1
|
Brendan Hayes C, Carter O, Robert MacWilliams J, Cranshaw W, Chaparro JM, Prenni JE, Nachappa P. Biology and management of hemp russet mite (Acari: Eriophyidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1706-1714. [PMID: 37450624 DOI: 10.1093/jee/toad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage, and efficacy of pesticides. Here we assessed the role of cannabidiol (CBD) on HRM performance, efficacy of sulfur treatments in field trials, and effect of hot water immersion with and without surfactants in reducing HRM counts on hemp cuttings. We found that HRM fecundity was reduced on a high-CBD cultivar compared with a low-CBD cultivar in detached leaf assays. In contrast, HRM fecundity and survival were not impacted when reared on high-CBD diet in artificial feeding assays. This suggests that cannabinoids other than CBD may aid in reduction of mite populations on the high-CBD cultivar. Sulfur sprays reduced HRM populations by up to 98% with the greatest effects seen in plants receiving dual applications, one during the vegetative period in July and the second at the initiation of flowering in August. Yields of plants treated with sulfur increased by up to 33%, and there was a further increase in cannabinoid production by up to 45% relative to untreated plants. Hot water immersion treatments with and without surfactant solution reduced HRM on infested hemp cuttings, and no phytotoxicity was observed. This study provides novel approaches to mitigating HRM at multiple stages in hemp production.
Collapse
Affiliation(s)
| | - Olivia Carter
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Whitney Cranshaw
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Skoracka A, Laska A, Radwan J, Konczal M, Lewandowski M, Puchalska E, Karpicka‐Ignatowska K, Przychodzka A, Raubic J, Kuczyński L. Effective specialist or jack of all trades? Experimental evolution of a crop pest in fluctuating and stable environments. Evol Appl 2022; 15:1639-1652. [PMID: 36330306 PMCID: PMC9624081 DOI: 10.1111/eva.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznańPoland
| | - Alicja Laska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jacek Radwan
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mateusz Konczal
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mariusz Lewandowski
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Ewa Puchalska
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Kamila Karpicka‐Ignatowska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Anna Przychodzka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jarosław Raubic
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Lechosław Kuczyński
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
3
|
Mechanisms of dispersal and colonisation in a wind-borne cereal pest, the haplodiploid wheat curl mite. Sci Rep 2022; 12:551. [PMID: 35017605 PMCID: PMC8752673 DOI: 10.1038/s41598-021-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Dispersal and colonisation determine the survival and success of organisms, and influence the structure and dynamics of communities and ecosystems in space and time. Both affect the gene flow between populations, ensuring sufficient level of genetic variation and improving adaptation abilities. In haplodiploids, such as Aceria tosichella (wheat curl mite, WCM), a population may be founded even by a single unfertilised female, so there is a risk of heterozygosity loss (i.e. founder effect). It may lead to adverse outcomes, such as inbreeding depression. Yet, the strength of the founder effect partly depends on the genetic variation of the parental population. WCM is an economically important pest with a great invasive potential, but its dispersal and colonisation mechanisms were poorly studied before. Therefore, here we assessed WCM dispersal and colonisation potential in relation to the genetic variation of the parental population. We checked whether this potential may be linked to specific pre-dispersal actions (e.g. mating before dispersal and collective behaviour). Our study confirms that dispersal strategies of WCM are not dependent on heterozygosity in the parental population, and the efficient dispersal of this species depends on collective movement of fertilised females.
Collapse
|
4
|
Laska A, Magalhães S, Lewandowski M, Puchalska E, Karpicka-Ignatowska K, Radwańska A, Meagher S, Kuczyński L, Skoracka A. A sink host allows a specialist herbivore to persist in a seasonal source. Proc Biol Sci 2021; 288:20211604. [PMID: 34465242 PMCID: PMC8437026 DOI: 10.1098/rspb.2021.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016 Lisboa, Portugal
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Ewa Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shawn Meagher
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | - Lechosław Kuczyński
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Karpicka-Ignatowska K, Laska A, Rector BG, Skoracka A, Kuczyński L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:513-525. [PMID: 33661416 PMCID: PMC8041678 DOI: 10.1007/s10493-021-00602-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/20/2021] [Indexed: 05/03/2023]
Abstract
Quantifying basic biological data, such as the effects of variable temperatures on development and survival, is crucial to predicting and monitoring population growth rates of pest species, many of which are highly invasive. One of the most globally important pests of cereals is the eriophyoid wheat curl mite (WCM), Aceria tosichella, which is the primary vector of several plant viruses. The aim of this study was to evaluate temperature-dependent development and survival of WCM at a wide range of constant temperatures in the laboratory (17-33 °C). The development time of each stage depended significantly on temperature and it was negatively correlated with temperature increase. At high temperatures (27-33 °C), individuals had shorter developmental times, with the shortest (6 days) at 33 °C, whereas at the lowest tested temperatures (17-19 °C), developmental time was almost 3× longer. Moreover, temperature had a clear effect on survival: the higher the temperature, the lower the survival rate. These data provide information promoting more efficient and effective manipulation of WCM laboratory colonies, and further our understanding of the ramifications of temperature change on WCM physiology and implications for the growth and spread of this globally invasive pest.
Collapse
Affiliation(s)
- Kamila Karpicka-Ignatowska
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Alicja Laska
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Brian G Rector
- USDA-ARS, Great Basin Rangelands Research Unit, Reno, NV, USA
| | - Anna Skoracka
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Lechosław Kuczyński
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
6
|
Kuczyński L, Radwańska A, Karpicka-Ignatowska K, Laska A, Lewandowski M, Rector BG, Majer A, Raubic J, Skoracka A. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:17-31. [PMID: 32812209 PMCID: PMC7471196 DOI: 10.1007/s10493-020-00532-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Dispersal is a fundamental biological process that operates at different temporal and spatial scales with consequences for individual fitness, population dynamics, population genetics, and species distributions. Studying this process is particularly challenging when the focus is on microscopic organisms that disperse passively, whilst controlling neither the transience nor the settlement phase of their movement. In this work we propose a comprehensive approach for studying passive dispersal of microscopic invertebrates and demonstrate it using wind and phoretic vectors. The protocol includes the construction of versatile, modifiable dispersal tunnels as well as a theoretical framework quantifying the movement of species via wind or vectors, and a hierarchical Bayesian approach appropriate to the structure of the dispersal data. The tunnels were used to investigate the three stages of dispersal (viz., departure, transience, and settlement) of two species of minute, phytophagous eriophyid mites Aceria tosichella and Abacarus hystrix. The proposed devices are inexpensive and easy to construct from readily sourced materials. Possible modifications enable studies of a wide range of mite species and facilitate manipulation of dispersal factors, thus opening a new important area of ecological study for many heretofore understudied species.
Collapse
Affiliation(s)
- Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Alicja Laska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
| | - Brian G. Rector
- Great Basin Rangelands Research Unit, USDA-ARS, 920 Valley Road, Reno, NV 89512 USA
| | - Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Jarosław Raubic
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|