1
|
Maemura M, Morita M, Ogata S, Miyamoto Y, Ida T, Shibusaka K, Negishi S, Hosonuma M, Saito T, Yoshitake J, Takata T, Matsunaga T, Mishima E, Barayeu U, Akaike T, Yano F. Supersulfides contribute to joint homeostasis and bone regeneration. Redox Biol 2025; 81:103545. [PMID: 39983344 PMCID: PMC11893308 DOI: 10.1016/j.redox.2025.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
The physiological functions of supersulfides, inorganic and organic sulfides with sulfur catenation, have been extensively studied. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulfide synthase. This study aimed to investigate the role of supersulfides in joint homeostasis and bone regeneration. Using Cars2AINK/+ mutant mice, in which the KIIK motif of CARS2 essential for supersulfide production was replaced with AINK, we evaluated the role of supersulfides in fracture healing and cartilage homeostasis during osteoarthritis (OA). Tibial fracture surgery was performed on the wild-type (Cars2+/+) and Cars2AINK/+ mice littermates. Bulk RNA-seq analysis for the osteochondral regeneration in the fracture model showed increased inflammatory markers and reduced osteogenic factors, indicative of impaired bone regeneration, in Cars2AINK/+ mice. Destabilization of the medial meniscus (DMM) surgery was performed to produce the mouse OA model. Histological analyses with Osteoarthritis Research Society International and synovitis scores revealed accelerated OA progression in Cars2AINK/+ mice compared with that in Cars2+/+ mice. To assess the effects of supersulfides on OA progression, glutathione trisulfide (GSSSG) or saline was periodically injected into the mouse knee joints after the DMM surgery. Thus, supersulfides derived from CARS2 and GSSSG exogenously administered significantly inhibited inflammation and lipid peroxidation of the joint cartilage, possibly through suppression of ferroptosis, during OA development. This study represents a significant advancement in understanding anti-inflammatory and anti-oxidant functions of supersulfides in skeletal tissues and may have a clinical relevance for the bone healing and OA therapeutics.
Collapse
Affiliation(s)
- Miki Maemura
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Yoichi Miyamoto
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Kazuhiro Shibusaka
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Orthodontics, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Soichiro Negishi
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Hosonuma
- Department of Pharmacology, Graduate School of Pharmacy, Showa University, Tokyo, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | | | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sedai, Japan.
| | - Fumiko Yano
- Department of Biochemistry, Graduate School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
2
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
3
|
Anbazhagan M, Sharma G, Murthy S, Maddipatla SC, Kolachala VL, Dodd A, Randunne A, Cutler DJ, Kugathasan S, Matthews JD. PTGER4 signaling regulates class IIa HDAC function and SPINK4 mRNA levels in rectal epithelial cells. Cell Commun Signal 2024; 22:493. [PMID: 39396982 PMCID: PMC11472582 DOI: 10.1186/s12964-024-01879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The prostaglandin receptor PTGER4 facilitates homeostasis in the gut. Previous reports indicate that goblet cells, marked by SPINK4 expression, might be affected by PTGER4 activity. Current evidence suggests that prostaglandin E2 (PGE2) produced by mesenchymal stromal cells (MSC) stimulates PTGER4 in epithelial cells during inflammatory conditions. Here, we investigate the subcellular mechanisms and mRNA levels downstream of PTGER4 activity in epithelial cells. METHODS Mucosal cells, organoids, and MSC were obtained from patient biopsies harvested by endoscopy. Using independent and co-cultures, we manipulated the activity of PTGER4, the downstream enzymes, and mRNA levels, by using PGE2, in combination with chemical inhibitors, L-161982, H89, LB100, DAPT, LMK-235, or with butyrate. Immunofluorescence, single cell sequencing, RNAscope, ELISA, real time PCR, and Western blotting were used to examine these samples. RESULTS SPINK4 mRNA levels were increased in organoids by co-culture with MSC or exogenous stimulation with PGE2 that could be blocked by L-161982 or LMK-235, PTGER4 or HDAC4 inhibitors, respectively. Expression of PTGER4 was co-localized with JAM-A in the basolateral surfaces in rectal epithelial cells grown as organoids. PGE2 treatment of rectal organoids decreased HDAC4, 5, and 7 phosphorylation levels that could be blocked by L-161982 treatment. Butyrate treatment, or addition of L-161982, increased the phosphorylated levels of HDAC4, 5, and 7. CONCLUSIONS These findings suggest a mechanism during mucosal injury whereby MSC production of PGE2 increases HDAC4, 5, and 7 activities in epithelial cells by upregulating PTGER4 signaling, ultimately increasing SPINK4 mRNA levels and extracellular release of SPINK4.
Collapse
Affiliation(s)
- Murugadas Anbazhagan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Garima Sharma
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Shanta Murthy
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Sushma Chowdary Maddipatla
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Amanda Randunne
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Department of Pediatrics and Pediatric Research Institute, Division of Pediatric Gastroenterology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Jason D Matthews
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Health Science Research Building, 1760 Haygood Dr, E-246, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Ilyas S, Baek CY, Manan A, Choi Y, Jo HG, Lee D. Mechanistic Exploration of Smilax glabra Roxb. in Osteoarthritis: Insights from Network Pharmacology, Molecular Docking, and In Vitro Validation. Pharmaceuticals (Basel) 2024; 17:1285. [PMID: 39458926 PMCID: PMC11510151 DOI: 10.3390/ph17101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Arthritis, a debilitating joint disease, remains a significant global health burden. This study uncovers the therapeutic potential of the medicinal plant Smilax glabra Roxb. (SGR) in attenuating progression of disease by modulating immune responses. Methods: Through computational approaches, key bioactive compounds in SGR were identified by using freely available databases: TCMSP, TCMID, HIT2.0, HERB, and INPUT in order to elucidate their underlying mechanisms of action. Therapeutic targets for the disease have been retrieved by TTD, GeneCard, and OMIM databases. The STRING database was used to analyze the protein-protein interactions (PPI) of intersecting genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to reveal the functional roles of genes. Mcule was used for molecular docking and binding affinity of compounds and targets were evaluated by DeepPurpose model. ALP activity, cell viability assay, TRAP staining were also performed. Results: A total of 14 active SGR compounds with 59 common targets for arthritis have been identified. These targets have a major role in controlling biological processes such as wound healing, oxygen responses, and chemical stimuli. Molecular docking by Mcule platform demonstrated that quercetin and β-sitosterol showed higher binding energy affinities with TNF, TP53, PTGS2, and JUN as compared to other targets. To explore the complex relationship between compounds and targets, pre-trained Davis and KIBA models were used to predict the affinity values of selected compounds. In MC3T3-E1 cells, ALP activity was significantly increased and bone marrow macrophages (BMM) showed a low number of TRAP-positive cells in SGR-treated cells. Conclusions: Our findings demonstrate that SGR effectively inhibits/regulates inflammatory responses, prevents cartilage degradation, promotes bone regeneration, and can be used as a promising candidate for the development of novel arthritis treatment.
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yeojin Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Schmidt S, Klampfleuthner FAM, Renkawitz T, Diederichs S. Cause and chondroprotective effects of prostaglandin E2 secretion during mesenchymal stromal cell chondrogenesis. Eur J Cell Biol 2024; 103:151412. [PMID: 38608422 DOI: 10.1016/j.ejcb.2024.151412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-β1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.
Collapse
Affiliation(s)
- Sven Schmidt
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany
| | - Tobias Renkawitz
- Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg, Germany.
| |
Collapse
|
6
|
Garland A, Wierenga C, McCrae P, Pearson W. Cartilage-Sparing Properties of Equine Omega Complete in an Organ Culture Model of Cartilage Inflammation. J Equine Vet Sci 2023; 121:104165. [PMID: 36423791 DOI: 10.1016/j.jevs.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to determine anti-inflammatory and/or chondroprotective effects of Equine Omega Complete (EOC) on cartilage explants stimulated with lipopolysaccharide (LPS). Explants were aseptically prepared from the intercarpal joints of 17 market-weight pigs and placed in culture at 37°C for a total of 120 hours. For the final 96 hours, explants were conditioned with a simulated digestion extract of EOC (0, 36 or 180 μL/mL), and for the final 48 hours explants were stimulated with LPS (0 or 15µg/mL). Media was removed and replaced every 24 hours. Samples from the final 48 hours were analyzed for biomarkers of cartilage inflammation (prostaglandin E2 [PGE2] and nitric oxide [NO]) and cartilage structure (glycosaminoglycan [GAG]). At the end of the culture period cartilage explants were stained for an estimate of cell viability. Stimulation of unconditioned explants with LPS significantly increased media concentrations of PGE2, GAG and NO compared with that from unstimulated explants. LPS stimulation did not significantly affect cell viability. Both concentrations of EOC prevented significant LPS-stimulated cartilage release of GAG without impairing chondrocyte viability. No other effects of treatment were observed. These data provide evidence for a non-cytotoxic, chondroprotective effect of EOC in cartilage. This in vitro experiment supports the use of EOC in protecting against the detrimental effects of inflammation on cartilage structure.
Collapse
Affiliation(s)
- Anna Garland
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Corina Wierenga
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Persephone McCrae
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
7
|
Chae CS, Sandoval TA, Hwang SM, Park ES, Giovanelli P, Awasthi D, Salvagno C, Emmanuelli A, Tan C, Chaudhary V, Casado J, Kossenkov AV, Song M, Barrat FJ, Holcomb K, Romero-Sandoval EA, Zamarin D, Pépin D, D’Andrea AD, Färkkilä A, Cubillos-Ruiz JR. Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discov 2022; 12:1904-1921. [PMID: 35552618 PMCID: PMC9357054 DOI: 10.1158/2159-8290.cd-21-1181] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Paolo Giovanelli
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Minkyung Song
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, and Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Franck J. Barrat
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Alan D. D’Andrea
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA,Correspondence: Juan R. Cubillos-Ruiz, Ph.D., Associate Professor of Immunology, Weill Cornell Medicine, New York, NY, , Phone: 212-743-1323
| |
Collapse
|
8
|
Jin Y, Liu Q, Chen P, Zhao S, Jiang W, Wang F, Li P, Zhang Y, Lu W, Zhong TP, Ma X, Wang X, Gartland A, Wang N, Shah KM, Zhang H, Cao X, Yang L, Liu M, Luo J. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov 2022; 8:24. [PMID: 35256606 PMCID: PMC8901748 DOI: 10.1038/s41421-022-00382-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
Articular cartilage repair and regeneration is an unmet clinical need because of the poor self-regeneration capacity of the tissue. In this study, we found that the expression of prostaglandin E receptor 4 (PTGER4 or EP4) was largely increased in the injured articular cartilage in both humans and mice. In microfracture (MF) surgery-induced cartilage defect (CD) and destabilization of the medial meniscus (DMM) surgery-induced CD mouse models, cartilage-specific deletion of EP4 remarkably promoted tissue regeneration by enhancing chondrogenesis and cartilage anabolism, and suppressing cartilage catabolism and hypertrophy. Importantly, knocking out EP4 in cartilage enhanced stable mature articular cartilage formation instead of fibrocartilage, and reduced joint pain. In addition, we identified a novel selective EP4 antagonist HL-43 for promoting chondrocyte differentiation and anabolism with low toxicity and desirable bioavailability. HL-43 enhanced cartilage anabolism, suppressed catabolism, prevented fibrocartilage formation, and reduced joint pain in multiple pre-clinical animal models including the MF surgery-induced CD rat model, the DMM surgery-induced CD mouse model, and an aging-induced CD mouse model. Furthermore, HL-43 promoted chondrocyte differentiation and extracellular matrix (ECM) generation, and inhibited matrix degradation in human articular cartilage explants. At the molecular level, we found that HL-43/EP4 regulated cartilage anabolism through the cAMP/PKA/CREB/Sox9 signaling. Together, our findings demonstrate that EP4 can act as a promising therapeutic target for cartilage regeneration and the novel EP4 antagonist HL-43 has the clinical potential to be used for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siyuan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Yang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.,Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
10
|
|