1
|
Shiwani T, Singh Dhesi S, Wah TM. Reversible electroporation for cancer therapy. Br J Radiol 2025; 98:313-320. [PMID: 39579146 PMCID: PMC11840168 DOI: 10.1093/bjr/tqae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024] Open
Abstract
Reversible electroporation (EP) refers to the use of high-voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response. ECT was validated for palliative treatment of cutaneous tumours. Evidence to date shows a mean objective response rate of ∼80% in these patients. Regression of non-treated lesions has also been demonstrated, theorized to be from an in situ vaccination effect. Advances in electrode development have also allowed treatment of deep-seated metastatic lesions and primary tumours, with safety demonstrated in vivo. Calcium EP and combination immunotherapy or immunogene electrotransfer is also feasible, but research is limited. Adverse events of ECT are minimal; however, general anaesthesia is often necessary, and improvements in modelling capabilities and electrode design are required to enable sufficient electrical coverage. International collaboration between preclinical researchers, oncologists, and interventionalists is required to identify the most effective combination therapies, to optimize procedural factors, and to expand use, indications and assessment of reversible EP. Registries with standardized data collection methods may facilitate this.
Collapse
Affiliation(s)
- Taha Shiwani
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Simran Singh Dhesi
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| | - Tze Min Wah
- Department of Diagnostic and Interventional Radiology, St. James’s University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett St, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
2
|
Ahmad MU, Walsh A, Kirane A. Review of Role of Surgery with Electroporation in Melanoma: Chemotherapy, Immunotherapy, and Gene Delivery. J Clin Med 2024; 13:3828. [PMID: 38999394 PMCID: PMC11242408 DOI: 10.3390/jcm13133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Electroporation with chemotherapy (ECT) is currently offered as a treatment in Europe for locoregional or metastatic melanoma with cutaneous lesions. However, the role of surgery and other forms of electroporation in melanoma requires further evaluation. Two reviewers used two databases to conduct a literature search and review, and 51 publications related to electroporation with chemotherapy, immunotherapy, or gene delivery were found. ECT appears to be effective in reducing tumor burden for surgical resection, replacing surgical intervention with evidence of complete regression in some lesions, and inducing both local and systemic immune effects. These immune effects are pronounced when ECT is combined with immunotherapy, with a statistically significant improvement in overall survival (OS). Other forms of electroporation, such as those using calcium chloride, an IL-12 plasmid, and vaccination, require further study. However, IL-12 plasmid electroporation may be inferior to ECT based on the evidence available. Furthermore, irradiation of the tumor prior to ECT treatment is negatively correlated with local response. Access to ECT is restricted in the US and requires further evaluation. More randomized controlled trials of ECT and electroporation treatment in locoregional melanoma are recommended.
Collapse
Affiliation(s)
- M. Usman Ahmad
- Department of Surgery, Stanford University, Stanford, CA 94305, USA;
| | - Allyson Walsh
- Moores Cancer Center, University of California San Diego Health, San Diego, CA 92103, USA;
| | - Amanda Kirane
- Department of Surgery, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
3
|
Zamuner A, Dettin M, Dall'Olmo L, Campana LG, Mognaschi ME, Conconi MT, Sieni E. Development of 3D melanoma cultures on a hyaluronic acid-based scaffold with synthetic self-assembling peptides: Electroporation enhancement. Bioelectrochemistry 2024; 156:108624. [PMID: 38104458 DOI: 10.1016/j.bioelechem.2023.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Electrochemotherapy (ECT) with bleomycin is an effective antitumor treatment. Still, researchers are investigating new drugs and electroporation conditions to improve its efficacy. To this aim, in vivo assays are accurate but expensive and ethically questionable. Conversely, in vitro assays, although cheaper and straightforward, do not reflect the architecture of the biological tissue because they lack a tridimensional (3D) structure (as in the case of two-dimensional [2D] in vitro assays) or do not include all the extracellular matrix components (as in the case of 3D in vitro scaffolds). To address this issue, 3D in vitro models have been proposed, including spheroids and hydrogel-based cultures, which require a suitable low-conductive medium to allow cell membrane electroporation. In this study, a synthetic scaffold based on hyaluronic acid (HA) and self-assembling peptides (SAPs; EAbuK), condensed with a Laminin-derived adhesive sequence (IKVAV), is proposed as a reliable alternative. We compare SKMEL28 cells cultured in the HA-EAbuK-IKVAV scaffold to the control (HA only scaffold). Three days after seeding, the culture on the HA-EAbuK-IKVAV scaffold showed collagen production. SKMEL28 cells cultured on the HA-EAbuK-IKVAV scaffold started to be electroporated at 400 V/cm, whereas, at the same electric field intensity, those cultured on HA were not. As a reference, 2D experiments showed that electroporation of SKMEL28 cells starts at 600 V/cm using an electroporation buffer and at 800 V/cm in a culture medium, but with very low efficiency (<50 % of cells electroporated). 3D cultures on HA-EAbuK-IKVAV allowed the simulation of a more reliable microenvironment and may represent a valuable tool for studying electroporation conditions. Using Finite Element Analysis (FEA) to compute the transmembrane potential, we detected the influence of inhomogeneity of the extracellular matrix on electroporation effect. Our 3D cell culture electroporation simulations showed that the transmembrane potential increased when collagen surrounded the cells. Of note, in the collagen-enriched HA-EAbuK-IKVAV scaffold, EP was already improved at lower electric field intensities. This study shows the influence of the extracellular matrix on electric conductivity and electric field distribution on cell membrane electroporation and supports the adoption of more reliable 3D scaffolds in experimental electroporation studies.
Collapse
Affiliation(s)
- Annj Zamuner
- Padova University, Department of Civil, Environmental, and Architectural Engineering, via Marzolo, 9, 35131 Padova, Italy; Padova University, Department of Industrial Engineering, via Marzolo, 9, 35131 Padova, Italy
| | - Monica Dettin
- Padova University, Department of Industrial Engineering, via Marzolo, 9, 35131 Padova, Italy
| | - Luigi Dall'Olmo
- Padova University, Department of Surgery Oncology and Gastroenterology, DISCOG. Via Giustiniani 2, 35128 Padova, Italy; Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), via Gattamelata 64, 35128 Padova, Italy
| | - Luca Giovanni Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd, M13 9WL, Manchester, UK
| | - Maria Evelina Mognaschi
- Pavia University, Department of Electrical, Computer and Biomedical Engineering, via Ferrata, 5, 21100 Padova, Italy
| | - Maria Teresa Conconi
- Padova University, Department of Pharmaceutical and Pharmacological Sciences, via Marzolo, 5, 35131 Padova, Italy
| | - Elisabetta Sieni
- University of Insubria, Department of theoretical and applied sciences, via Dunant, 3, 21100 Varese, Italy.
| |
Collapse
|
4
|
Scuderi M, Dermol-Cerne J, Scancar J, Markovic S, Rems L, Miklavcic D. The equivalence of different types of electric pulses for electrochemotherapy with cisplatin - an in vitro study. Radiol Oncol 2024; 58:51-66. [PMID: 38378034 PMCID: PMC10878774 DOI: 10.2478/raon-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 μs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT. MATERIALS AND METHODS We performed in vitro experiments, exposing Chinese hamster ovary (CHO) cells to conventional ECT pulses, high-frequency bipolar pulses, and millisecond pulses in the presence of different concentrations of cisplatin. We determined cisplatin uptake by inductively coupled plasma mass spectrometry and cisplatin cytotoxicity by the clonogenic assay. RESULTS We observed that the three tested types of pulses potentiate the uptake and cytotoxicity of cisplatin in an equivalent manner, provided that the electric field is properly adjusted for each pulse type. Furthermore, we quantified that the number of cisplatin molecules, resulting in the eradication of most cells, was 2-7 × 107 per cell. CONCLUSIONS High-frequency bipolar pulses and millisecond pulses can potentially be used in ECT to reduce pain and muscle contraction and increase the effect of the immune response in combination with gene electrotransfer, respectively.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Dermol-Cerne
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Stefan Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
6
|
Becker JC, Beer AJ, DeTemple VK, Eigentler T, Flaig MJ, Gambichler T, Grabbe S, Höller U, Klumpp B, Lang S, Pföhler C, Posch C, Prasad V, Schlattmann P, Schneider-Burrus S, Ter-Nedden J, Terheyden P, Thoms K, Vordermark D, Ugurel S. S2k-Leitlinie - Merkelzellkarzinom - Update 2022. J Dtsch Dermatol Ges 2023; 21:305-317. [PMID: 36929546 DOI: 10.1111/ddg.14930_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/09/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Jürgen C Becker
- Translational Skin Cancer Research (TSCR), Deutsches Konsortium für translationale Krebsforschung (DKTK), Partnerstandort Essen, Klinik für Dermatologie, Universitätsmedizin Essen, Deutsches Krebsforschungszentrum, Heidelberg
| | | | - Viola K DeTemple
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden
| | - Thomas Eigentler
- Klinik für Dermatologie, Venerologie und Allergologie, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Michael J Flaig
- Klinik und Poliklinik für Dermatologie und Allergologie, Klinikum der Universität München, LMU München
| | - Thilo Gambichler
- Klinik für Dermatologie, Venerologie und Allergologie, Ruhr-Universität Bochum
| | | | | | | | - Stephan Lang
- Hals-Nasen-Ohren-Klinik am Universitätsklinikum Essen
| | - Claudia Pföhler
- Klinik für Dermatologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Christian Posch
- Hautklinik Campus Biederstein, Technische Universität München
| | - Vikas Prasad
- Klinik für Nuklearmedizin, Universitätsklinikum Ulm
| | | | | | | | - Patrick Terheyden
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
| | - Kai Thoms
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen, Göttingen
| | - Dirk Vordermark
- Universitätsklinik und Poliklinik für Strahlentherapie, Halle
| | - Selma Ugurel
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Essen
| |
Collapse
|
7
|
Becker JC, Beer AJ, DeTemple VK, Eigentler T, Flaig M, Gambichler T, Grabbe S, Höller U, Klumpp B, Lang S, Pföhler C, Posch C, Prasad V, Schlattmann P, Schneider-Burrus S, Ter-Nedden J, Terheyden P, Thoms K, Vordermark D, Ugurel S. S2k Guideline - Merkel cell carcinoma (MCC, neuroendocrine carcinoma of the skin) - Update 2022. J Dtsch Dermatol Ges 2023; 21:305-320. [PMID: 36929552 DOI: 10.1111/ddg.14930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/09/2022] [Indexed: 03/18/2023]
Abstract
Merkel cell carcinoma (MCC, ICD-O M8247/3) is a rare, malignant, primary skin tumor with epithelial and neuroendocrine differentiation. The tumor cells share many morphologic, immunohistochemical, and ultrastructural features with cutaneous Merkel cells. Nevertheless, the cell of origin of MCC is unclear. MCC appears clinically as a reddish to purple spherical tumor with a smooth, shiny surface and a soft to turgid, elastic consistency, usually showing rapid growth. Spontaneous and often complete regressions of the tumor are observed. These likely immunologically-mediated regressions explain the cases in which only lymph node or distant metastases are found at the time of initial diagnosis and why the tumor responds very well to immunomodulatory therapies even at advanced stages. Due to its aggressiveness, the usually given indication for sentinel lymph node biopsy, the indication of adjuvant therapies to be evaluated, as well as the complexity of the necessary diagnostics, clinical management should already be determined by an interdisciplinary tumor board at the time of initial diagnosis.
Collapse
Affiliation(s)
- Jürgen C Becker
- Translational Skin Cancer Research (TSCR), Deutsches Konsortium für translationale Krebsforschung (DKTK), Partnerstandort Essen, Department of Dermatology, University Hospital Essen, German Cancer Research Center (DKFZ), Heidelberg
| | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital Ulm
| | - Viola K DeTemple
- Department of Dermatology, Venereology, Allergology and Phlebology, Johannes Wesling Klinikum, Minden
| | - Thomas Eigentler
- Department of Dermatology, Venereology and Allergology, University Hospital Berlin
| | - Michael Flaig
- Department and Clinic for Dermatology and Allergology, LMU Klinikum Munich
| | - Thilo Gambichler
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum
| | | | | | | | - Stephan Lang
- Department of Ear, Nose and Throat Medicine, University Hospital Essen
| | - Claudia Pföhler
- Department of Dermatology, University Hospital Saarland, Homburg/Saar
| | - Christian Posch
- Department of Dermatology Campus Biederstein, Technical University Munich
| | - Vikas Prasad
- Department of Nuclear Medicine, University Hospital Ulm
| | | | | | - Jan Ter-Nedden
- Professional Association of German Dermatologists, Hamburg
| | - Patrick Terheyden
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Lübeck
| | - Kai Thoms
- Department of Dermatology, Venereology and Allergology, University Hospital Göttingen, Göttingen
| | | | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen
| |
Collapse
|
8
|
Corvino A, Catalano F, Cipolletta Campanile A, Cocco G, Delli Pizzi A, Corvino F, Varelli C, Catalano O. Interventional Ultrasound in Dermatology: A Pictorial Overview Focusing on Cutaneous Melanoma Patients. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:3137-3144. [PMID: 35920315 PMCID: PMC9805223 DOI: 10.1002/jum.16073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 05/26/2023]
Abstract
Cutaneous melanoma incidence is increasing worldwide, representing an aggressive tumor when evolving to the metastatic phase. High-resolution ultrasound (US) is playing a growing role in the assessment of newly diagnosed melanoma cases, in the locoregional staging prior to the sentinel lymph-node biopsy procedure, and in the melanoma patient follow-up. Additionally, US may guide a number of percutaneous procedures in the melanoma patients, encompassing diagnostic and therapeutic modalities. These include fine needle cytology, core biopsy, placement of presurgical guidewires, aspiration of lymphoceles and seromas, and electrochemotherapy.
Collapse
Affiliation(s)
- Antonio Corvino
- Motor Science and Wellness DepartmentUniversity of Naples “Parthenope”NaplesItaly
| | | | | | - Giulio Cocco
- Unit of Ultrasound in Internal Medicine, Department of Medicine and Science of AgingUniversity “G. D'Annunzio”ChietiItaly
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and DentistryUniversity “G. d'Annunzio”ChietiItaly
| | - Fabio Corvino
- Vascular and Interventional Radiology DepartmentCardarelli HospitalNaplesItaly
| | - Carlo Varelli
- Radiology UnitVarelli Diagnostic InstituteNaplesItaly
| | | |
Collapse
|
9
|
Ottlakan A, Lazar G, Hideghety K, Renata Koszo L, Deak B, Nagy A, Besenyi Z, Bottyán K, Gabor Vass Z, Olah J, Erika Kis G. Clinical considerations of bleomycin based electrochemotherapy with Variable Electrode Geometry electrodes for inoperable, deep-seated soft tissue sarcomas. Bioelectrochemistry 2022; 148:108220. [DOI: 10.1016/j.bioelechem.2022.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022]
|
10
|
Petrelli F, Ghidini A, Simioni A, Campana LG. Impact of electrochemotherapy in metastatic cutaneous melanoma: a contemporary systematic review and meta-analysis. Acta Oncol 2022; 61:533-544. [PMID: 34889156 DOI: 10.1080/0284186x.2021.2006776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Electrochemotherapy (ECT) harnesses electric pulses to enhance cytotoxic drug delivery into tumors and has entered the armamentarium to treat superficially metastatic melanoma. We performed a systematic review and meta-analysis to assess treatment patterns and patient outcomes. METHODS PubMed, Medline, Embase, and the Cochrane Library databases were queried for publication from inception to September 2020. Primary outcome measures were overall and complete response rate (ORR and CRR); secondary outcomes included local control rate (LCR) and overall survival (OS). RESULTS Twenty-seven studies met the selection criteria for a total of 1161 individuals (mean age 71 years) and 5308 tumors (weighted mean size 14 mm). The majority of patients (n = 1124) underwent bleomycin-ECT. Aggregate ORR was 77.6% (95% confidence interval [CI] 71.0 - 83.2%) and CRR 48% (95% CI 42 - 54%), with no significant difference between the route of bleomycin administration (ORR, 69.2 vs. 81.9% following intravenous or intratumoral bleomycin, p = .37) and tumor size (p = .69). When reported (n = 8 studies), 1- and 2-year LCR ranged from 54 to 89% and 72 to 74%, respectively, and 1-year OS (n = 3 studies) from 67 to 89%. CONCLUSIONS ECT with either intratumoral or intravenous bleomycin confers a high therapeutic response in cutaneous metastatic melanoma. Moderate evidence supports its low toxicity and durability of local control.HighlightsElectrochemotherapy (ECT) is associated with a 77% overall response rate (ORR).Intravenous and intratumoral bleomycin are equally effective.There are no relevant toxicity concerns.One-year local tumor control rate ranges from 54 to 89%.Current literature has significant variation in reporting.
Collapse
Affiliation(s)
| | | | - Andrea Simioni
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
11
|
Andrade DLLS, Guedert R, Pintarelli GB, Rangel MMM, Oliveira KD, Quadros PG, Suzuki DOH. Electrochemotherapy treatment safety under parallel needle deflection. Sci Rep 2022; 12:2766. [PMID: 35177779 PMCID: PMC8854592 DOI: 10.1038/s41598-022-06747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemotherapy is a selective electrical-based cancer treatment. A thriving treatment depends on the local electric field generated by pairs of electrodes. Electrode damage as deflection can directly affect this treatment pillar, the distribution of the electric field. Mechanical deformations such as tip misshaping and needle deflection are reported with needle electrode reusing in veterinary electrochemotherapy. We performed in vitro and in silico experiments to evaluate potential problems with ESOPE type II electrode deflection and potential treatment pitfalls. We also investigated the extent to which the electric currents of the electroporation model can describe deflection failure by comparing in vitro with the in silico model of potato tuber (Solanum tuberosum). The in silico model was also performed with the tumor electroporation model, which is more conductive than the vegetal model. We do not recommend using deflected electrodes. We have found that a deflection of ± 2 mm is unsafe for treatment. Inward deflection can cause dangerous electrical current levels when treating a tumor and cannot be described with the in silico vegetal model. Outward deflection can cause blind spots in the electric field.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Guilherme B Pintarelli
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | | | | | | | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
12
|
Combination of Pembrolizumab with Electrochemotherapy in Cutaneous Metastases from Melanoma: A Comparative Retrospective Study from the InspECT and Slovenian Cancer Registry. Cancers (Basel) 2021; 13:cancers13174289. [PMID: 34503099 PMCID: PMC8428335 DOI: 10.3390/cancers13174289] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Electrochemotherapy (ECT) combines a cytotoxic agent with locally applied electric pulses to enhance its antitumor effect. Over the last 15 years, ECT has been safely applied to patients with skin metastases in combination with other oncologic treatments and, more recently, with systemic immunotherapy. In this study, we aimed to investigate the effectiveness of ECT in combination with pembrolizumab. We compared patient outcomes after the following treatments: (a) pembrolizumab, (b) pembrolizumab and ECT, and (c) ECT alone. The combined application of pembrolizumab and ECT was safe and more efficacious in preventing further growth of cutaneous metastases than pembrolizumab alone. The patients treated with pembrolizumab and ECT experienced lower disease progression rates and longer survival than those who received pembrolizumab. ECT may boost the effect of pembrolizumab by acting as an in situ vaccination against cancer cells. Further studies are required to confirm these findings. Abstract Electrochemotherapy (ECT) is an effective locoregional therapy for cutaneous melanoma metastases and has been safely combined with immune checkpoint inhibitors in preliminary experiences. Since ECT is known to induce immunogenic cell death, its combination with immune checkpoint inhibitors might be beneficial. In this study, we aimed to investigate the effectiveness of ECT on cutaneous melanoma metastases in combination with pembrolizumab. We undertook a retrospective matched cohort analysis of stage IIIC–IV melanoma patients, included in the International Network for sharing practices of ECT (InspECT) and the Slovenian Cancer Registry. We compared the outcome of patients who received the following treatments: (a) pembrolizumab alone, (b) pembrolizumab plus ECT, and (c) ECT. The groups were matched for age, sex, performance status, and size of skin metastases. The local objective response rate (ORR) was higher in the pembrolizumab-ECT group than in the pembrolizumab group (78% and 39%, p < 0.001). The 1 year local progression-free survival (LPFS) rates were 86% and 51% (p < 0.001), and the 1 year systemic PFS rates were 64% and 39%, respectively (p = 0.034). The 1 year overall survival (OS) rates were 88% and 64%, respectively (p = 0.006). Our results suggest that skin-directed therapy with ECT improves superficial tumor control in melanoma patients treated with pembrolizumab. Interestingly, we observed longer PFS and OS in the pembrolizumab-ECT group than in the pembrolizumab group. These findings warrant prospective confirmation.
Collapse
|
13
|
Cucu CI, Giurcăneanu C, Popa LG, Orzan OA, Beiu C, Holban AM, Grumezescu AM, Matei BM, Popescu MN, Căruntu C, Mihai MM. Electrochemotherapy and Other Clinical Applications of Electroporation for the Targeted Therapy of Metastatic Melanoma. MATERIALS 2021; 14:ma14143985. [PMID: 34300902 PMCID: PMC8305146 DOI: 10.3390/ma14143985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Electrochemotherapy (ECT) is an effective bioelectrochemical procedure that uses controlled electrical pulses to facilitate the increase of intracellular concentration of certain substances (electropermeabilization/ reversible electroporation). ECT using antitumor drugs such as bleomycin and cisplatin is a minimally invasive targeted therapy that can be used as an alternative for oncologic patients not eligible for surgery or other standard therapies. Even though ECT is mainly applied as palliative care for metastases, it may also be used for primary tumors that are unresectable due to size and location. Skin neoplasms are the main clinical indication of ECT, the procedure reporting good curative results and high efficiency across all tumor types, including melanoma. In daily practice, there are many cases in which the patient’s quality of life can be significantly improved by a safe procedure such as ECT. Its popularity must be increased because it has a safe profile and minor local adverse reactions. The method can be used by dermatologists, oncologists, and surgeons. The aim of this paper is to review recent literature concerning electrochemotherapy and other clinical applications of electroporation for the targeted therapy of metastatic melanoma.
Collapse
Affiliation(s)
- Corina Ioana Cucu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
- Correspondence: ; Tel.: +40-727-173-767
| | - Olguța Anca Orzan
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Cristina Beiu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Bogdan Mircea Matei
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Căruntu
- Faculty of Medicine, “Titu Maiorescu” University, 22 Dambrovnicului, 031593 Bucharest, Romania;
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
- Research Institute of the University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
14
|
Biological factors of the tumour response to electrochemotherapy: Review of the evidence and a research roadmap. Eur J Surg Oncol 2021; 47:1836-1846. [PMID: 33726951 DOI: 10.1016/j.ejso.2021.03.229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The beneficial effects of electrochemotherapy (ECT) for superficial tumours and, more recently, deep-seated malignancies in terms of local control and quality of life are widely accepted. However, the variability in responses across histotypes needs to be explored. Currently, patient selection for ECT is based on clinical factors (tumour size, histotype, and exposure to previous oncological treatments), whereas there are no biomarkers to predict the response to treatment. In this field, two major areas of investigation can be identified, i.e., tumour cell characteristics and the tumour microenvironment (vasculature, extracellular matrix, and immune infiltrate). For each of these areas, we describe the current knowledge and discuss how to foster further investigation. This review aims to provide a summary of the currently used guiding clinical factors and delineates a research roadmap for future studies to identify putative biomarkers of response to ECT. These biomarkers may allow researchers to improve ECT practice by customising treatment parameters, manipulating the tumour and its microenvironment, and exploring novel therapeutic combinations.
Collapse
|
15
|
Perrone AM, Ferioli M, Galuppi A, Coe M, De Terlizzi F, Tesei M, Dondi G, De Palma A, Morganti AG, De Iaco P. Palliative treatment with electrochemotherapy in recurrent or metastatic vaginal cancer. Int J Gynecol Cancer 2020; 30:939-946. [PMID: 32474450 DOI: 10.1136/ijgc-2020-001471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Vaginal metastases are very rare events with a poor prognosis. To improve the quality of life, local treatments should be considered. The aim of this study was to evaluate the role of electrochemotherapy as palliative treatment in vaginal cancer not amenable to standard treatments due to poor performance status, previous treatments, or advanced disease. METHODS This is a prospective observational study on patients diagnosed with vaginal cancer and treated from January 2017 to December 2018 with palliative electrochemotherapy. We collected data on patients with vaginal cancer treated by electrochemotherapy with the aim of local control. Data regarding electrochemotherapy, hospital stay, adverse events, and patient outcomes were analyzed. Intravenous bleomycin was injected as a bolus in 2-3 min at a dose of 15 000 UI/m2 and electrical pulses started 8 min after chemotherapy. Electrochemotherapy response was defined according to the Response Evaluation Criteria in Solid Tumors. RESULTS Five patients with vaginal recurrence (two squamous, two melanomas, and one leiomyosarcoma) and one with vaginal metastasis from intestinal adenocarcinoma received one treatment and two patients were re-treated. Imaging reported nodal metastasis (inguinal or pelvic) in two patients, distant metastases in two, and both node and distant metastasis in two patients, respectively. Response Evaluation Criteria in Solid Tumors showed a complete response in one patient, partial response in three patients, stable disease in one patient, and progressive disease in one patient, with an overall response rate of 67% and a clinical benefit rate (complete response, partial response, stable disease) of 83%. Two patients were re-treated and had a new response (partial response and stable disease, respectively). At last follow-up, two patients had died of the disease, two were alive with stable disease, one was alive with progressive disease, and one was alive without disease. Median post-electrochemotherapy overall survival was 12.9 months (range 1.6-26.9) and 1-year overall survival was 66.7%. CONCLUSIONS This preliminary experience showed a tumor response or stabilization in 83% of patients requiring palliative management for vaginal cancer. Further studies are needed to evaluate treatment outcome in larger and prospective series.
Collapse
Affiliation(s)
- Anna Myriam Perrone
- Gynecologic Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
| | - Martina Ferioli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES Univerisity of Bologna, Bologna, Italy
| | - Andrea Galuppi
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES Univerisity of Bologna, Bologna, Italy
| | - Manuela Coe
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Radiology, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
| | | | - Marco Tesei
- Gynecologic Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
| | - Giulia Dondi
- Gynecologic Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
| | - Alessandra De Palma
- Forensic Medicine and Integrated Risk Management Unit, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
| | - Alessio G Morganti
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, DIMES Univerisity of Bologna, Bologna, Italy
| | - Pierandrea De Iaco
- Gynecologic Oncology Unit, Azienda Ospedaliero-Universitaria Policlinico di Sant'Orsola, Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
| |
Collapse
|