| |
Collapse
|
8
|
Marino M, Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications. J Physiol 2024. [PMID: 39173191 DOI: 10.1113/jp286639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.e. the subsecond range). However, it is commonly argued that EEG suffers from low spatial resolution, which makes it difficult to localize the generators of EEG activity accurately and reliably. Today, the availability of high-density EEG (hdEEG) systems, combined with methods for incorporating information on head anatomy and sophisticated source-localization algorithms, has transformed EEG into an important neuroimaging tool. hdEEG offers researchers and clinicians a rich and varied range of applications. It can be used not only for investigating neural correlates in motor and cognitive neuroscience experiments, but also for clinical diagnosis, particularly in the detection of epilepsy and the characterization of neural impairments in a wide range of neurological disorders. Notably, the integration of hdEEG systems with other physiological recordings, such as kinematic and/or electromyography data, might be especially beneficial to better understand the neuromuscular mechanisms associated with deconditioning in ageing and neuromotor disorders, by mapping the neurokinematic and neuromuscular connectivity patterns directly in the brain.
Collapse
Affiliation(s)
- Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
9
|
Taberna GA, Samogin J, Zhao M, Marino M, Guarnieri R, Cuartas Morales E, Ganzetti M, Liu Q, Mantini D. Large-scale analysis of neural activity and connectivity from high-density electroencephalographic data. Comput Biol Med 2024; 178:108704. [PMID: 38852398 DOI: 10.1016/j.compbiomed.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION High-density electroencephalography (hdEEG) is a technique used for the characterization of the neural activity and connectivity in the human brain. The analysis of EEG data involves several steps, including signal pre-processing, head modelling, source localization and activity/connectivity quantification. Visual check of the analysis steps is often necessary, making the process time- and resource-consuming and, therefore, not feasible for large datasets. FINDINGS Here we present the Noninvasive Electrophysiology Toolbox (NET), an open-source software for large-scale analysis of hdEEG data, running on the cross-platform MATLAB environment. NET combines all the tools required for a complete hdEEG analysis workflow, from raw signals to final measured values. By relying on reconstructed neural signals in the brain, NET can perform traditional analyses of time-locked neural responses, as well as more advanced functional connectivity and brain mapping analyses. The extracted quantitative neural data can be exported to provide broad compatibility with other software. CONCLUSIONS NET is freely available (https://github.com/bind-group-kul/net) under the GNU public license for non-commercial use and open-source development, together with a graphical user interface (GUI) and a user tutorial. While NET can be used interactively with the GUI, it is primarily aimed at unsupervised automation to process large hdEEG datasets efficiently. Its implementation creates indeed a highly customizable program suitable for analysis automation and tight integration into existing workflows.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, PR China
| | - Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of General Psychology, University of Padova, 35131, Padova, Italy
| | - Roberto Guarnieri
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Ernesto Cuartas Morales
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, 202017, Colombia
| | - Marco Ganzetti
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Roche Pharma Research and Early Development (pRED), pRED Data & Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Quanying Liu
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, PR China
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium; KU Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Adham A, Le BT, Bonnal J, Bessaguet H, Ojardias E, Giraux P, Auzou P. Neural basis of lower-limb visual feedback therapy: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:114. [PMID: 38978051 PMCID: PMC11229246 DOI: 10.1186/s12984-024-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Video-feedback observational therapy (VOT) is an intensive rehabilitation technique based on movement repetition and visualization that has shown benefits for motor rehabilitation of the upper and lower limbs. Despite an increase in recent literature on the neurophysiological effects of VOT in the upper limb, there is little knowledge about the cortical effects of visual feedback therapies when applied to the lower limbs. The aim of our study was to better understand the neurophysiological effects of VOT. Thus, we identified and compared the EEG biomarkers of healthy subjects undergoing lower limb VOT during three tasks: passive observation, observation and motor imagery, observation and motor execution. METHODS We recruited 38 healthy volunteers and monitored their EEG activity while they performed a right ankle dorsiflexion task in the VOT. Three graded motor tasks associated with action observation were tested: action observation alone (O), motor imagery with action observation (OI), and motor execution synchronized with action observation (OM). The alpha and beta event-related desynchronization (ERD) and event-related synchronization (or beta rebound, ERS) rhythms were used as biomarkers of cortical activation and compared between conditions with a permutation test. Changes in connectivity during the task were computed with phase locking value (PLV). RESULTS During the task, in the alpha band, the ERD was comparable between O and OI activities across the precentral, central and parietal electrodes. OM involved the same regions but had greater ERD over the central electrodes. In the beta band, there was a gradation of ERD intensity in O, OI and OM over central electrodes. After the task, the ERS changes were weak during the O task but were strong during the OI and OM (Cz) tasks, with no differences between OI and OM. CONCLUSION Alpha band ERD results demonstrated the recruitment of mirror neurons during lower limb VOT due to visual feedback. Beta band ERD reflects strong recruitment of the sensorimotor cortex evoked by motor imagery and action execution. These results also emphasize the need for an active motor task, either motor imagery or motor execution task during VOT, to elicit a post-task ERS, which is absent during passive observation. Trial Registration NCT05743647.
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Ba Thien Le
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Julien Bonnal
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France
| | - Pascal Auzou
- Department of Neurology, CHU of Orleans, Orleans, France
- "Laboratoire Interdisciplinaire d'innovation et de Recherche en Santé d'Orléans", LI2RSO, University of Orleans, Orleans, France
| |
Collapse
|
11
|
Di Libero T, Carissimo C, Cerro G, Abbatecola AM, Marino A, Miele G, Ferrigno L, Rodio A. An Overall Automated Architecture Based on the Tapping Test Measurement Protocol: Hand Dexterity Assessment through an Innovative Objective Method. SENSORS (BASEL, SWITZERLAND) 2024; 24:4133. [PMID: 39000912 PMCID: PMC11244415 DOI: 10.3390/s24134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
The present work focuses on the tapping test, which is a method that is commonly used in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers, performing a tapping action on a flat surface. During the test, the activation of specific brain regions enhances fine motor abilities, improving motor control. The research also explores neuromuscular and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive movements. To give an objective evaluation of all cited physiological aspects, this work proposes a measurement architecture consisting of the following: (i) a novel measurement protocol to assess the coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level; (iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach) with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art results from classical tapping test examinations. Particularly, the proposed study underscores the importance interdigital autonomy for complex finger motions, despite the challenges posed by anatomical connections; this deepens our understanding of upper limb coordination and the impact of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic strategies to enhance finger precision. The proof-of-concept test is performed by considering a population of college students. The obtained results allow us to consider the proposed architecture to be valuable for many application scenarios, such as the ones related to neurodegenerative disease evolution monitoring.
Collapse
Affiliation(s)
- Tommaso Di Libero
- Department of Human, Social and Health Sciences, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Chiara Carissimo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Gianni Cerro
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Angela Marie Abbatecola
- Department of Human, Social and Health Sciences, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Alzheimer's Disease Day Clinics, Azienda ria Locale, 03100 Frosinone, Italy
| | - Alessandro Marino
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Gianfranco Miele
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Luigi Ferrigno
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Angelo Rodio
- Department of Human, Social and Health Sciences, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
12
|
Bonassi G, Zhao M, Samogin J, Mantini D, Marchese R, Contrino L, Tognetti P, Putzolu M, Botta A, Pelosin E, Avanzino L. Brain Networks Modulation during Simple and Complex Gait: A "Mobile Brain/Body Imaging" Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2875. [PMID: 38732980 PMCID: PMC11086305 DOI: 10.3390/s24092875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, β, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and β bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, β ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.
Collapse
Affiliation(s)
- Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
| | - Mingqi Zhao
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (M.Z.); (J.S.); (D.M.)
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (M.Z.); (J.S.); (D.M.)
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (M.Z.); (J.S.); (D.M.)
| | - Roberta Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (R.M.); (A.B.); (L.A.)
| | - Luciano Contrino
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, 16043 Chiavari, Italy; (L.C.); (P.T.)
| | - Paola Tognetti
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, 16043 Chiavari, Italy; (L.C.); (P.T.)
| | - Martina Putzolu
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy;
| | - Alessandro Botta
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (R.M.); (A.B.); (L.A.)
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (R.M.); (A.B.); (L.A.)
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (R.M.); (A.B.); (L.A.)
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy;
| |
Collapse
|
13
|
Ue S, Nakahama K, Hayashi J, Ohgomori T. Cortical activity associated with the maintenance of balance during unstable stances. PeerJ 2024; 12:e17313. [PMID: 38708344 PMCID: PMC11067896 DOI: 10.7717/peerj.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Humans continuously maintain and adjust posture during gait, standing, and sitting. The difficulty of postural control is reportedly increased during unstable stances, such as unipedal standing and with closed eyes. Although balance is slightly impaired in healthy young adults in such unstable stances, they rarely fall. The brain recognizes the change in sensory inputs and outputs motor commands to the musculoskeletal system. However, such changes in cortical activity associated with the maintenance of balance following periods of instability require further clarified. Methods In this study, a total of 15 male participants performed two postural control tasks and the center of pressure displacement and electroencephalogram were simultaneously measured. In addition, the correlation between amplitude of center of pressure displacement and power spectral density of electroencephalogram was analyzed. Results The movement of the center of pressure was larger in unipedal standing than in bipedal standing under both eye open and eye closed conditions. It was also larger under the eye closed condition compared with when the eyes were open in unipedal standing. The amplitude of high-frequency bandwidth (1-3 Hz) of the center of pressure displacement was larger during more difficult postural tasks than during easier ones, suggesting that the continuous maintenance of posture was required. The power spectral densities of the theta activity in the frontal area and the gamma activity in the parietal area were higher during more difficult postural tasks than during easier ones across two postural control tasks, and these correlate with the increase in amplitude of high-frequency bandwidth of the center of pressure displacement. Conclusions Taken together, specific activation patterns of the neocortex are suggested to be important for the postural maintenance during unstable stances.
Collapse
Affiliation(s)
- Shoma Ue
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Kakeru Nakahama
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Junpei Hayashi
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Tomohiro Ohgomori
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
14
|
Ramírez-Ferrer E, Aguilera-Pena MP, Duffau H. Functional and oncological outcomes after right hemisphere glioma resection in awake versus asleep patients: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:160. [PMID: 38625548 DOI: 10.1007/s10143-024-02370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
The right hemisphere has been underestimated by being considered as the non-dominant hemisphere. However, it is involved in many functions, including movement, language, cognition, and emotion. Therefore, because lesions on this side are usually not resected under awake mapping, there is a risk of unfavorable neurological outcomes. The goal of this study is to compare the functional and oncological outcomes of awake surgery (AwS) versus surgery under general anesthesia (GA) in supratentorial right-sided gliomas. A systematic review of the literature according to PRISMA guidelines was performed up to March 2023. Four databases were screened. Primary outcome to assess was return to work (RTW). Secondary outcomes included the rate of postoperative neurological deficit, postoperative Karnofsky Performance Status (KPS) score and the extent of resection (EOR). A total of 32 articles were included with 543 patients who underwent right hemisphere tumor resection under awake surgery and 294 under general anesthesia. There were no significant differences between groups regarding age, gender, handedness, perioperative KPS, tumor location or preoperative seizures. Preoperative and long-term postoperative neurological deficits were statistically lower after AwS (p = 0.03 and p < 0.01, respectively), even though no difference was found regarding early postoperative course (p = 0.32). A subsequent analysis regarding type of postoperative impairment was performed. Severe postoperative language deficits were not different (p = 0.74), but there were fewer long-term mild motor and high-order cognitive deficits (p < 0.05) in AwS group. A higher rate of RTW (p < 0.05) was documented after AwS. The EOR was similar in both groups. Glioma resection of the right hemisphere under awake mapping is a safer procedure with a better preservation of high-order cognitive functions and a higher rate of RTW than resection under general anesthesia, despite similar EOR.
Collapse
Affiliation(s)
- Esteban Ramírez-Ferrer
- School of Medicine, Universidad del Rosario, Bogotá, Colombia.
- Department of Neurosurgery, Hospital Universitario La Samaritana, Bogotá, Colombia.
- Department of Neurosurgery, Hospital Universitario Mayor de Méderi, Bogotá, Colombia.
- Center of Research and Training in Neurosurgery (CIEN), Bogotá, Colombia.
| | - Maria Paula Aguilera-Pena
- Center of Research and Training in Neurosurgery (CIEN), Bogotá, Colombia
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hugues Duffau
- Department of Neurosurgery, Gui De Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- U1191 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute of Functional Genomics of Montpellier, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Alty J, Goldberg LR, Roccati E, Lawler K, Bai Q, Huang G, Bindoff AD, Li R, Wang X, St George RJ, Rudd K, Bartlett L, Collins JM, Aiyede M, Fernando N, Bhagwat A, Giffard J, Salmon K, McDonald S, King AE, Vickers JC. Development of a smartphone screening test for preclinical Alzheimer's disease and validation across the dementia continuum. BMC Neurol 2024; 24:127. [PMID: 38627686 PMCID: PMC11020184 DOI: 10.1186/s12883-024-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Dementia prevalence is predicted to triple to 152 million globally by 2050. Alzheimer's disease (AD) constitutes 70% of cases. There is an urgent need to identify individuals with preclinical AD, a 10-20-year period of progressive brain pathology without noticeable cognitive symptoms, for targeted risk reduction. Current tests of AD pathology are either too invasive, specialised or expensive for population-level assessments. Cognitive tests are normal in preclinical AD. Emerging evidence demonstrates that movement analysis is sensitive to AD across the disease continuum, including preclinical AD. Our new smartphone test, TapTalk, combines analysis of hand and speech-like movements to detect AD risk. This study aims to [1] determine which combinations of hand-speech movement data most accurately predict preclinical AD [2], determine usability, reliability, and validity of TapTalk in cognitively asymptomatic older adults and [3], prospectively validate TapTalk in older adults who have cognitive symptoms against cognitive tests and clinical diagnoses of Mild Cognitive Impairment and AD dementia. METHODS Aim 1 will be addressed in a cross-sectional study of at least 500 cognitively asymptomatic older adults who will complete computerised tests comprising measures of hand motor control (finger tapping) and oro-motor control (syllabic diadochokinesis). So far, 1382 adults, mean (SD) age 66.20 (7.65) years, range 50-92 (72.07% female) have been recruited. Motor measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 to develop an algorithm that classifies preclinical AD risk. Aim 2 comprises three sub-studies in cognitively asymptomatic adults: (i) a cross-sectional study of 30-40 adults to determine the validity of data collection from different types of smartphones, (ii) a prospective cohort study of 50-100 adults ≥ 50 years old to determine usability and test-retest reliability, and (iii) a prospective cohort study of ~1,000 adults ≥ 50 years old to validate against cognitive measures. Aim 3 will be addressed in a cross-sectional study of ~200 participants with cognitive symptoms to validate TapTalk against Montreal Cognitive Assessment and interdisciplinary consensus diagnosis. DISCUSSION This study will establish the precision of TapTalk to identify preclinical AD and estimate risk of cognitive decline. If accurate, this innovative smartphone app will enable low-cost, accessible screening of individuals for AD risk. This will have wide applications in public health initiatives and clinical trials. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT06114914, 29 October 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, 7001, Australia.
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia.
| | - Lynette R Goldberg
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Katherine Lawler
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Quan Bai
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Guan Huang
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Renjie Li
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Xinyi Wang
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Rebecca J St George
- School of Psychological Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Kaylee Rudd
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Larissa Bartlett
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Mimieveshiofuo Aiyede
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | | | - Anju Bhagwat
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia
| | - Julia Giffard
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Katharine Salmon
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
- Royal Hobart Hospital, Hobart, TAS, 7001, Australia
| | - Scott McDonald
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Liverpool Street, Hobart, TAS, 7001, Australia
| |
Collapse
|
16
|
Knezic A, Budusan E, Saez NJ, Broughton BRS, Rash LD, King GF, Widdop RE, McCarthy CA. Hi1a Improves Sensorimotor Deficit following Endothelin-1-Induced Stroke in Rats but Does Not Improve Functional Outcomes following Filament-Induced Stroke in Mice. ACS Pharmacol Transl Sci 2024; 7:1043-1054. [PMID: 38638162 PMCID: PMC11022283 DOI: 10.1021/acsptsci.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Activation of acid-sensing ion channel 1a (ASIC1a) plays a major role in mediating acidosis-induced neuronal injury following a stroke. Therefore, the inhibition of ASIC1a is a potential therapeutic avenue for the treatment of stroke. Venom-peptide Hi1a, a selective and highly potent ASIC1a inhibitor, reduces the infarct size and functional deficits when injected into the brain after stroke in rodents. However, its efficacy when administered using a clinically relevant route of administration remains to be established. Therefore, the current investigation aims to examine the efficacy of systemically administered Hi1a, using two different models of stroke in different species. Mice were subjected to the filament model of middle cerebral artery occlusion (MCAO) and treated with Hi1a systemically using either a single- or multiple-dosing regimen. 24 h poststroke, mice underwent functional testing, and the brain infarct size was assessed. Rats were subjected to endothelin-1 (ET-1)-induced MCAO and treated with Hi1a intravenously 2 h poststroke. Rats underwent functional tests prior to and for 3 days poststroke, when infarct volume was assessed. Mice receiving Hi1a did not show any improvements in functional outcomes, despite a trend toward reduced infarct size. This trend for reduced infarct size in mice was consistent regardless of the dosing regimen. There was also a trend toward lower infarct size in rats treated with Hi1a. More specifically, Hi1a reduced the amount of damage occurring within the somatosensory cortex, which was associated with an improved sensorimotor function in Hi1a-treated rats. Thus, this study suggests that Hi1a or more brain-permeable ASIC1a inhibitors are a potential stroke treatment.
Collapse
Affiliation(s)
- Adriana Knezic
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Elena Budusan
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Brad R. S. Broughton
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Lachlan D. Rash
- School of Biomedical Sciences, Faculty of Medicine,
The University of Queensland, St Lucia, QLD 4072,
Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The
University of Queensland, St Lucia, QLD 4072,
Australia
- Australian Research Council Centre of Excellence for
Innovations in Peptide and Protein Science, The University of
Queensland, St Lucia, QLD 4072, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| | - Claudia A. McCarthy
- Cardiovascular Disease Program, Monash Biomedicine
Discovery Institute (BDI), Department of Pharmacology, Monash
University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Putzolu M, Samogin J, Bonassi G, Cosentino C, Mezzarobba S, Botta A, Avanzino L, Mantini D, Vato A, Pelosin E. Motor imagery ability scores are related to cortical activation during gait imagery. Sci Rep 2024; 14:5207. [PMID: 38433230 PMCID: PMC10909887 DOI: 10.1038/s41598-024-54966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the θ, α, and β band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). Positive correlations were identified between VMIQ and avgERD of the middle cingulum in the β band and with avgERD of the left insula, right precentral area, and right middle occipital region in the θ band. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Alessandro Vato
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA.
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA.
- College of Engineering and Applied Sciences, University at Albany - SUNY, Albany, NY, USA.
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Mang J, Xu Z, Qi Y, Zhang T. Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: challenges and approaches. Front Neurorobot 2023; 17:1271967. [PMID: 37881517 PMCID: PMC10595019 DOI: 10.3389/fnbot.2023.1271967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
The brain-computer interface (BCI)-mediated rehabilitation is emerging as a solution to restore motor skills in paretic patients after stroke. In the human brain, cortical motor neurons not only fire when actions are carried out but are also activated in a wired manner through many cognitive processes related to movement such as imagining, perceiving, and observing the actions. Moreover, the recruitment of motor cortexes can usually be regulated by environmental conditions, forming a closed-loop through neurofeedback. However, this cognitive-motor control loop is often interrupted by the impairment of stroke. The requirement to bridge the stroke-induced gap in the motor control loop is promoting the evolution of the BCI-based motor rehabilitation system and, notably posing many challenges regarding the disease-specific process of post stroke motor function recovery. This review aimed to map the current literature surrounding the new progress in BCI-mediated post stroke motor function recovery involved with cognitive aspect, particularly in how it refired and rewired the neural circuit of motor control through motor learning along with the BCI-centric closed-loop.
Collapse
Affiliation(s)
- Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - YingBin Qi
- Department of Neurology, Jilin Province People's Hospital, Changchun, China
| | - Ting Zhang
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
19
|
Binlateh T, Hutamekalin P, Yongsawatdigul J, Yamabhai M, Jitprasertwong P. Effects of collagen, chitosan and mixture on fibroblast responses and angiogenic activities in 2D and 3D in vitro models. J Biomed Mater Res A 2023; 111:1642-1655. [PMID: 37222462 DOI: 10.1002/jbm.a.37561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Despite accumulating evidences have demonstrated the potential of collagen and chitosan on tissue repair, it remains unclear on their combination effects. Here, we examined the regenerative effects of single collagen, chitosan and their mixture on fibroblasts and endothelial cells at cellular levels. The results showed that fibroblast responses, as indicated by high proliferative rate, increased spheroid diameter and migrated area existing from spheroid edge, and decreased wound area, were significantly promoted by either collagen or chitosan stimulation. Similarly, both collagen and chitosan resulted in increased endothelial cell proliferation and migration with accelerated tube-like network formation and upregulated VE-cadherin expression, although collagen strongly provided this effect. While the 1:1 mixture (100:100 μg/mL of chitosan to collagen) treatment caused a reduction in fibroblast viability, the lower ratio of chitosan (1:10 mixture; 10:100 μg/mL) did not produce any impact on both fibroblast and endothelial cell viabilities. The 1:10 mixture also significantly enhanced the additional effects on fibroblast responses and angiogenic activities as shown by higher endothelial growth, proliferation and migration with accelerated capillary-like network formation than those treated with the single substance. Further investigation of signaling proteins found that collagen significantly increased expressions of p-Fak, p-Akt and Cdk5 whereas chitosan upregulated p-Fak and Cdk5 expressions. Comparing to the single treatments, p-Fak, p-Akt and Cdk5 were higher expressed in the 1:10 mixture. These observations indicate that proper collagen-chitosan mixture provides the combination effects on fibroblast responses and angiogenic activities when a high concentration of collagen is used, possibly through Fak/Akt and Cdk5 signaling pathways. Therefore, this study helps to define the clinical use of collagen and chitosan as promising biomaterials for tissue repair.
Collapse
Affiliation(s)
- Thunwa Binlateh
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Jirawat Yongsawatdigul
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Montarop Yamabhai
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | |
Collapse
|
20
|
Sayyed N, Hafeez A, Al‐Abbasi FA, Omer AB, AlGhamdi SA, Alghamdi AM, Sheikh RA, Kazmi I. Erucic acid ameliorates the lipopolysaccharide‐induced memory deficit in rats through inhibited inflammation cytokines expression/caspase 3/NF‐κB pathways. EUR J LIPID SCI TECH 2023; 125. [DOI: 10.1002/ejlt.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 01/03/2025]
Abstract
AbstractErucic acid is a single unsaturated fatty acid that falls under the omega‐9 fatty acid family. It was suggested to treat Wistar rats with lipopolysaccharide (LPS)‐induced memory impairment and minimize cognitive impairment. A total of 30 animals were randomized: group I was normally treated group, group II was administered with LPS, group III was treated with LPS along with erucic acid at the dose of 10 mg kg–1 p.o.–1, group IV was treated with LPS along with erucic acid at 20 mg kg–1 p.o.–1 and group V was the erucic acid per se group provided at the dose of 20 mg kg–1 p.o.–1 per se. Behavioral tests were evaluated by using the Morris water maze and Y‐maze. Biochemical analysis including acetylcholine esterase (AChE), choline acetyltransferase (ChAT), glutathione (GSH), catalase activity (CAT), superoxide dismutase (SOD), and nitric oxide (NO) along with proinflammatory mediators tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), caspase 3, and neuroinflammatory biomarker (nuclear factor kappa B‐NF‐κB) were measured. Erucic acid produced substantial behavioral improvement in the Y‐maze test, including spontaneous alterations and reduced latency time during acquisition, and a longer duration of time in the consolidation phase undergoing the MWM test. Furthermore, erucic acid improved the AChE, proinflammatory markers, and oxidative stress as well as restoring endogenous antioxidant levels, ChAT, caspase 3, and NF‐κB levels. Erucic acid may be a therapeutic component for conditions related to memory disorders such as memory impairment, enhances memory functioning, and protects against neuronal damage.
Collapse
Affiliation(s)
- Nadeem Sayyed
- School of Pharmacy Glocal University Saharanpur Uttar Pradesh India
| | - Abdul Hafeez
- School of Pharmacy Glocal University Saharanpur Uttar Pradesh India
| | - Fahad A. Al‐Abbasi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Asma B Omer
- Department of Basic Health Sciences, Foundation Year for the Health Colleges Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center King Abdulaziz University Jeddah Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Rayan A. Sheikh
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
21
|
Yokum S, Stice E. Relation of BOLD response to food-specific and generic motor response inhibition tasks to body fat gain in adults with overweight and obesity. Physiol Behav 2023; 267:114206. [PMID: 37094746 PMCID: PMC10205669 DOI: 10.1016/j.physbeh.2023.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Low inhibitory control has been theorized to contribute to the development and maintenance of obesity. Knowledge on the neurobiological indicators of inhibitory control deficits predicting future weight gain is limited. The current study examined if individual differences in blood-oxygenation-level-dependent (BOLD) activity associated with food-specific and general motor response inhibition predict future body fat change in adults with overweight or obesity. METHODS BOLD activity and behavioral responses of adults with overweight or obesity (N = 160) were recorded while performing a food-specific stop signal task (n = 92) or a generic stop signal task (n = 68). Percent body fat was measured at baseline, posttest, 3-month, and 6-month follow-up. RESULTS Elevated BOLD activity in somatosensory (postcentral gyrus), and attention (precuneus) regions during successful inhibition in the food-specific stop signal task and elevated BOLD activity in a motor region (anterior cerebellar lobe) in the generic stop signal task predicted greater body fat gain over 6-month follow-up. Elevated BOLD activity in inhibitory control regions (inferior-, middle-, superior frontal gyri) and error monitoring regions (anterior cingulate cortex, insula) during erroneous responses in the generic stop signal task predicted body fat loss. CONCLUSIONS Results suggest that improving motor response inhibition and error monitoring may facilitate weight loss in adults with overweight and obesity.
Collapse
Affiliation(s)
- Sonja Yokum
- Oregon Research Institute, 3800 Sports Way, Springfield OR 97477, USA.
| | - Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford CA 94305, USA
| |
Collapse
|
22
|
Vuong A, Joshi SH, Staudt LA, Matsumoto JH, Fowler EG. Improved Myelination following Camp Leg Power, a Selective Motor Control Intervention for Children with Spastic Bilateral Cerebral Palsy: A Diffusion Tensor MRI Study. AJNR Am J Neuroradiol 2023; 44:700-706. [PMID: 37142433 PMCID: PMC10249693 DOI: 10.3174/ajnr.a7860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND PURPOSE Children with spastic cerebral palsy have motor deficits associated with periventricular leukomalacia indicating WM damage to the corticospinal tracts. We investigated whether practice of skilled lower extremity selective motor control movements would elicit neuroplasticity. MATERIALS AND METHODS Twelve children with spastic bilateral cerebral palsy and periventricular leukomalacia born preterm (mean age, 11.5 years; age range, 7.3-16.6 years) participated in a lower extremity selective motor control intervention, Camp Leg Power. Activities promoted isolated joint movement including isokinetic knee exercises, ankle-controlled gaming, gait training, and sensorimotor activities (3 hours/day, 15 sessions, 1 month). DWI scans were collected pre- and postintervention. Tract-Based Spatial Statistics was used to analyze changes in fractional anisotropy, radial diffusivity, axial diffusivity, and mean diffusivity. RESULTS Significantly reduced radial diffusivity (P < . 05) was found within corticospinal tract ROIs, including 28.4% of the left and 3.6% of the right posterior limb of the internal capsule and 14.1% of the left superior corona radiata. Reduced mean diffusivity was found within the same ROIs (13.3%, 11.6%, and 6.6%, respectively). Additionally, decreased radial diffusivity was observed in the left primary motor cortex. Additional WM tracts had decreased radial diffusivity and mean diffusivity, including the anterior limb of the internal capsule, external capsule, anterior corona radiata, and corpus callosum body and genu. CONCLUSIONS Myelination of the corticospinal tracts improved following Camp Leg Power. Neighboring WM changes suggest recruitment of additional tracts involved in regulating neuroplasticity of the motor regions. Intensive practice of skilled lower extremity selective motor control movements promotes neuroplasticity in children with spastic bilateral cerebral palsy.
Collapse
Affiliation(s)
- A Vuong
- From the Departments of Bioengineering (A.V., S.H.J.)
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| | - S H Joshi
- From the Departments of Bioengineering (A.V., S.H.J.)
- Neurology (S.H.J.), Ahmanson Lovelace Brain Mapping Center
| | - L A Staudt
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| | - J H Matsumoto
- Pediatrics (J.H.M.), University of California Los Angeles, Los Angeles, California
| | - E G Fowler
- Orthopaedic Surgery (A.V., L.A.S., E.G.F.)
- Center for Cerebral Palsy (A.V., L.A.S., E.G.F.), University of California Los Angeles/Orthopaedic Institute for Children, Los Angeles, California
| |
Collapse
|
23
|
Putzolu M, Samogin J, Bonassi G, Cosentino C, Mezzarobba S, Botta A, Avanzino L, Mantini D, Vato A, Pelosin E. Are Motor Imagery Ability scores related to cortical activity during gait imagery? RESEARCH SQUARE 2023:rs.3.rs-2777321. [PMID: 37090654 PMCID: PMC10120778 DOI: 10.21203/rs.3.rs-2777321/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography (hdEEG) in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the β band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). VMIQ was positively correlated with avgERD of frontal and cingulate areas, whereas IA SCORE was positively correlated with avgERD of left inferior frontal and superior temporal regions. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.
Collapse
|
24
|
Charyasz E, Heule R, Molla F, Erb M, Kumar VJ, Grodd W, Scheffler K, Bause J. Functional mapping of sensorimotor activation in the human thalamus at 9.4 Tesla. Front Neurosci 2023; 17:1116002. [PMID: 37008235 PMCID: PMC10050447 DOI: 10.3389/fnins.2023.1116002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Although the thalamus is perceived as a passive relay station for almost all sensory signals, the function of individual thalamic nuclei remains unresolved. In the present study, we aimed to identify the sensorimotor nuclei of the thalamus in humans using task-based fMRI at a field strength of 9.4T by assessing the individual subject-specific sensorimotor BOLD response during a combined active motor (finger-tapping) and passive sensory (tactile-finger) stimulation. We demonstrate that both tasks increase BOLD signal response in the lateral nuclei group (VPL, VA, VLa, and VLp), and in the pulvinar nuclei group (PuA, PuM, and PuL). Finger-tapping stimuli evokes a stronger BOLD response compared to the tactile stimuli, and additionally engages the intralaminar nuclei group (CM and Pf). In addition, our results demonstrate reproducible thalamic nuclei activation during motor and tactile stimuli. This work provides important insight into understanding the function of individual thalamic nuclei in processing various input signals and corroborates the benefits of using ultra-high-field MR scanners for functional imaging of fine-scale deeply located brain structures.
Collapse
Affiliation(s)
- Edyta Charyasz
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- *Correspondence: Edyta Charyasz,
| | - Rahel Heule
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Center for MR Research, University Children’s Hospital, Zurich, Switzerland
| | - Francesko Molla
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Vinod Jangir Kumar
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
25
|
Marshall S, Gabiazon R, Persaud P, Nagamatsu LS. What do functional neuroimaging studies tell us about the association between falls and cognition in older adults? A systematic review. Ageing Res Rev 2023; 85:101859. [PMID: 36669688 DOI: 10.1016/j.arr.2023.101859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Impaired cognition is a known risk factor for falls in older adults. To enhance prevention strategies and treatment of falls among an aging global population, an understanding of the neural processes and networks involved is required. We present a systematic review investigating how functional neuroimaging techniques have been used to examine the association between falls and cognition in seniors. Peer-reviewed articles were identified through searching five electronic databases: 1) Medline, 2) PsycINFO, 3) CINAHL, 4) EMBASE, and 5) Pubmed. Key author, key paper, and reference searching was also conducted. Nine studies were included in this review. A questionnaire composed of seven questions was used to assess the quality of each study. EEG, fMRI, and PET were utilized across studies to examine brain function in older adults. Consistent evidence demonstrates that cognition is associated with measures of falls/falls risk, specifically visual attention and executive function. Our results show that falls/falls risk may be implicated with specific brain regions and networks. Future studies should be prospective and long-term in nature, with standardized outcome measures. Mobile neuroimaging techniques may also provide insight into brain activity as it pertains to cognition and falls in older adults in real-world settings.
Collapse
Affiliation(s)
- Samantha Marshall
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Raphael Gabiazon
- Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - Priyanka Persaud
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada.
| |
Collapse
|
26
|
Sheoran S, Vints WAJ, Valatkevičienė K, Kušleikienė S, Gleiznienė R, Česnaitienė VJ, Himmelreich U, Levin O, Masiulis N. Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: a randomized control 1H-MRS study. GeroScience 2023:10.1007/s11357-023-00732-6. [PMID: 36701005 PMCID: PMC9877502 DOI: 10.1007/s11357-023-00732-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Physical exercise is considered a potent countermeasure against various age-associated physiological deterioration processes. We therefore assessed the effect of 12 weeks of resistance training on brain metabolism in older adults (age range: 60-80 years). Participants either underwent two times weekly resistance training program which consisted of four lower body exercises performed for 3 sets of 6-10 repetitions at 70-85% of 1 repetition maximum (n = 20) or served as the passive control group (n = 21). The study used proton magnetic resonance spectroscopy to quantify the ratio of total N-acetyl aspartate, total choline, glutamate-glutamine complex, and myo-inositol relative to total creatine (tNAA/tCr, tCho/tCr, Glx/tCr, and mIns/tCr respectively) in the hippocampus (HPC), sensorimotor (SM1), and prefrontal (dlPFC) cortices. The peak torque (PT at 60°/s) of knee extension and flexion was assessed using an isokinetic dynamometer. We used repeated measures time × group ANOVA to assess time and group differences and correlation coefficient analyses to examine the pre-to-post change (∆) associations between PT and neurometabolite variables. The control group showed significant declines in tNAA/tCr and Glx/tCr of SM1, and tNAA/tCr of dlPFC after 12 weeks, which were not seen in the experimental group. A significant positive correlation was found between ∆PT knee extension and ∆SM1 Glx/tCr, ∆dlPFC Glx/tCr and between ∆PT knee flexion and ∆dlPFC mIns/tCr in the experimental group. Overall, findings suggest that resistance training seems to elicit alterations in various neurometabolites that correspond to exercise-induced "preservation" of brain health, while simultaneously having its beneficial effect on augmenting muscle functional characteristics in older adults.
Collapse
Affiliation(s)
- Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Rymantė Gleiznienė
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vida J. Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Group Biomedical Sciences, Biomedical MRI Unit, Catholic University Leuven, 3000 Leuven, Belgium
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, 3001 Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Science, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
27
|
Cho JH, Jeong JH, Lee SW. NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:13279-13292. [PMID: 34748509 DOI: 10.1109/tcyb.2021.3122969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain-computer interfaces (BCIs) have been widely employed to identify and estimate a user's intention to trigger a robotic device by decoding motor imagery (MI) from an electroencephalogram (EEG). However, developing a BCI system driven by MI related to natural hand-grasp tasks is challenging due to its high complexity. Although numerous BCI studies have successfully decoded large body parts, such as the movement intention of both hands, arms, or legs, research on MI decoding of high-level behaviors such as hand grasping is essential to further expand the versatility of MI-based BCIs. In this study, we propose NeuroGrasp, a dual-stage deep learning framework that decodes multiple hand grasping from EEG signals under the MI paradigm. The proposed method effectively uses an EEG and electromyography (EMG)-based learning, such that EEG-based inference at test phase becomes possible. The EMG guidance during model training allows BCIs to predict hand grasp types from EEG signals accurately. Consequently, NeuroGrasp improved classification performance offline, and demonstrated a stable classification performance online. Across 12 subjects, we obtained an average offline classification accuracy of 0.68 (±0.09) in four-grasp-type classifications and 0.86 (±0.04) in two-grasp category classifications. In addition, we obtained an average online classification accuracy of 0.65 (±0.09) and 0.79 (±0.09) across six high-performance subjects. Because the proposed method has demonstrated a stable classification performance when evaluated either online or offline, in the future, we expect that the proposed method could contribute to different BCI applications, including robotic hands or neuroprosthetics for handling everyday objects.
Collapse
|
28
|
Hewitt D, Byrne A, Henderson J, Wilford K, Chawla R, Sharma ML, Frank B, Fallon N, Brown C, Stancak A. Pulse Intensity Effects of Burst and Tonic Spinal Cord Stimulation on Neural Responses to Brushing in Patients With Neuropathic Pain. Neuromodulation 2022:S1094-7159(22)01349-6. [DOI: 10.1016/j.neurom.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022]
|
29
|
Yamamoto Y, Sawada T, Nishiyama S, Tahara K, Hayashi H, Mori H, Kato E, Tago M, Matsui T, Tohma S. Clinical variables, including novel joint index, associated with future patient-physician discordance in global assessment of rheumatoid arthritis (RA) disease activity based on a large RA database in Japan. Int J Rheum Dis 2022; 25:1020-1028. [PMID: 35754383 DOI: 10.1111/1756-185x.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Discordance between patient global assessment (PGA) and physician global assessment (PhGA) of rheumatoid arthritis (RA) disease activity is mainly determined by pain and functional disabilities. This study aimed to investigate the shift in PGA-PhGA discordance and the variables associated with future positive discordance (PGA > PhGA) based on the NinJa database in Japan. METHODS We examined 7557 adults with RA registered in both NinJa 2014 and 2018, with a discordance cutoff of 3 on a 10-cm scale. The affected joint distribution was investigated using the joint indices x, y, and z, which were calculated as indices for the upper joint, lower joint, and large joint involvement, respectively. The variables in NinJa 2014 that were associated with positive discordance in NinJa 2018 were examined using binary stepwise logistic regression analysis. RESULTS Due to the small number of patients with RA categorized as having negative discordance (PGA < PhGA), we focused on patients with RA categorized as having either concordance or positive discordance. Logistic regression analysis revealed that positive discordance in NinJa 2018 was associated with age, pain, modified Health Assessment Questionnaire (mHAQ) score, corticosteroid use, and existent positive discordance and was inversely associated with C-reactive protein (CRP) and x at baseline (NinJa 2014). The same findings were observed when patients with RA were divided based on the discordance status at baseline. Persistence (positive discordance to positive discordance) was associated with pain and mHAQ scores but inversely associated with CRP. CONCLUSIONS Positive discordance may persist. Circumventing this requires adequate management of pain and functional impairment.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Susumu Nishiyama
- Rheumatic Disease Center, Kurashiki Medical Center, Okayama, Japan
| | - Koichiro Tahara
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Haeru Hayashi
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hiroaki Mori
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Eri Kato
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Mayu Tago
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Toshihiro Matsui
- Department of Rheumatology, Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Shigeto Tohma
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
30
|
Masina F, Montemurro S, Marino M, Manzo N, Pellegrino G, Arcara G. State-dependent tDCS modulation of the somatomotor network: A MEG study. Clin Neurophysiol 2022; 142:133-142. [PMID: 36037749 DOI: 10.1016/j.clinph.2022.07.508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive technique widely used to investigate brain excitability and activity. However, the variability in both brain and behavioral responses to tDCS limits its application for clinical purposes. This study aims to shed light on state-dependency, a phenomenon that contributes to the variability of tDCS. METHODS To this aim, we investigated changes in spectral activity and functional connectivity in somatomotor regions after Real and Sham tDCS using generalized additive mixed models (GAMMs), which allowed us to investigate how modulation depends on the initial state of the brain. RESULTS Results showed that changes in spectral activity, but not connectivity, in the somatomotor regions depend on the initial state of the brain, confirming state-dependent effects. Specifically, we found a non-linear interaction between stimulation conditions (Real vs Sham) and initial state: a reduction of alpha and beta power was observed only in participants that had higher alpha and beta power before Real tDCS. CONCLUSIONS This study highlights the importance of considering state-dependency to tDCS and shows how it can be taken into account with appropriate statistical models. SIGNIFICANCE Our findings bear insight into tDCS mechanisms, potentially leading to discriminate between tDCS responders and non-responders.
Collapse
Affiliation(s)
| | | | - Marco Marino
- IRCCS San Camillo Hospital, Venice, Italy; Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU Leuven, Belgium.
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Venice, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.
| | | | | |
Collapse
|
31
|
Formica S, González-García C, Senoussi M, Marinazzo D, Brass M. Theta-phase connectivity between medial prefrontal and posterior areas underlies novel instructions implementation. eNeuro 2022; 9:ENEURO.0225-22.2022. [PMID: 35868857 PMCID: PMC9374157 DOI: 10.1523/eneuro.0225-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Implementing novel instructions is a complex and uniquely human cognitive ability, that requires the rapid and flexible conversion of symbolic content into a format that enables the execution of the instructed behavior. Preparing to implement novel instructions, as opposed to their mere maintenance, involves the activation of the instructed motor plans, and the binding of the action information to the specific context in which this should be executed. Recent evidence and prominent computational models suggest that this efficient configuration of the system might involve a central role of frontal theta oscillations in establishing top-down long-range synchronization between distant and task-relevant brain areas. In the present EEG study (human subjects, 30 females, 4 males), we demonstrate that proactively preparing for the implementation of novels instructions, as opposed to their maintenance, involves a strengthened degree of connectivity in the theta frequency range between medial prefrontal and motor/visual areas. Moreover, we replicated previous results showing oscillatory features associated specifically with implementation demands, and extended on them demonstrating the role of theta oscillations in mediating the effect of task demands on behavioral performance. Taken together, these findings support our hypothesis that the modulation of connectivity patterns between frontal and task-relevant posterior brain areas is a core factor in the emergence of a behavior-guiding format from novel instructions.Significance statementEveryday life requires the use and manipulation of currently available information to guide behavior and reach specific goals. In the present study we investigate how the same instructed content elicits different neural activity depending on the task being performed. Crucially, connectivity between medial prefrontal cortex and posterior brain areas is strengthened when novel instructions have to be implemented, rather than simply maintained. This finding suggests that theta oscillations play a role in setting up a dynamic and flexible network of task-relevant regions optimized for the execution of the instructed behavior.
Collapse
Affiliation(s)
- Silvia Formica
- Berlin School of Mind and Brain, Department of Psychology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
- Department of Experimental Psychology, Ghent University, Gent, 9000, Belgium
| | - Carlos González-García
- Department of Experimental Psychology, Ghent University, Gent, 9000, Belgium
- Mind, Brain and Behavior Research Center, Department of Experimental Psychology, University of Granada, Granada, 18071, Spain
| | - Mehdi Senoussi
- Department of Experimental Psychology, Ghent University, Gent, 9000, Belgium
| | | | - Marcel Brass
- Berlin School of Mind and Brain, Department of Psychology, Humboldt Universität zu Berlin, Berlin, 10117, Germany
- Department of Experimental Psychology, Ghent University, Gent, 9000, Belgium
| |
Collapse
|
32
|
Lv Q, Zhang J, Pan Y, Liu X, Miao L, Peng J, Song L, Zou Y, Chen X. Somatosensory Deficits After Stroke: Insights From MRI Studies. Front Neurol 2022; 13:891283. [PMID: 35911919 PMCID: PMC9328992 DOI: 10.3389/fneur.2022.891283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Somatosensory deficits after stroke are a major health problem, which can impair patients' health status and quality of life. With the developments in human brain mapping techniques, particularly magnetic resonance imaging (MRI), many studies have applied those techniques to unravel neural substrates linked to apoplexy sequelae. Multi-parametric MRI is a vital method for the measurement of stroke and has been applied to diagnose stroke severity, predict outcome and visualize changes in activation patterns during stroke recovery. However, relatively little is known about the somatosensory deficits after stroke and their recovery. This review aims to highlight the utility and importance of MRI techniques in the field of somatosensory deficits and synthesizes corresponding articles to elucidate the mechanisms underlying the occurrence and recovery of somatosensory symptoms. Here, we start by reviewing the anatomic and functional features of the somatosensory system. And then, we provide a discussion of MRI techniques and analysis methods. Meanwhile, we present the application of those techniques and methods in clinical studies, focusing on recent research advances and the potential for clinical translation. Finally, we identify some limitations and open questions of current imaging studies that need to be addressed in future research.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Junning Zhang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuxing Pan
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Xiaodong Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jing Peng
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lei Song
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Zhao M, Bonassi G, Samogin J, Taberna GA, Porcaro C, Pelosin E, Avanzino L, Mantini D. Assessing Neurokinematic and Neuromuscular Connectivity During Walking Using Mobile Brain-Body Imaging. Front Neurosci 2022; 16:912075. [PMID: 35720696 PMCID: PMC9204106 DOI: 10.3389/fnins.2022.912075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Gait is a common but rather complex activity that supports mobility in daily life. It requires indeed sophisticated coordination of lower and upper limbs, controlled by the nervous system. The relationship between limb kinematics and muscular activity with neural activity, referred to as neurokinematic and neuromuscular connectivity (NKC/NMC) respectively, still needs to be elucidated. Recently developed analysis techniques for mobile high-density electroencephalography (hdEEG) recordings have enabled investigations of gait-related neural modulations at the brain level. To shed light on gait-related neurokinematic and neuromuscular connectivity patterns in the brain, we performed a mobile brain/body imaging (MoBI) study in young healthy participants. In each participant, we collected hdEEG signals and limb velocity/electromyography signals during treadmill walking. We reconstructed neural signals in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) frequency bands, and assessed the co-modulations of their power envelopes with myogenic/velocity envelopes. Our results showed that the myogenic signals have larger discriminative power in evaluating gait-related brain-body connectivity with respect to kinematic signals. A detailed analysis of neuromuscular connectivity patterns in the brain revealed robust responses in the alpha and beta bands over the lower limb representation in the primary sensorimotor cortex. There responses were largely contralateral with respect to the body sensor used for the analysis. By using a voxel-wise analysis of variance on the NMC images, we revealed clear modulations across body sensors; the variability across frequency bands was relatively lower, and below significance. Overall, our study demonstrates that a MoBI platform based on hdEEG can be used for the investigation of gait-related brain-body connectivity. Future studies might involve more complex walking conditions to gain a better understanding of fundamental neural processes associated with gait control, or might be conducted in individuals with neuromotor disorders to identify neural markers of abnormal gait.
Collapse
Affiliation(s)
- Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua, Italy
- Institute of Cognitive Sciences and Technologies—National Research Council, Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Dante Mantini,
| |
Collapse
|
34
|
Zhang X, Zhang S, Lu B, Wang Y, Li N, Peng Y, Hou J, Qiu J, Li F, Yao D, Xu P. Dynamic corticomuscular multi-regional modulations during finger movement revealed by time-varying network analysis. J Neural Eng 2022; 19. [PMID: 35523144 DOI: 10.1088/1741-2552/ac6d7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A body movement involves the complicated information exchange between the central and peripheral systems, which is characterized by the dynamical coupling patterns between the multiple brain areas and multiple muscle units. How the central and peripheral nerves coordinate multiple internal brain regions and muscle groups is very important when accomplishing the action. APPROACH In this study, we extend the adaptive directed transfer function to construct the time-varying networks between multiple corticomuscular regions and divide the movement duration into different stages by the time-varying corticomuscular network patterns. MAIN RESULTS The inter dynamical corticomuscular network demonstrated the different interaction patterns between the central and peripheral systems during the different hand movement stages. The muscles transmit bottom-up movement information in the preparation stage, but the brain issues top-down control commands and dominates in the execution stage, and finally, the brain's dominant advantage gradually weakens in the relaxation stage. When classifying the different movement stages based on time-varying corticomuscular network indicators, an average accuracy above 74% could be reliably achieved. SIGNIFICANCE The findings of this study help deepen our knowledge of central-peripheral nerve pathways and coordination mechanisms, and also provide opportunities for monitoring and regulating movement disorders.
Collapse
Affiliation(s)
- Xiabing Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Shu Zhang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Bin Lu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yifeng Wang
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Ning Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Yueheng Peng
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Jingming Hou
- Third Military Medical University Southwest Hospital, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 400038, CHINA
| | - Jing Qiu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Fali Li
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Dezhong Yao
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 610054, CHINA
| |
Collapse
|
35
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
36
|
Butt AM, Alsaffar H, Alshareef M, Qureshi KK. AI Prediction of Brain Signals for Human Gait Using BCI Device and FBG Based Sensorial Platform for Plantar Pressure Measurements. SENSORS 2022; 22:s22083085. [PMID: 35459070 PMCID: PMC9025845 DOI: 10.3390/s22083085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Artificial intelligence (AI) in developing modern solutions for biomedical problems such as the prediction of human gait for human rehabilitation is gaining ground. An attempt was made to use plantar pressure information through fiber Bragg grating (FBG) sensors mounted on an in-sole, in tandem with a brain-computer interface (BCI) device to predict brain signals corresponding to sitting, standing and walking postures of a person. Posture classification was attained with an accuracy range between 87–93% from FBG and BCI signals using machine learning models such as K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and naïve Bayes (NB). These models were used to identify electrodes responding to sitting, standing and walking activities of four users from a 16 channel BCI device. Six electrode positions based on the 10–20 system for electroencephalography (EEG) were identified as the most sensitive to plantar activities and found to be consistent with clinical investigations of the sensorimotor cortex during foot movement. A prediction of brain EEG corresponding to given FBG data with lowest mean square error (MSE) values (0.065–0.109) was made with the selection of a long-short term memory (LSTM) machine learning model when compared to the recurrent neural network (RNN) and gated recurrent unit (GRU) models.
Collapse
Affiliation(s)
- Asad Muhammad Butt
- College of Chemicals & Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Correspondence: ; Tel.: +966-537651766
| | - Hassan Alsaffar
- Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (H.A.); (M.A.)
- Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhannad Alshareef
- Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (H.A.); (M.A.)
| | - Khurram Karim Qureshi
- Optical Communications and Sensors Laboratory (OCSL), Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Center for Communication Systems & Sensing, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
37
|
Zhao M, Bonassi G, Samogin J, Taberna GA, Pelosin E, Nieuwboer A, Avanzino L, Mantini D. Frequency-dependent modulation of neural oscillations across the gait cycle. Hum Brain Mapp 2022; 43:3404-3415. [PMID: 35384123 PMCID: PMC9248303 DOI: 10.1002/hbm.25856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait‐related modulations of neural activity, we collected high‐density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event‐related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG‐based brain–body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders.
Collapse
Affiliation(s)
- Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Chiavari, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Yu J, Li C, Lou K, Wei C, Liu Q. Embedding decomposition for artifacts removal in EEG signals. J Neural Eng 2022; 19. [PMID: 35378524 DOI: 10.1088/1741-2552/ac63eb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis. Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability. The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal. DeepSeparator can be extended to multi-channel EEG and data with any arbitrary length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available at https://github.com/ncclabsustech/DeepSeparator.
Collapse
Affiliation(s)
- Junjie Yu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Chenyi Li
- The Chinese University of Hong Kong - Shenzhen, Shenzhen, China, Shenzhen, Guangdong, 518172, CHINA
| | - Kexin Lou
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Chen Wei
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, 518055, CHINA
| | - Quanying Liu
- Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, 518055, CHINA
| |
Collapse
|
39
|
Pitsik EN, Frolov NS, Shusharina N, Hramov AE. Age-Related Changes in Functional Connectivity during the Sensorimotor Integration Detected by Artificial Neural Network. SENSORS 2022; 22:s22072537. [PMID: 35408153 PMCID: PMC9003057 DOI: 10.3390/s22072537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023]
Abstract
Large-scale functional connectivity is an important indicator of the brain’s normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task. Twenty subjects of two age groups performed repetitive motor tasks on command, while the whole-scalp EEG was recorded. We applied the model based on the feed-forward multilayer perceptron to detect functional relationships between five groups of sensors located over the frontal, parietal, left, right, and middle motor cortex. Functional dependence was evaluated with the predicted and original time series coefficient of determination. Then, we applied statistical analysis to highlight the significant features of the functional connectivity network assessed by our model. Our findings revealed the connectivity pattern is consistent with modern ideas of the healthy aging effect on neural activation. Elderly adults demonstrate a pronounced activation of the whole-brain theta-band network and decreased activation of frontal–parietal and motor areas of the mu-band. Between-subject analysis revealed a strengthening of inter-areal task-relevant links in elderly adults. These findings can be interpreted as an increased cognitive demand in elderly adults to perform simple motor tasks with the dominant hand, induced by age-related working memory decline.
Collapse
Affiliation(s)
- Elena N. Pitsik
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Nikita S. Frolov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Natalia Shusharina
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
| | - Alexander E. Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
- Correspondence:
| |
Collapse
|
40
|
Putzolu M, Samogin J, Cosentino C, Mezzarobba S, Bonassi G, Lagravinese G, Vato A, Mantini D, Avanzino L, Pelosin E. Neural oscillations during motor imagery of complex gait: an HdEEG study. Sci Rep 2022; 12:4314. [PMID: 35279682 PMCID: PMC8918338 DOI: 10.1038/s41598-022-07511-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate differences between usual and complex gait motor imagery (MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. We characterized the spatial distribution of α- and β-bands oscillations extracted from hdEEG signals recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We applied a source localization algorithm to brain regions selected from a large cortical-subcortical network, and then we analyzed α and β bands Event-Related Desynchronizations (ERDs). Nineteen healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. Results showed in both gait MI tasks, α- and β-band ERDs in a large cortical-subcortical network encompassing mostly frontal and parietal regions. In most of the regions, we found α- and β-band ERDs in the DT compared with the UW condition. Finally, in the β band, significant correlations emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and β-band oscillations in cortical and subcortical areas and significant differences between UW and DT MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of pathophysiology of gait disturbances in neurological diseases.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy
| | - Alessandro Vato
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
| | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy.
- Section of Human Physiology, Department of Experimental Medicine (DIMES), University of Genoa, 16132, Genoa, Italy.
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, 16132, Genoa, Italy
| |
Collapse
|
41
|
EEG based cortical investigation for the limit of stability analysis in transfemoral amputees: A comparison with able-bodied individuals. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Zhao M, Bonassi G, Guarnieri R, Pelosin E, Nieuwboer A, Avanzino L, Mantini D. A multi-step blind source separation approach for the attenuation of artifacts in mobile high-density electroencephalography data. J Neural Eng 2021; 18. [PMID: 34874319 DOI: 10.1088/1741-2552/ac4084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Abstract
Objective.Electroencephalography (EEG) is a widely used technique to address research questions about brain functioning, from controlled laboratorial conditions to naturalistic environments. However, EEG data are affected by biological (e.g. ocular, myogenic) and non-biological (e.g. movement-related) artifacts, which-depending on their extent-may limit the interpretability of the study results. Blind source separation (BSS) approaches have demonstrated to be particularly promising for the attenuation of artifacts in high-density EEG (hdEEG) data. Previous EEG artifact removal studies suggested that it may not be optimal to use the same BSS method for different kinds of artifacts.Approach.In this study, we developed a novel multi-step BSS approach to optimize the attenuation of ocular, movement-related and myogenic artifacts from hdEEG data. For validation purposes, we used hdEEG data collected in a group of healthy participants in standing, slow-walking and fast-walking conditions. During part of the experiment, a series of tone bursts were used to evoke auditory responses. We quantified event-related potentials (ERPs) using hdEEG signals collected during an auditory stimulation, as well as the event-related desynchronization (ERD) by contrasting hdEEG signals collected in walking and standing conditions, without auditory stimulation. We compared the results obtained in terms of auditory ERP and motor-related ERD using the proposed multi-step BSS approach, with respect to two classically used single-step BSS approaches.Main results. The use of our approach yielded the lowest residual noise in the hdEEG data, and permitted to retrieve stronger and more reliable modulations of neural activity than alternative solutions. Overall, our study confirmed that the performance of BSS-based artifact removal can be improved by using specific BSS methods and parameters for different kinds of artifacts.Significance.Our technological solution supports a wider use of hdEEG-based source imaging in movement and rehabilitation studies, and contributes to the further development of mobile brain/body imaging applications.
Collapse
Affiliation(s)
- Mingqi Zhao
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, 16043 Chiavari, Italy
| | - Roberto Guarnieri
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium.,Icometrix, 3012 Leuven, Belgium
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, 16132 Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy.,Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| |
Collapse
|
43
|
See KB, Arpin DJ, Vaillancourt DE, Fang R, Coombes SA. Unraveling somatotopic organization in the human brain using machine learning and adaptive supervoxel-based parcellations. Neuroimage 2021; 245:118710. [PMID: 34780917 PMCID: PMC9008369 DOI: 10.1016/j.neuroimage.2021.118710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor network effector-dependent and effector-independent? How important is the sensorimotor cortex when predicting the motor effector? Is there redundancy in the distributed somatotopically organized network such that removing one region has little impact on classification accuracy? To answer these questions, we developed a novel experimental approach. fMRI data were collected while human subjects performed a precisely controlled force generation task separately with their hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity altered classification accuracy. Results revealed effector-dependent activity in regions of the post-central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior parietal lobule, and cerebellum each contained effector-dependent and effector-independent representations. Machine learning analyses showed that increasing the spatial resolution of the data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. Our SLIC-based supervoxel parcellation outperformed classification analyses using established brain templates and random simulations. Occlusion experiments further demonstrated redundancy across the sensorimotor network when classifying effectors. Our observations extend our understanding of effector-dependent and effector-independent organization within the human brain and provide new insight into the functional neuroanatomy required to predict the motor effector used in a motor control task.
Collapse
Affiliation(s)
- Kyle B See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States
| | - David J Arpin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States
| | - David E Vaillancourt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, United States; Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.
| | - Stephen A Coombes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Smart Medical Informatics Learning and Evaluation Lab, College of Engineering, University of Florida, PO Box 116131, Gainesville, FL, United States; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL, United States.
| |
Collapse
|
44
|
Iandolo R, Semprini M, Sona D, Mantini D, Avanzino L, Chiappalone M. Investigating the spectral features of the brain meso-scale structure at rest. Hum Brain Mapp 2021; 42:5113-5129. [PMID: 34331365 PMCID: PMC8449100 DOI: 10.1002/hbm.25607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022] Open
Abstract
Recent studies provide novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative, and core-periphery. However, the spectral properties of the brain meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated how the meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-density electroencephalography signals. Then, we inferred the community structure using weighted stochastic block-model (WSBM) to capture the landscape of meso-scale structures across the frequency domain. We found that different meso-scale modalities co-exist and are diversely organized over the frequency spectrum. Specifically, we found a core-periphery structure dominance, but we also highlighted a selective increase of disassortativity in the low frequency bands (<8 Hz), and of assortativity in the high frequency band (30-50 Hz). We further described other features of the meso-scale organization by identifying those brain regions which, at the same time, (a) exhibited the highest degree of assortativity, disassortativity, and core-peripheriness (i.e., participation) and (b) were consistently assigned to the same community, irrespective from the granularity imposed by WSBM (i.e., granularity-invariance). In conclusion, we observed that the brain spontaneous activity shows frequency-specific meso-scale organization, which may support spatially distributed and local information processing.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Rehab Technologies LabIstituto Italiano di TecnologiaGenovaItaly
- Present address:
Department of Neuromedicine and Movement ScienceFaculty of Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | | | - Diego Sona
- Pattern Analysis & Computer VisionIstituto Italiano di TecnologiaGenovaItaly
- Data Science for Health, Center for Digital Health and WellbeingFondazione Bruno KesslerTrentoItaly
| | - Dante Mantini
- Research Center for Motor Control and NeuroplasticityKU LeuvenLeuvenBelgium
- Brain Imaging and Neural Dynamics Research GroupIRCCS San Camillo HospitalVeneziaItaly
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human PhysiologyUniversity of GenovaGenovaItaly
- Ospedale Policlinico San MartinoIRCCSGenovaItaly
| | - Michela Chiappalone
- Rehab Technologies LabIstituto Italiano di TecnologiaGenovaItaly
- Present address:
Department of Informatics, Bioengineering, Robotics and System EngineeringUniversity of GenovaGenovaItaly
| |
Collapse
|
45
|
Zhang H, Zhao M, Wei C, Mantini D, Li Z, Liu Q. EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising. J Neural Eng 2021; 18. [PMID: 34596046 DOI: 10.1088/1741-2552/ac2bf8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Objective.Deep learning (DL) networks are increasingly attracting attention across various fields, including electroencephalography (EEG) signal processing. These models provide comparable performance to that of traditional techniques. At present, however, there is a lack of well-structured and standardized datasets with specific benchmark limit the development of DL solutions for EEG denoising.Approach.Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing DL-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG.Main results.We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our results suggested that DL methods have great potential for EEG denoising even under high noise contamination.Significance.Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of DL-based EEG denoising. The dataset and code are available athttps://github.com/ncclabsustech/EEGdenoiseNet.
Collapse
Affiliation(s)
- Haoming Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Mingqi Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.,Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven 3001, Belgium
| | - Chen Wei
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven 3001, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Zherui Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Quanying Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
46
|
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele MA. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv Healthc Mater 2021; 10:e2100986. [PMID: 34235886 DOI: 10.1002/adhm.202100986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.
Collapse
Affiliation(s)
- Brendan L. Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
| | - Seedevi Senevirathne
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Katie Kilgour
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Darragh McArt
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Manus Biggs
- Centre for Research in Medical Devices National University of Ireland Newcastle Road Galway H91 W2TY Ireland
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
- Department of Electrical and Computer Engineering North Carolina State University 890 Oval Dr. Raleigh NC 27695 USA
| |
Collapse
|
47
|
Taberna GA, Samogin J, Marino M, Mantini D. Detection of Resting-State Functional Connectivity from High-Density Electroencephalography Data: Impact of Head Modeling Strategies. Brain Sci 2021; 11:brainsci11060741. [PMID: 34204868 PMCID: PMC8226780 DOI: 10.3390/brainsci11060741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Recent technological advances have been permitted to use high-density electroencephalography (hdEEG) for the estimation of functional connectivity and the mapping of resting-state networks (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the creation of an accurate head model, defining how neural currents propagate from the cortex to the sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction. To address this question, we used 256-channel hdEEG data collected in a group of young healthy participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited power envelope correlations, using neural activity estimated with an optimized analysis workflow. Then, we defined a series of head models with different levels of complexity, specifically testing the effect of different electrode positioning techniques and head tissue segmentation methods. We observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies due to head tissue segmentation impact on RSN reconstruction more than those due to electrode positioning. Additionally, we found that EEG-RSN robustness to head model variations had space and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing the reliability of hdEEG functional connectivity measures.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; (G.A.T.); (J.S.); (M.M.)
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
- Correspondence: ; Tel.: +32-16-37-29-09
| |
Collapse
|
48
|
Adetuyi BO, Farombi EO. 6-Gingerol, an active constituent of ginger, attenuates lipopolysaccharide-induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. J Food Biochem 2021; 45:e13660. [PMID: 33624846 DOI: 10.1111/jfbc.13660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
This study examined the protective effect of 6-Gingerol (6G) against lipopolysaccharide (LPS)-induced cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation. Male rats were allocated into six groups in this manner; Group I placed on normal saline only. Group II was treated for 7 days with LPS alone intraperitoneally at 250 µg/kg body weight (bw). Group III received 6G alone at 50 mg/kg bw orally for 14 days. Groups IV and V received 6G at 20 and 50 mg/kg bw for 7 days, respectively, and LPS for another 7 days to induce neurotoxicity. Group VI received 5 mg/kg bw of donepezil for 7 days and LPS for 7 days. Pretreatment with 20 and 50 mg/kg bw of 6G protected against LPS-mediated learning and memory function, and also locomotor and motor deficits. Besides, 20 and 50 mg/kg bw 6G mitigated LPS-induced alteration in markers of oxidative stress. Furthermore, induction of amyloidogenesis associated with disruption of histoarchitecture and high expression of interleukin 1β, inducible nitric oxide synthase, amyloid precursor protein (APP), β-secretase 1, and brain-derived neurotrophic factor by LPS was mitigated by the two doses of 6G in the rat hippocampus and cerebral cortex region of the brain. 6G pretreatment at the two doses mitigated LPS-mediated histopathological changes in the hippocampus and cerebral cortex of rats. Overall, our results demonstrate that the protective effect of 6G is mediated through the reversal of neurobehavioral deficit, oxidative stress, inflammation, and amyloidogenesis, thus making 6G a possible chemoprophylactic agent against brain injury as a result of LPS exposure. PRACTICAL APPLICATIONS: In the search for a holistic prevention of inflammation-associated neurodegeneration, nutraceuticals are becoming prominent. Hence, this study presents 6G, an active constituent of ginger, as a chemoprotective, antioxidant, and anti-inflammatory agent, which is able to ameliorate cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation in LPS-induced rat model of neuroinflammation.
Collapse
Affiliation(s)
- Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
49
|
Paddock KJ, Pereira AE, Finke DL, Ericsson AC, Hibbard BE, Shelby KS. Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol Ecol 2021; 30:5438-5453. [PMID: 33683750 PMCID: PMC9290792 DOI: 10.1111/mec.15875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Evolution of resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) threatens the sustainability of the technology. Examination of resistance mechanisms has largely focused on characterization of mutations in proteins serving as Bt toxin binding sites. However, insect microbial communities have the potential to provide host resistance to pesticides in a myriad of ways. Previous findings suggest the killing mechanism of Bt relies on enteric bacteria becoming pathogenic in the disrupted gut environment of the insect following Bt intoxication. Thus, here we hypothesized that resistance to Bt would alter the microbiome composition of the insect. Previous studies have manipulated the microbiome of susceptible insects and monitored their response to Bt. In our study, we characterized the associated bacterial communities of Bt‐resistant and ‐susceptible western corn rootworms, a widespread pest of maize in the United States. We found resistant insects harbor a bacterial community that is less rich and distinct from susceptible insects. After feeding on Bt‐expressing maize, susceptible insects exhibited dysbiosis of the associated bacterial community, whereas the community within resistant insects remained relatively unchanged. These results suggest resistance to Bt produces alterations in the microbiome of the western corn rootworm that may contribute to resistance. We further demonstrated that by itself, feeding on Bt toxin‐expressing seedlings caused a shift in the microbiota. This work provides a broader picture of the effect stressors have on microbiome composition, and the potential heritable changes induced as a result of intense selection.
Collapse
Affiliation(s)
- Kyle J Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Deborah L Finke
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Bruce E Hibbard
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.,USDA-ARS, University of Missouri, Columbia, MO, USA
| | - Kent S Shelby
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.,USDA-ARS, Columbia, MO, USA
| |
Collapse
|
50
|
Taberna GA, Samogin J, Mantini D. Automated Head Tissue Modelling Based on Structural Magnetic Resonance Images for Electroencephalographic Source Reconstruction. Neuroinformatics 2021; 19:585-596. [PMID: 33506384 PMCID: PMC8566646 DOI: 10.1007/s12021-020-09504-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/15/2023]
Abstract
In the last years, technological advancements for the analysis of electroencephalography (EEG) recordings have permitted to investigate neural activity and connectivity in the human brain with unprecedented precision and reliability. A crucial element for accurate EEG source reconstruction is the construction of a realistic head model, incorporating information on electrode positions and head tissue distribution. In this paper, we introduce MR-TIM, a toolbox for head tissue modelling from structural magnetic resonance (MR) images. The toolbox consists of three modules: 1) image pre-processing – the raw MR image is denoised and prepared for further analyses; 2) tissue probability mapping – template tissue probability maps (TPMs) in individual space are generated from the MR image; 3) tissue segmentation – information from all the TPMs is integrated such that each voxel in the MR image is assigned to a specific tissue. MR-TIM generates highly realistic 3D masks, five of which are associated with brain structures (brain and cerebellar grey matter, brain and cerebellar white matter, and brainstem) and the remaining seven with other head tissues (cerebrospinal fluid, spongy and compact bones, eyes, muscle, fat and skin). Our validation, conducted on MR images collected in healthy volunteers and patients as well as an MR template image from an open-source repository, demonstrates that MR-TIM is more accurate than alternative approaches for whole-head tissue segmentation. We hope that MR-TIM, by yielding an increased precision in head modelling, will contribute to a more widespread use of EEG as a brain imaging technique.
Collapse
Affiliation(s)
- Gaia Amaranta Taberna
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium. .,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|