1
|
Cao X, Song Y, Fan X, Peng L, Meng N, Zeng J, Li Z, Xue C, Xu J. Low temperature, high salinity depuration enhances Pacific oyster (Crassostrea gigas) lipid nutrition during anhydrous living-preservation: Lipidomic insights based on RPLC-Q-TOF-MS/MS. Food Chem 2025; 479:143805. [PMID: 40073564 DOI: 10.1016/j.foodchem.2025.143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Using UHPLC-HRMS-based lipidomics, this study investigated lipid nutrition in Pacific oysters (C. gigas) under two depuration conditions-normal temperature and salinity (N group) and low temperature with high salinity (S group)-during a five-day anhydrous living-preservation period. Quantitative analysis of 927 lipid molecular species across 13 classes revealed that oysters in the S group retained higher levels of glycerolipids, phospholipids, and functional fatty acids (DHA, EPA, and AA) after preservation. Lipid nutritional indices showed the S group had lower risks of atherosclerosis, thrombosis, and favorable cholesterol profiles. Moreover, combined with multivariate and bioinformatics analyses, the results suggested that mild stress during low-temperature, high-salinity depuration enables improved lipid retention in subsequent preservation. These findings provide insights for optimizing pre-transport depuration practices, ensuring consumers receive oysters with superior lipid nutrition, and offer a framework for leveraging stress conditions to enhance shellfish nutritional quality.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Liang Peng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao 266235, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
2
|
Sikorskaya TV. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids. Mar Drugs 2023; 21:335. [PMID: 37367660 DOI: 10.3390/md21060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
Bacterial and Fungal Co-Occurrence in the Nudibranch, Pteraeolidia semperi. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121988. [PMID: 36556353 PMCID: PMC9786341 DOI: 10.3390/life12121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Despite the increasing recognition and importance surrounding bacterial and fungal interactions, and their critical contributions to ecosystem functioning and host fitness, studies examining their co-occurrence remain in their infancy. Similarly, studies have yet to characterise the bacterial and fungal communities associated with nudibranchs or their core microbial members. Doing this can advance our understanding of how the microbiome helps a host adapt and persist in its environment. In this study, we characterised the bacterial and fungal communities associated with 46 Pteraeolidia semperi nudibranch individuals collected from four offshore islands in Singapore. We found no distinct spatial structuring of microbial community, richness, or diversity across sampling locations. The bacterial genera Mycoplasma and Endozoicomonas were found across all samples and islands. The fungal genus Leucoagaricus was found with the highest occurrence, but was not found everywhere, and this is the first record of its reported presence in marine environments. The co-occurrence network suggests that bacterial and fungal interactions are limited, but we identified the bacterial family Colwelliaceae as a potential keystone taxon with its disproportionately high number of edges. Furthermore, Colwelliaceae clusters together with other bacterial families such as Pseudoalteromonadaceae and Alteromonadaceae, all of which have possible roles in the digestion of food.
Collapse
|
4
|
Gaspar L, Ricardo F, Melo T, Domingues P, Domingues MR, Calado R, Rey F. Lipidomics of common octopus' (Octopus vulgaris) tentacle muscle using untargeted high-resolution liquid chromatography-mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Coral Holobionts Possess Distinct Lipid Profiles That May Be Shaped by Symbiodiniaceae Taxonomy. Mar Drugs 2022; 20:md20080485. [PMID: 36005488 PMCID: PMC9410212 DOI: 10.3390/md20080485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Symbiotic relationships are very important for corals. Abiotic stressors cause the acclimatization of cell membranes in symbionts, which possess different membrane acclimatization strategies. Membrane stability is determined by a unique lipid composition and, thus, the profile of thylakoid lipids can depend on coral symbiont species. We have analyzed and compared thylakoid lipidomes (mono- and digalactosyldiacylglycerols (MGDG and DGDG), sulfoquinovosyldiacylglycerols (SQDG), and phosphatidylglycerols (PG)) of crude extracts from symbiotic reef-building coral Acropora sp., the hydrocoral Millepora platyphylla, and the octocoral Sinularia flexibilis. S. flexibilis crude extracts were characterized by a very high SQDG/PG ratio, a DGDG/MGDG ratio < 1, a lower degree of galactolipid unsaturation, a higher content of SQDG with polyunsaturated fatty acids, and a thinner thylakoid membrane which may be explained by the presence of thermosensitive dinoflagellates Cladocopium C3. In contrast, crude extracts of M. platyphylla and Acropora sp. exhibited the lipidome features of thermotolerant Symbiodiniaceae. M. platyphylla and Acropora sp. colonies contained Cladocopium C3u and Cladocopium C71/C71a symbionts, respectively, and their lipidome profiles showed features that indicate thermotolerance. We suggest that an association with symbionts that exhibit the thermotolerant thylakoid lipidome features, combined with a high Symbiodiniaceae diversity, may facilitate further acclimatization/adaptation of M. platyphylla and Acropora sp. holobionts in the South China Sea.
Collapse
|
6
|
Rey F, Greenacre M, Silva Neto GM, Bueno-Pardo J, Domingues MR, Calado R. Fatty acid ratio analysis identifies changes in competent meroplanktonic larvae sampled over different supply events. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105517. [PMID: 34798492 DOI: 10.1016/j.marenvres.2021.105517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Planktonic communities are a cornerstone of ocean food webs. Early benthic performance of meroplanktonic organisms is shaped by their life stages in planktonic communities. Fatty acid profiles of marine invertebrates are a good indicator of their nutritional state and allow inferring how dietary regimes experienced during larval pelagic life may drive their pre- and post-metamorphosis performance. Fatty acid profiles of Carcinus maenas megalopae were analysed during four larval supply events in two consecutive years to better understand the variability in their nutritional state at settlement. The logratio analysis of fatty acids showed differences between the four larval supply events, with five ratios explaining 83.1% of the variance. The ratios that contributed to separate larval supply events presented a combination of essential, de novo synthetized and diet origin fatty acids (e.g., phytanate/20:4 n-6, 16:0/18:2 n-4). The high fatty acid signature dispersion found within the same supply event suggests that larvae settling at Ria de Aveiro (Portugal) developed through different planktonic feeding zones and experienced contrasting feeding regimes. The fatty acid profile of megalopae demonstrated a high contribution of diatoms, flagellates and bacteria in the larval diet of C. maenas. The present study demonstrated differences between supply events, although a high variability of larval phenotypes was recorded within the same supply event.
Collapse
Affiliation(s)
- Felisa Rey
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra, & Barcelona School of Management, Barcelona, Spain.
| | - Gina M Silva Neto
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Juan Bueno-Pardo
- Future Oceans Lab, CIM-Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain.
| | - M Rosário Domingues
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Rey F, Melo T, Lopes D, Couto D, Marques F, Domingues MDRM. Applications of lipidomics in marine organisms: Progresses, challenges and future perspectives. Mol Omics 2022; 18:357-386. [DOI: 10.1039/d2mo00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine ecosystems comprise a high diversity of life forms, such as algae, invertebrates, and vertebrates. These organisms have adapted their physiology according to the conditions of the environments in which...
Collapse
|
8
|
Komisarenko A, Mordukhovich V, Ekimova I, Imbs A. A comparison of food sources of nudibranch mollusks at different depths off the Kuril Islands using fatty acid trophic markers. PeerJ 2021; 9:e12336. [PMID: 34900407 PMCID: PMC8627124 DOI: 10.7717/peerj.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems. However, data on the trophic ecology and feeding specialization of these animals are limited to date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of Dendronotus sp., Tritonia tetraquetra, and Colga pacifica collected from deep waters were analyzed and compared with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high level of FATM such as 22:5n-6 and C20 monounsaturated FAs indicated that Dendronotus sp. preys on sea anemones and/or anthoathecates hydroids similarly to that of shallow-water species A. papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that T. tetraquetra preys on soft corals such as Gersemia and/or Acanella at a depth of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of T. tetraquetra at a depth of 500 m. The high content of Δ 7,13-22:2 and 22:6n-3 shows that C. pacifica can feed on bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks, whereas odd-chain and branched saturated FAs originate from associated bacteria.
Collapse
Affiliation(s)
- Anatolii Komisarenko
- Laboratory of Comparative Biochemistry, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Vladimir Mordukhovich
- Laboratory of Dynamics of Marine Ecosystems, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.,Department of Ecology, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Irina Ekimova
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey Imbs
- Laboratory of Comparative Biochemistry, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
9
|
Current Progress in Lipidomics of Marine Invertebrates. Mar Drugs 2021; 19:md19120660. [PMID: 34940659 PMCID: PMC8708635 DOI: 10.3390/md19120660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.
Collapse
|
10
|
Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea. Sci Rep 2021; 11:21285. [PMID: 34711899 PMCID: PMC8553863 DOI: 10.1038/s41598-021-00876-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The cold-water gorgonian coral Paragorgia arborea is considered as a foundation species of deep-sea ecosystems in the northern Atlantic and Pacific oceans. To advance lipidomic studies of deep-sea corals, molecular species compositions of diacylglycerol ethers (DAGE), which are specific storage lipids of corals, and structural glycerophospholipids (GPL) including ethanolamine, choline, inositol and serine GPL (PE, PC, PI, and PS, respectively) were analyzed in P. arborea by HPLC and tandem mass spectrometry. In DAGE molecules, alkyl groups (16:0, 14:0, and 18:1), polyunsaturated fatty acids (PUFA), and monounsaturated FA are mainly substituted the glycerol moiety at position sn-1, sn-2, and sn-3, respectively. The ether form (1-O-alkyl-2-acyl) predominates in PE and PC, while PI is comprised of the 1,2-diacyl form. Both ether and diacyl forms were observed in PS. At position sn-2, C20 PUFA are mainly attached to PC, but C24 PUFA, soft coral chemotaxonomic markers, concentrate in PS, PI, and PE. A comparison of non-polar parts of molecules has shown that DAGE, ether PE, and ether PC can originate from one set of 1-O-alkyl-2-acyl-sn-glycerols. Ether PE may be converted to ether PS by the base-exchange reaction. A diacylglycerol unit generated from phosphatidic acid can be a precursor for diacyl PS, PC, and PI. Thus, a lipidomic approach has confirmed the difference in biosynthetic origins between ether and diacyl lipids of deep-sea gorgonians.
Collapse
|
11
|
Imbs AB, Dang LT. Seasonal dynamics of fatty acid biomarkers in the soft coral Sinularia flexibilis, a common species of Indo-Pacific coral reefs. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|