1
|
Rajagopalan NR, Vista WR, Fujimori M, Vroomen LGPH, Jiménez JM, Khadka N, Bikson M, Srimathveeravalli G. Cytoskeletal Remodeling and Gap Junction Translocation Mediates Blood-Brain Barrier Disruption by Non-invasive Low-Voltage Pulsed Electric Fields. Ann Biomed Eng 2024; 52:89-102. [PMID: 37115366 DOI: 10.1007/s10439-023-03211-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
High-voltage pulsed electric fields (HV-PEF) delivered with invasive needle electrodes for electroporation applications is known to induce off-target blood-brain barrier (BBB) disruption. In this study, we sought to determine the feasibility of minimally invasive PEF application to produce BBB disruption in rat brain and identify the putative mechanisms mediating the effect. We observed dose-dependent presence of Evans Blue (EB) dye in rat brain when PEF were delivered with a skull mounted electrode used for neurostimulation application. Maximum region of dye uptake was observed while using 1500 V, 100 pulses, 100 µs and 10 Hz. Results of computational models suggested that the region of BBB disruption was occurring at thresholds of 63 V/cm or higher; well below intensity levels for electroporation. In vitro experiments recapitulating this effect with human umbilical vein endothelial cells (HUVEC) demonstrated cellular alterations that underlie BBB manifests at low-voltage high-pulse conditions without affecting cell viability or proliferation. Morphological changes in HUVECs due to PEF were accompanied by disruption of actin cytoskeleton, loss of tight junction protein-ZO-1 and VE-Cadherin at cell junctions and partial translocation into the cytoplasm. Uptake of propidium iodide (PI) in PEF treated conditions is less than 1% and 2.5% of total number of cells in high voltage (HV) and low-voltage (LV) groups, respectively, implying that BBB disruption to be independent of electroporation under these conditions. 3-D microfabricated blood vessel permeability was found to increase significantly following PEF treatment and confirmed with correlative cytoskeletal changes and loss of tight junction proteins. Finally, we show that the rat brain model can be scaled to human brains with a similar effect on BBB disruption characterized by electric field strength (EFS) threshold and using a combination of two bilateral HD electrode configurations.
Collapse
Affiliation(s)
| | - William-Ray Vista
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Masashi Fujimori
- Department of Radiology, Interventional Radiology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Mie University, Tsu, Mie, Japan
| | | | - Juan M Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Niranjan Khadka
- Division of Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Synchron Inc, Brooklyn, NY, USA
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Govindarajan Srimathveeravalli
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
2
|
Shakila PB, Hirad AH, Alarfaj AA, Hussein-Al-Ali SH, Mulugeta B. Precise Construction of Dual-Promising Anticancer Drugs Associated with Gold Nanomaterials on Glioma Cancer Cells. Bioinorg Chem Appl 2023; 2023:8892099. [PMID: 37920234 PMCID: PMC10620031 DOI: 10.1155/2023/8892099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Multiple chemodrugs with nanotechnology have proven to be an effective cancer treatment technique. When taken combined, cabazitaxel (CTX) and cisplatin (PT) have more excellent cytotoxic effects than drugs used alone in the chemotherapy of several different cancers. However, several severe side effects are associated with using these chemotherapy drugs in cancer patients. Gold nanomaterials (AuNMs) are promising as drug carriers because of their small diameter, easy surface modifications, good biocompatibility, and strong cell penetration. This work aimed to determine the CTX and PT encapsulated with AuNMs against human glioma U87 cancer cells. The fabrication of the AuNMs achieved a negative surface charge, polydispersity index, and the mean sizes. The combined cytotoxic effect of CTX and PT bound to AuNMs was greater than that of either drug alone when tested on U87 cells. The half inhibitory concentration (IC50) values for free PT were 54.7 μg/mL (at 24 h) and 4.8 g μg/mL (at 72 h). Results acquired from the MTT assay show cell growth decreases time- and concentration-dependent AuNMs, free CTX, free PT, and AuNMs@CTX/PT-induced cytotoxicity and, ultimately, the cell death of U87 cells via apoptosis. The biochemical apoptosis staining techniques investigated the cells' morphological changes of the cells (acridine orange and ethidium bromide (AO-EB) and nuclear staining (DAPI) techniques). The AO-EB and nuclear staining results reveal that the NPs effectively killed cancer cells. Furthermore, the flow cytometry analysis examined the mode of cell death. Therefore, AuNMs@CTX/PT has excellent potential in the cancer therapy of different cancer cells.
Collapse
Affiliation(s)
- P. Baby Shakila
- Department of Biochemistry, Vivekananda College of Arts and Sciences for Women, Tiruchengode 637205, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Beza Mulugeta
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Dire Dawa, P.O. Box 128, Ethiopia
| |
Collapse
|
3
|
Cooper I, Last D, Ravid O, Rand D, Matsree E, Omesi L, Shemesh C, Liberman M, Zach L, Furman O, Daniels D, Liraz-Zaltsman S, Mardor Y, Sharabi S. BBB opening by low pulsed electric fields, depicted by delayed-contrast MRI, enables efficient delivery of therapeutic doxorubicin doses into mice brains. Fluids Barriers CNS 2023; 20:67. [PMID: 37737197 PMCID: PMC10515428 DOI: 10.1186/s12987-023-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pharmacological treatment of CNS diseases is limited due to the presence of the blood-brain barrier (BBB). Recent years showed significant advancement in the field of CNS drug delivery enablers, with technologies such as MR-guided focused ultrasound reaching clinical trials. This have inspired researchers in the field to invent novel brain barriers opening (BBo) technologies that are required to be simple, fast, safe and efficient. One such technology, recently developed by us, is BDF (Barrier Disrupting Fields), based on low pulsed electric fields (L-PEFs) for opening the BBB in a controlled, safe, reversible and non-invasive manner. Here, we conducted an in vivo study to show that BDF is a feasible technology for delivering Doxorubicin (Doxo) into mice brain. Means for depicting BBBo levels were developed and applied for monitoring the treatment and predicting response. Overall, the goals of the presented study were to demonstrate the feasibility for delivering therapeutic Doxo doses into naïve and tumor-bearing mice brains and applying delayed-contrast MRI (DCM) for monitoring the levels of BBBo. METHODS L-PEFs were applied using plate electrodes placed on the intact skull of naïve mice. L-PEFs/Sham mice were scanned immediately after the procedure by DCM ("MRI experiment"), or injected with Doxo and Trypan blue followed by delayed (4 h) perfusion and brain extraction ("Doxo experiment"). Doxo concentrations were measured in brain samples using confocal microscopy and compared to IC50 of Doxo in glioma cell lines in vitro. In order to map BBBo extent throughout the brain, pixel by pixel MR image analysis was performed using the DCM data. Finally, the efficacy of L-PEFs in combination with Doxo was tested in nude mice bearing intracranial human glioma tumors. RESULTS Significant amount of Doxo was found in cortical regions of all L-PEFs-treated mice brains (0.50 ± 0.06 µg Doxo/gr brain) while in Sham brains, Doxo concentrations were below or on the verge of detection limit (0.03 ± 0.02 µg Doxo/gr brain). This concentration was x97 higher than IC50 of Doxo calculated in gl261 mouse glioma cells and x8 higher than IC50 of Doxo calculated in U87 human glioma cells. DCM analysis revealed significant BBBo levels in the cortical regions of L-PEFs-treated mice; the average volume of BBBo in the L-PEFs-treated mice was x29 higher than in the Sham group. The calculated BBBo levels dropped exponentially as a function of BBBo threshold, similarly to the electric fields distribution in the brain. Finally, combining non-invasive L-PEFs with Doxo significantly decreased brain tumors growth rates in nude mice. CONCLUSIONS Our results demonstrate significant BBBo levels induced by extra-cranial L-PEFs, enabling efficient delivery of therapeutic Doxo doses into the brain and reducing tumor growth. As BBBo was undetectable by standard contrast-enhanced MRI, DCM was applied to generate maps depicting the BBBo levels throughout the brain. These findings suggest that BDF is a promising technology for efficient drug delivery into the brain with important implications for future treatment of brain cancer and additional CNS diseases.
Collapse
Affiliation(s)
- Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- School of Psychology, Reichman University, Herzliya, Israel.
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Erez Matsree
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Liora Omesi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Meir Liberman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Leor Zach
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Orit Furman
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Yael Mardor
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| |
Collapse
|
4
|
Campelo SN, Lorenzo MF, Partridge B, Alinezhadbalalami N, Kani Y, Garcia J, Saunier S, Thomas SC, Hinckley J, Verbridge SS, Davalos RV, Rossmeisl JH. High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Front Oncol 2023; 13:1171278. [PMID: 37213298 PMCID: PMC10196182 DOI: 10.3389/fonc.2023.1171278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Background Irreversible electroporation (IRE) has been previously investigated in preclinical trials as a treatment for intracranial malignancies. Here, we investigate next generation high-frequency irreversible electroporation (H-FIRE), as both a monotherapy and a combinatorial therapy, for the treatment of malignant gliomas. Methods Hydrogel tissue scaffolds and numerical modeling were used to inform in-vivo H-FIRE pulsing parameters for our orthotopic tumor-bearing glioma model. Fischer rats were separated into five treatment cohorts including high-dose H-FIRE (1750V/cm), low-dose H-FIRE (600V/cm), combinatorial high-dose H-FIRE + liposomal doxorubicin, low-dose H-FIRE + liposomal doxorubicin, and standalone liposomal doxorubicin groups. Cohorts were compared against a standalone tumor-bearing sham group which received no therapeutic intervention. To further enhance the translational value of our work, we characterize the local and systemic immune responses to intracranial H-FIRE at the study timepoint. Results The median survival for each cohort are as follows: 31 days (high-dose H-FIRE), 38 days (low-dose H-FIRE), 37.5 days (high-dose H-FIRE + liposomal doxorubicin), 27 days (low-dose H-FIRE + liposomal doxorubicin), 20 days (liposomal doxorubicin), and 26 days (sham). A statistically greater overall survival fraction was noted in the high-dose H-FIRE + liposomal doxorubicin (50%, p = 0.044), high-dose H-FIRE (28.6%, p = 0.034), and the low-dose H-FIRE (20%, p = 0.0214) compared to the sham control (0%). Compared to sham controls, brain sections of rats treated with H-FIRE demonstrated significant increases in IHC scores for CD3+ T-cells (p = 0.0014), CD79a+ B-cells (p = 0.01), IBA-1+ dendritic cells/microglia (p = 0.04), CD8+ cytotoxic T-cells (p = 0.0004), and CD86+ M1 macrophages (p = 0.01). Conclusions H-FIRE may be used as both a monotherapy and a combinatorial therapy to improve survival in the treatment of malignant gliomas while also promoting the presence of infiltrative immune cells.
Collapse
Affiliation(s)
- Sabrina N. Campelo
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Brittanie Partridge
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nastaran Alinezhadbalalami
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Josefa Garcia
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Sofie Saunier
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Sean C. Thomas
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Scott S. Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Inhibitory Effect of miR-339-5p on Glioma through PTP4A1/HMGB1 Pathway. DISEASE MARKERS 2022; 2022:2231195. [PMID: 35872698 PMCID: PMC9307383 DOI: 10.1155/2022/2231195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022]
Abstract
Objective Finding miR-339-5p inhibitory functions in glioma through PTP4A1/HMGB1 pathway. Methods From May 2020 to August 2021, 20 glioblastoma and para cancer tissues were chosen for qRT-PCR analysis. The miR-NC, miR-con, miR-339-5PMIMIC, and miR-con + groups were transfected into human glioma U251 cells. The capacity of cell vascular-like structure construction was found by simulating angiogenesis, and the ability of cell movement was examined by cell scratching. The twofold luciferase reporter gene method determined that miR-339-5p targets PTP4A1, and the protein expression levels of PTP4A1 and HMGB1 were examined using Western blot. Results MiR-339-5P expression was substantially lower in cancer samples than noncancer samples (P < 0.05). PTP4A1 expression in cancer samples was higher than in healthy controls (P < 0.05). The miR-339-5p group produced significantly less vascular-like structures than the NC and miR-con groups (P < 0.05). The miR-339-5p group lowered the invasive index and migratory rate of U251 cells (P < 0.05). PTP4A1 inhibited the luciferase activity of the pTP4A1-WT reporter gene (P < 0.05) but not the PTP4A1-MUT (P > 0.05). The miR-339-5p group had lower protein levels of PTP4A1 and HMGB1 than the NC and miR-con groups (P < 0.05). The development of vascular-like structures was substantially more significant in the miR-con +PTP4A1 group than in the miR-con and miR-339-5p +PTP4A1 groups (P < 0.05). In terms of migration and invasion index, there was a substantial difference between the miR-339-5p +PTP4A1 and the miR-con +PTP4A1 groups (P < 0.05). The miR-con +PTP4A1 group had a greater migration rate and invasive index than the miR-con and miR-339-5p +PTP4A1 groups (P < 0.05). Conclusion MiR-339-5P inhibits angiogenic mimicry, migration, and invasion of brain glioma U251 cells by inhibiting the PTP4A1/HMGB1 signal pathway.
Collapse
|
6
|
Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol 2022; 18:221-236. [PMID: 35277681 PMCID: PMC10359969 DOI: 10.1038/s41582-022-00621-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Despite advances in neurosurgery, chemotherapy and radiotherapy, glioblastoma remains one of the most treatment-resistant CNS malignancies, and the tumour inevitably recurs. The majority of recurrences appear in or near the resection cavity, usually within the area that received the highest dose of radiation. Many new therapies focus on combatting these local recurrences by implementing treatments directly in or near the tumour bed. In this Review, we discuss the latest developments in local therapy for glioblastoma, focusing on recent preclinical and clinical trials. The approaches that we discuss include novel intraoperative techniques, various treatments of the surgical cavity, stereotactic injections directly into the tumour, and new developments in convection-enhanced delivery and intra-arterial treatments.
Collapse
|
7
|
Cooper I, Schnaider-Beeri M, Fridkin M, Shechter Y. Albumin-Methotrexate Prodrug Analogues That Undergo Intracellular Reactivation Following Entrance into Cancerous Glioma Cells. Pharmaceutics 2021; 14:71. [PMID: 35056966 PMCID: PMC8778984 DOI: 10.3390/pharmaceutics14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
A family of monomodified bovine serum albumin (BSA) linked to methotrexate (MTX) through a variety of spacers was prepared. All analogues were found to be prodrugs having low MTX-inhibitory potencies toward dihydrofolate reductase in a cell-free system. The optimal conjugates regenerated their antiproliferative efficacies following entrance into cancerous glioma cell lines and were significantly superior to MTX in an insensitive glioma cell line. A BSA-MTX conjugate linked through a simple ethylene chain spacer, containing a single peptide bond located 8.7 Å distal to the protein back bone, and apart from the covalently linked MTX by about 12 Å, was most effective. The inclusion of an additional disulfide bond in the spacer neither enhanced nor reduced the killing potency of this analogue. Disrupting the native structure of the carrier protein in the conjugates significantly reduced their antiproliferative activity. In conclusion, we have engineered BSA-MTX prodrug analogues which undergo intracellular reactivation and facilitate antiproliferative activities following their entrance into glioma cells.
Collapse
Affiliation(s)
- Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- School of Psychology, Reichman University, Herzliya 4610101, Israel
- The Nehemia Rubin Excellence in Biomedical Research—The TELEM Program, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Michal Schnaider-Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel;
- School of Psychology, Reichman University, Herzliya 4610101, Israel
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Yoram Shechter
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
8
|
Lorenzo MF, Campelo SN, Arroyo JP, Aycock KN, Hinckley J, Arena CB, Rossmeisl JH, Davalos RV. An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric Fields. Pharmaceuticals (Basel) 2021; 14:1333. [PMID: 34959733 PMCID: PMC8715747 DOI: 10.3390/ph14121333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
The treatment of CNS disorders suffers from the inability to deliver large therapeutic agents to the brain parenchyma due to protection from the blood-brain barrier (BBB). Herein, we investigated high-frequency pulsed electric field (HF-PEF) therapy of various pulse widths and interphase delays for BBB disruption while selectively minimizing cell ablation. Eighteen male Fisher rats underwent craniectomy procedures and two blunt-tipped electrodes were advanced into the brain for pulsing. BBB disruption was verified with contrast T1W MRI and pathologically with Evans blue dye. High-frequency irreversible electroporation cell death of healthy rodent astrocytes was investigated in vitro using a collagen hydrogel tissue mimic. Numerical analysis was conducted to determine the electric fields in which BBB disruption and cell ablation occur. Differences between the BBB disruption and ablation thresholds for each waveform are as follows: 2-2-2 μs (1028 V/cm), 5-2-5 μs (721 V/cm), 10-1-10 μs (547 V/cm), 2-5-2 μs (1043 V/cm), and 5-5-5 μs (751 V/cm). These data suggest that HF-PEFs can be fine-tuned to modulate the extent of cell death while maximizing peri-ablative BBB disruption. Furthermore, numerical modeling elucidated the diffuse field gradients of a single-needle grounding pad configuration to favor large-volume BBB disruption, while the monopolar probe configuration is more amenable to ablation and reversible electroporation effects.
Collapse
Affiliation(s)
- Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| |
Collapse
|
9
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
10
|
Condello M, D’Avack G, Vona R, Spugnini EP, Scacco L, Meschini S. Electrochemotherapy with Mitomycin C Potentiates Apoptosis Death by Inhibiting Autophagy in Squamous Carcinoma Cells. Cancers (Basel) 2021; 13:3867. [PMID: 34359775 PMCID: PMC8345561 DOI: 10.3390/cancers13153867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the chemosensitizing effect of electroporation (EP), which, using electrical pulses, permeabilizes cancer cells to drugs. The study involved two human hypopharyngeal and tongue carcinoma cell lines. The surface and intracytoplasmic expression of P-gp were evaluated by flow cytometry, demonstrating that both lines were intrinsically resistant. After establishing the optimal dose of mitomycin C (MMC) to be used, in combination with EP, we showed, by both MTT assay and optical and electron scanning microscopy, the potentiating cytotoxic effect of EP with MMC compared to single treatments. Flow cytometry showed that the cytotoxicity of EP + MMC was due to the induction of apoptosis. In addition to verifying the release of cytochrome C in EP + MMC samples, we performed an expression analysis of caspase-3, caspase-9, Akt, pAkt, HMGB1, LC3I, LC3II, p62, Beclin1, and associated proteins with both apoptotic and autophagic phenomena. Our results were confirmed by two veterinary patients in whom the EP + MMC combination was used to control margins after the resection of corneal squamous carcinoma. In conclusion, we affirmed that the effect for which EP enhances MMC treatment is due to the inhibition of the autophagic process induced by the drug in favor of apoptosis.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| | - Gloria D’Avack
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy;
| | | | | | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| |
Collapse
|
11
|
Shelly S, Liraz Zaltsman S, Ben-Gal O, Dayan A, Ganmore I, Shemesh C, Atrakchi D, Garra S, Ravid O, Rand D, Israelov H, Alon T, Lichtenstein G, Sharabi S, Last D, Gosselet F, Rosen V, Burstein G, Friedlander A, Harel R, Vogel G, Schnaider Beeri M, Mardor Y, Lampl Y, Fleminger G, Cooper I. Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study. Biomaterials 2021; 276:121039. [PMID: 34352627 DOI: 10.1016/j.biomaterials.2021.121039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.
Collapse
Affiliation(s)
- Shahar Shelly
- Department of Neurology, College of Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Ofir Ben-Gal
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Avraham Dayan
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Sharif Garra
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel
| | - Tayir Alon
- Neurology Department, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel
| | | | - Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Fabien Gosselet
- Univ. Artois, UR 2465, Blood-brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Vasiliy Rosen
- The ICP Unit, The Core Facility of the Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | | | - Alon Friedlander
- Spine Surgery Division, Department of Orthopedics, Sheba Medical Center, Israel
| | - Ran Harel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Spine Surgery Division, Department of Neurosurgery, Sheba Medical Center, Israel
| | - Guy Vogel
- Department of Orthopedic, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yael Mardor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Yair Lampl
- Department of Neurology, Wolfson Medical Center, Holon, Israel
| | - Gideon Fleminger
- The Shmunis School of Biomedicine and Cancer Research, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
12
|
Non-Invasive Low Pulsed Electrical Fields for Inducing BBB Disruption in Mice-Feasibility Demonstration. Pharmaceutics 2021; 13:pharmaceutics13020169. [PMID: 33513968 PMCID: PMC7911365 DOI: 10.3390/pharmaceutics13020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/30/2022] Open
Abstract
The blood–brain barrier (BBB) is a major hurdle for the treatment of central nervous system disorders, limiting passage of both small and large therapeutic agents from the blood stream into the brain. Thus, means for inducing BBB disruption (BBBd) are urgently needed. Here, we studied the application of low pulsed electrical fields (PEFs) for inducing BBBd in mice. Mice were treated by low PEFs using electrodes pressed against both sides of the skull (100–400 square 50 µs pulses at 4 Hz with different voltages). BBBd as a function of treatment parameters was evaluated using MRI-based treatment response assessment maps (TRAMs) and Evans blue extravasation. A 3D numerical model of the mouse brain and electrodes was constructed using finite element software, simulating the electric fields distribution in the brain and ensuring no significant temperature elevation. BBBd was demonstrated immediately after treatment and significant linear regressions were found between treatment parameters and the extent of BBBd. The maximal induced electric field in the mice brains, calculated by the numerical model, ranged between 62.4 and 187.2 V/cm for the minimal and maximal applied voltages. These results demonstrate the feasibility of inducing significant BBBd using non-invasive low PEFs, well below the threshold for electroporation.
Collapse
|
13
|
The effects of point-source electroporation on the blood-brain barrier and brain vasculature in rats: An MRI and histology study. Bioelectrochemistry 2020; 134:107521. [DOI: 10.1016/j.bioelechem.2020.107521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/31/2022]
|