1
|
Liang H, Chen Z, Zhu M, Zhong J, Lin S, Chen J, Yuan J, Jiang P, Zhao X, Xiao Y. Efficacy and potential pharmacological mechanism of Astragalus-Salvia miltiorrhiza combination in diabetic nephropathy: integrating meta-analysis, network pharmacology, molecular docking, and experimental validation. Ren Fail 2025; 47:2466116. [PMID: 40015687 PMCID: PMC11869347 DOI: 10.1080/0886022x.2025.2466116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a diabetes mellitus (DM)-induced complication that poses high morbidity and mortality risks. The Astragalus and Salvia miltiorrhiza couplet medicines (AS) are commonly employed in DN clinical treatment in China, but their clinical efficacy and potential pharmacological mechanisms are yet to be evaluated. MATERIAL AND METHODS A meta-analysis of 15 studies involving 1,443 patients was conducted. Furthermore, network pharmacology predicted components and targets, which were verified by molecular docking and in vivo validation. RESULTS In our meta-analysis, AS notably elevated clinical outcomes and renal function among patients with DN. Meanwhile, when the treatment duration exceeds 12 weeks, AS demonstrated a significant reduction in fasting blood glucose levels, indicating a time-dependent effect. Moreover, based on network pharmacology results, AS likely enhanced clinical outcomes by interacting with vital signaling pathways, including PI3K/Akt, MAPK, and NF-kappa B. Molecular docking studies have confirmed that PTGS2, the key therapeutic target of AS, can be closely combined with bioactive components GLY, quercetin, apigenin, and daidzein. Additionally, in vivo experiments have corroborated that AS can ameliorate renal function, UACR, and biomarkers associated with iron metabolism, such as GPX4, PTGS2, FTH1, and FTL1. CONCLUSION Through rigorous experimental validation, our study demonstrates AS's significant clinical efficacy in managing DN. Specifically, AS has been shown to enhance renal function, ameliorate renal fibrosis, and positively influence iron metabolism. Despite these promising outcomes, future research with a larger sample size must be conducted to further substantiate these findings.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mingmin Zhu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jingying Zhong
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shufan Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jianfeng Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Shen X, Chen X, Zhong S, Zhang Y, Zhou X, Lan C, Lin J, Zheng L, Yan S. TLR4 mediates glucolipotoxicity-induced mitochondrial dysfunction in osteoblasts by enhancing NLRP3-MAVS expression and interaction. Int Immunopharmacol 2025; 153:114438. [PMID: 40101421 DOI: 10.1016/j.intimp.2025.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Mitochondrial dysfunction is a critical mechanism underlying diabetic bone loss, which is driven by the inhibition of osteoblast differentiation due to glucolipotoxicity. The molecular mechanisms through which glucolipotoxicity induces mitochondrial dysfunction remain poorly understood. In this study, we observed an upregulation of Toll-like receptor 4 (TLR4) expression in osteoblasts subjected to glycolipotoxic conditions, which was associated with mitochondrial dysfunction. Proteomic analysis revealed that TLR4 plays a crucial role in glucolipotoxicity and is closely linked to mitochondrial function in osteoblasts. Knockdown of TLR4 was found to alleviate osteoblast differentiation disorders and mitochondrial dysfunction as well as mitochondria-mediated apoptosis induced by glucolipotoxicity. In contrast, overexpression of TLR4 exacerbated the detrimental effects of glucolipotoxicity. Mechanistically, glucolipotoxicity activates TLR4, resulting in increased expression of NLRP3 (NOD-like receptor protein 3) and MAVS (Mitochondrial antiviral signaling protein), which promotes the interaction between NLRP3 and MAVS. This cascade leads to increased intracellular reactive oxygen species, decreased ATP levels, elevated expression of Caspase-1, GSDMD, Bax, and reduced expression of the anti-apoptotic protein Bcl-2. Furthermore, TLR4 knockout was shown to mitigate bone loss in diabetic rats. Proteomic analysis revealed that the improvement in the expression of proteins related to mitochondrial function and osteogenic function in diabetic rats is associated with TLR4 knockout. Diabetic osteoporosis may be associated with increased TLR4 expression and disturbed oxidative phosphorylation. In conclusion, glucolipotoxicity activates TLR4, which subsequently induces the expression and interaction of NLRP3-MAVS, leading to mitochondrial dysfunction and inhibition of osteoblast differentiation. This process contributes to bone mass loss in diabetes.
Collapse
Affiliation(s)
- Ximei Shen
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaoyuan Chen
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shuai Zhong
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yongze Zhang
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xuan Zhou
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chao Lan
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiebin Lin
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Sunjie Yan
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Hernández EAG, Galindo GC, Chávez RSM, Moreno PC, Barajas MI, Duque TEV, Antúnez APH, Mondragón LDV, Guerrero GAM, Cobos DS. Antioxidant, Antidiabetic, and Vasorelaxant Effects of Ethanolic Extract from the Seeds of Swietenia humilis. Int J Mol Sci 2025; 26:2063. [PMID: 40076688 PMCID: PMC11900308 DOI: 10.3390/ijms26052063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Arterial hypertension and diabetes mellitus are components of the cardiometabolic syndrome that arises from a sedentary lifestyle, excess calorie intake, and obesity. Swietenia humilis Zucc has been used in traditional Mexican medicine for the treatment of diabetes mellitus; this work investigated the antioxidant, antidiabetic, and vasorelaxant effects of ethanolic extract of S. humilis seeds. The phytochemical composition of the extract was analyzed by high-performance liquid chromatography. To study the hypoglycemic effect, the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and markers of oxidative stress (malondialdehyde and 8-hydroxy-2-desoxyguanosine) were evaluated in the model of diabetes mellitus induced by nicotinamide and streptozotocin in rats. The vasodilatory effect of the extract was tested in rat aortic rings. The ethanolic extract of seeds of Swietenia humilis showed antioxidant, hypoglycemic, and endothelium-independent vasorelaxant effects, probably by blocking calcium transport, likely due to ursolic acid and α-amyrin, phytochemical compounds more abundant in the extract.
Collapse
Affiliation(s)
| | - Gladys Chirino Galindo
- Diabetes Mellitus Metabolism Laboratory, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla C.P. 54090, Mexico;
| | - Rubén San Miguel Chávez
- Phytochemistry Area, Postgraduate in Botany, Postgraduate College, Mexico City 11340, Mexico;
| | - Patricia Castro Moreno
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla C.P. 54090, Mexico; (P.C.M.); (M.I.B.)
| | - Maximiliano Ibarra Barajas
- Biomedicine Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla C.P. 54090, Mexico; (P.C.M.); (M.I.B.)
| | - Tomás Ernesto Villamar Duque
- General Bioterium, Faculty of Higher Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla C.P. 54090, Mexico; (T.E.V.D.); (A.P.H.A.)
| | - Anayantzin Paulina Heredia Antúnez
- General Bioterium, Faculty of Higher Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla C.P. 54090, Mexico; (T.E.V.D.); (A.P.H.A.)
| | | | - Gil Alfonso Magos Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico;
| | - David Segura Cobos
- Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Tlalnepantla C.P. 54090, Mexico;
| |
Collapse
|
4
|
Syed RU, Moni SS, Hussein W, Alhaidan TMS, Abumilha SMY, Alnahdi LK, Wong LS, Subramaniyan V, Kumarasamy V. Effect of cubebin against streptozotocin-induced diabetic nephropathy rats via inhibition TNF-α/NF-κB/TGF-β: in vivo and in silico study. Sci Rep 2025; 15:4369. [PMID: 39910087 PMCID: PMC11799316 DOI: 10.1038/s41598-025-87319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Cubebin, a dibenzyl butyrolactone lignan belonging to several distinct families, including Aristolochiaceae, Myristicaceae, Piperaceae, and Rutaceae, and possesses several pharmacological activities, including analgesic, anti-inflammatory, antioxidant, and vasodilatory. The current study aimed to evaluate the effect of cubebin on streptozotocin (STZ)-evoked diabetic nephropathy (DN). DN is a well-identified complication of diabetes mellitus (DM) characterized by renal hypertrophy that progressively declines kidney function. Wistar rats were randomly divided into groups- normal, STZ control (65 mg/kg/body weight), and STZ + cubebin (10 and 20 mg/kg). Biochemical parameters such as glucose levels, kidney parameters, lipid profile, oxidative stress, endogenous antioxidant markers, inflammatory cytokines and histopathology were performed. Molecular docking [(PDB ID: TNF-α (7JRA), NF-κB (1SVC), TGF-β1 (3TZM)] and dynamic simulation (MDS) were also performed with the selected target. STZ-induced DN was changes in these parameters. In contrast, DN + cubebin at 10 and 20 mg/kg doses improved the biochemical parameters and histological changes. Furthermore, molecular docking and simulation studies showed a binding affinity with negative binding energy with TNF-α (7jra, - 11.342 kcal/mol), TGF-β1 (3tzm, - 9.162 kcal/mol) and NF-κB (1svc, - 6.665 kcal/mol). The results of MDS provided insight into the mechanisms that associate proteins TNF-α, NF-κB, and TGF-β1 in conformational dynamics upon binding to cubebin. In conclusion, these findings exhibit a potential effect of cubebin in STZ-evoked DN rats.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia.
- Health Research Center, Jazan University, Jazan 45142, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | | | | | | | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Kuala Lumpur, 47500, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
5
|
Kong Y, Pan T, Liu B, Kuss M, Krishnan MA, Alimi OA, Shi W, Duan B. Double-Layer Microneedle Patch Loaded with HA-PBA-QCT for Management of Paclitaxel-Induced Peripheral Neuropathic Pain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409748. [PMID: 39888259 PMCID: PMC11855232 DOI: 10.1002/smll.202409748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse effect of antineoplastic drugs, often leading to dose reduction, treatment delays, or cessation of chemotherapy. Chemotherapy agents, like paclitaxel (PTX), damage the somatosensory nervous system by inducing neuroinflammation and oxidative stress, resulting in the sensitization of sensory neurons. Quercetin (QCT), known for its anti-inflammatory, antioxidant, and neuroprotective properties, is investigated for various neurological disorders. This work creates phenylboronic acid-modified hyaluronic acid (HA-PBA) gels with incorporated QCT and fabricates a double-layer microneedle (MN) patch using an HA-PBA-QCT complex in the needles and HA/polyvinyl alcohol (PVA) as the substrate. The crosslinking between PVA and HA-PBA-QCT enables a controlled, sustained release of QCT upon application. This work applies these QCT-loaded microneedle (QMN) patches to the instep skin of PTX-treated mice, which exhibits mechanical allodynia and cold hyperalgesia. Biweekly applications of the QMN patches significantly reduce pain responses. This analgesic effect is associated with the modulation of satellite glial cell activity, decreased macrophage infiltration, and reduced TNF-α and IL-6 levels in dorsal root ganglia (DRGs). Additionally, the treatment improves cellular antioxidant capacity, indicated by upregulated Nrf2 and catalase in DRGs. Overall, these findings suggest that double-layer QMN patches offer long-term anti-inflammatory and antioxidant benefits, potentially alleviating CINP in patients.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Tianshu Pan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena A. Krishnan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Olawale A. Alimi
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
6
|
Wang CY, Wu DL, Yu MH, Wang CY, Liang HW, Lee HJ. Apple Polyphenol Mitigates Diabetic Nephropathy via Attenuating Renal Dysfunction with Antioxidation in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2025; 14:130. [PMID: 40002316 PMCID: PMC11852212 DOI: 10.3390/antiox14020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality among patients with diabetes mellitus (DM). Studies have highlighted the critical role of reactive oxygen species (ROS) in the pathogenesis of DM and its complications. Apple polyphenol (AP) has demonstrated antioxidant properties in various models. In this study, we investigated the effects of AP on DN in a rat model. Type 1 diabetes was induced in Sprague-Dawley rats via a single intraperitoneal injection of streptozotocin (65 mg/kg) (n = 8). Rats with blood glucose levels exceeding 250 mg/dL were treated with AP at dosages of 0.5%, 1%, or 2% (w/w) in drinking water for 10 weeks. AP administration significantly improved early-stage DN markers, including reductions in the blood urea nitrogen-to-creatinine ratio and the urinary albumin-to-creatinine ratio (ACR), in a dose-dependent manner. AP treatment also significantly lowered blood triglyceride levels and reduced lipid peroxidation in kidney tissues. Histological analysis revealed that AP attenuated renal hydropic change, reduced glomerular basement membrane thickening, and restored mitochondrial morphology in diabetic rats. Additionally, the upregulation of transforming growth factor-beta (TGF-β) observed in the diabetic kidney was attenuated by AP treatment. In H2O2-stimulated rat mesangial cells, AP reduced ROS levels, accompanied by a reduction in TGF-β expression. These findings suggest that AP exerts protective effects against DN by improving renal function and mitigating oxidative stress, indicating its potential as a nutraceutical supplement for slowing DN progression.
Collapse
Affiliation(s)
- Chieh-Yu Wang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.W.); (D.-L.W.)
| | - Dai-Lin Wu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.W.); (D.-L.W.)
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chih-Ying Wang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Hsin-Wen Liang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
7
|
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules 2025; 15:151. [PMID: 39858545 PMCID: PMC11763763 DOI: 10.3390/biom15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses. The included literature comprised experimental studies, randomized controlled trials, and epidemiological studies related to quercetin, while editorials, case analyses, theses, and letters were excluded. It has been reported to have a wide range of health benefits including hepatoprotective, antidiabetic, anti-obesity, neuroprotective, cardioprotective, wound healing, antimicrobial, and immunomodulatory effects, achieved through the modulation of various biological activities. Additionally, numerous in vitro and in vivo studies have shown that quercetin's efficacies in cancer management involve inhibiting cell signaling pathways, such as inflammation, cell cycle, and angiogenesis, activating cell signaling pathways including tumor suppressor genes, and inducing apoptosis. This review aims to provide a comprehensive understanding of the health benefits of quercetin in various pathogeneses. Additionally, this review outlines the sources of quercetin, nanoformulations, and its applications in health management, along with key findings from important clinical trial studies. Limited clinical data regarding quercetin's safety and mechanism of action are available. It is important to conduct more clinical trials to gain a deeper understanding of the disease-preventive potential, mechanisms of action, safety, and optimal therapeutic dosages. Furthermore, more research based on nanoformulations should be performed to minimize/overcome the hindrance associated with bioavailability, rapid degradation, and toxicity.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Thongrung R, Lapmanee S, Bray PT, Suthamwong P, Deandee S, Pangjit K, Yuajit C. Gambogic Acid Mitigates Nephropathy by Inhibiting Oxidative Stress and Inflammation in Diabetic Rats. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2025; 14:448-461. [PMID: 40123583 PMCID: PMC11927150 DOI: 10.22088/ijmcm.bums.14.1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/21/2024] [Indexed: 03/25/2025]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease globally, with limited treatment options to prevent its progression. Gambogic acid (GA), a xanthone isolated from Garcinia hanburyi, has shown notable anti-oxidative, anti-inflammatory, and anti-proliferative properties. This study aimed to assess GA's renoprotective effects in a model of diabetic nephropathy mediated by low dose streptozotocin (STZ) combined with a high-fat diet, focusing on its potential to reduce oxidative stress and inflammation. Control-treated vehicle and STZ/high-fat diet-mediated diabetic rats were administered either the vehicle or 3 or 6 mg/kg of GA to assess its effects on renal inflammation, fibrosis, and oxidative stress. Renal histological changes were assessed, and markers for inflammation and oxidative stress, including I-κBα, p-p38/MAPK, and p-p65NF-κB pathways, were measured to explore the mechanisms of GA. Diabetic rats showed significant renal dysfunction, structural damage, and increased inflammation and fibrosis. Treatment with GA markedly improved renal structure and function. GA also reduced oxidative stress, increased I-κBα expression, and inhibited key signaling pathways, specifically p-p38/MAPK and p-p65NF-κB, involved in cellular inflammation. GA exhibits promising renoprotective effects in diabetic nephropathy by reducing oxidative stress and inflammation, supporting its potential as a natural therapeutic agent for diabetic renal disease.
Collapse
Affiliation(s)
- Ruttiya Thongrung
- College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190 Thailand.
| | - Sarawut Lapmanee
- Division of Physiology, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120 Thailand.
| | - Penjai Thongnuanjan Bray
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.
| | - Patlada Suthamwong
- Department of Agronomy, Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190 Thailand.
| | - Suwaporn Deandee
- College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190 Thailand.
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190 Thailand.
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratcha.thani, 34190 Thailand.
| | - Chaowalit Yuajit
- College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190 Thailand.
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warin Chamrap, Ubon Ratcha.thani, 34190 Thailand.
| |
Collapse
|
9
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2025; 51:e2107. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
10
|
Lin T, Zhang Y, Wei Q, Huang Z. GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2024; 51:e70003. [PMID: 39477212 DOI: 10.1111/1440-1681.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Yuze Zhang
- Department of Cardiovascular Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Qifeng Wei
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Zugui Huang
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
11
|
姜 一, 李 小, 耿 嘉, 陈 永, 唐 碧, 康 品. [Quercetin ameliorates diabetic kidney injury in rats by inhibiting the HMGB1/RAGE/NF-κB signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1769-1775. [PMID: 39505345 PMCID: PMC11744097 DOI: 10.12122/j.issn.1673-4254.2024.09.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To explore the effect of quercetin on renal inflammation and cell apoptosis in diabetic rats and its possible mechanisms. METHODS Twenty-four adult male SD rats were randomized equally into normal control group, high-glucose and high-fat feeding group, streptozotocin (STZ) -induced diabetic model group, and quercetin treatment (daily dose 100 mg/kg) group. Pathological changes of the renal tissues of the rats were observed with HE staining, serum inflammatory factor levels were determined with ELISA, and renal expression of NF‑κB was observed by immunohistochemistry. Fast blood glucose (FBG), serum levels of triglyceride (TG), BUN, and Scr, and 24-h urine protein content of the rats were measured, and renal expressions of HMGB1, RAGE, NF‑κB, Bax, Bcl-2, and caspase-3 were detected with Western blotting. RESULTS The diabetic rats showed significantly increased levels of FBG, TG, BUN, and Scr, renal hypertrophy index, 24-h urinary protein content, serum IL-1β, IL-6 and TNF-α levels and renal expressions HMGB1, RAGE, NF‑κB, Bax, and caspase-3 with decreased renal expression of Bcl-2. All these changes were significantly alleviated by quercetin treatment of the rats. CONCLUSION Quercetin can ameliorate kidney injury in diabetic rats possibly by inhibiting the HMGB1/RAGE/NF-κB inflammatory signaling pathway to reduce renal inflammation and renal cell apoptosis.
Collapse
Affiliation(s)
- 一凡 姜
- 蚌埠医科大学临床医学院临床医学专业,安徽 蚌埠 233000School of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 小荣 李
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 嘉逸 耿
- 蚌埠医科大学精神卫生学院精神医学专业,安徽 蚌埠 233000School of Psychiatric Medicine, School of Mental Health, Bengbu Medical University, Bengbu 233000, China
| | - 永锋 陈
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 碧 唐
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 品方 康
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Preclinical and Clinical Research of Cardiovascular and cerebrovascular Diseases, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
12
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
13
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Helmy SA, Nour OA, G Abd El Salam AS. Ameliorative effect of Metformin / alpha-lipoic acid combination on diabetic nephropathy via modulation of YAP/ miR-29a/PTEN/p-AKT axis. Int Immunopharmacol 2024; 135:112294. [PMID: 38776856 DOI: 10.1016/j.intimp.2024.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Diabetic nephropathy (DN) is the most frequent and serious complication of type 2 diabetes (T2DM). Lack of a precise remedy and socio-economic burden of DN patients implements searching about alternative therapies. This study aims to evaluate the possible beneficial effect of alpha-lipoic acid (α-LA) alone or in combination with metformin (Met) in ameliorating STZ/High fat diet (HFD)-induced DN. T2DM was induced via HFD administration for 15 weeks and single ip injection of STZ (35 mg/kg) at week 7. Male Sprague-Dawley rats were randomly grouped as follows: control group, STZ/HFD-induced DN, Met/T; daily treated with 150 mg/kg Met, α-LA/T group; daily treated with 100 mg/kg α-LA, and Met/T + α-LA/T group; daily treated with Met and α-LA at same doses. Administration of Met and α-LA succeeded in attenuating STZ/HFD-induced DN as manifested by significant decrease in kidney weight as well as renal and cardiac hypertrophy index. Moreover, Met and α-LA improved glycemic control, kidney functions and lipid profile as well as restored redox balance. Additionally, Met and α-LA administration significantly upregulated PTEN level accompanied by significant downregulation in renal p-AKT and miR-29a levels. Histopathologically, Met and α-LA administration mitigated STZ/HFD-induced histopathological alterations in kidney and heart. Moreover, immunohistochemical examination revealed a significant decrease in renal YAP, collagen I and Ki-67. Taken together, these observations revealed that Met and α-LA administration could protect against STZ/HFD-induced DN.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt
| | - Al Shaima G Abd El Salam
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura post code: 35516, Egypt
| |
Collapse
|
15
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
16
|
Khater SI, El-Emam MMA, Abdellatif H, Mostafa M, Khamis T, Soliman RHM, Ahmed HS, Ali SK, Selim HMRM, Alqahtani LS, Habib D, Metwally MMM, Alnakhli AM, Saleh A, Abdelfattah AM, Abdelnour HM, Dowidar MF. Lipid nanoparticles of quercetin (QU-Lip) alleviated pancreatic microenvironment in diabetic male rats: The interplay between oxidative stress - unfolded protein response (UPR) - autophagy, and their regulatory miRNA. Life Sci 2024; 344:122546. [PMID: 38462227 DOI: 10.1016/j.lfs.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Autophagy is a well-preserved mechanism essential in minimizing endoplasmic reticulum stress (ER)-related cell death. Defects in β-cell autophagy have been linked to type 1 diabetes, particularly deficits in the secretion of insulin, boosting ER stress sensitivity and possibly promoting pancreatic β-cell death. Quercetin (QU) is a potent antioxidant and anti-diabetic flavonoid with low bioavailability, and the precise mechanism of its anti-diabetic activity is still unknown. Aim This study aimed to design an improved bioavailable form of QU (liposomes) and examine the impact of its treatment on the alleviation of type 1 diabetes induced by STZ in rats. METHODS Seventy SD rats were allocated into seven equal groups 10 rats of each: control, STZ, STZ + 3-MA, STZ + QU-Lip, and STZ + 3-MA + QU-Lip. Fasting blood glucose, insulin, c-peptide, serum IL-6, TNF-α, pancreatic oxidative stress, TRAF-6, autophagy, endoplasmic reticulum stress (ER stress) markers expression and their regulatory microRNA (miRNA) were performed. As well as, docking analysis for the quercetin, ER stress, and autophagy were done. Finally, the histopathological and immunohistochemical analysis were conducted. SIGNIFICANCE QU-Lip significantly decreased glucose levels, oxidative, and inflammatory markers in the pancreas. It also significantly downregulated the expression of ER stress and upregulated autophagic-related markers. Furthermore, QU-Lip significantly ameliorated the expression of several MicroRNAs, which both control autophagy and ER stress signaling pathways. However, the improvement of STZ-diabetic rats was abolished upon combination with an autophagy inhibitor (3-MA). The findings suggest that QU-Lip has therapeutic promise in treating type 1 diabetes by modulating ER stress and autophagy via an epigenetic mechanism.
Collapse
Affiliation(s)
- Safaa I Khater
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt.
| | | | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman; Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | | | - Heba S Ahmed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Doaa Habib
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of pathology and clinical pathology, faculty of veterinary medicine, King Salman international University, Ras sidr, Egypt
| | - Anwar M Alnakhli
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | | | - Hanim M Abdelnour
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F Dowidar
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
17
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
18
|
Türedi S, Çelik H, Dağlı ŞN, Taşkın S, Şeker U, Deniz M. An Examination of the Effects of Propolis and Quercetin in a Rat Model of Streptozotocin-Induced Diabetic Peripheral Neuropathy. Curr Issues Mol Biol 2024; 46:1955-1974. [PMID: 38534744 DOI: 10.3390/cimb46030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to reveal the combined effects of propolis (P) and quercetin (Q) against diabetic peripheral neuropathy developing with streptozotocin-induced diabetes in rats. Sixty-four adult male rats were divided into eight equal groups: control, P (100 mg/kg/day), Q (100 mg/kg/day), P + Q (100 mg/day for both), diabetes mellitus (DM) (single-dose 60 mg/kg streptozotocin), DM + P, DM + Q, and DM + P + Q. The rats were sacrificed, and blood and sciatic nerve tissues were collected. Blood glucose and malondialdehyde (MDA) levels increased, while IL-6 and total antioxidant status decreased in the DM group (p = 0.016 and p = 0.047, respectively). Ultrastructural findings showed degeneration of the axon and myelin sheath. The apoptotic index (AI %), TNF-α, and IL-1β immunopositivity increased significantly in the DM group (p < 0.001). Morphological structures approaching those of the controls were observed in the DM + P, DM + Q, and DM + P + Q groups. Morphometric measurements increased markedly in all treatment groups (p < 0.001), while blood glucose and MDA levels, AI (%), TNF-α, and IL-1β immunopositivity decreased. In conclusion, the combined effects of propolis and quercetin in diabetic neuropathy may provide optimal morphological protection with neuroprotective effects by reducing hyperglycemia, and these may represent a key alternative supplement in regenerative medicine.
Collapse
Affiliation(s)
- Sibel Türedi
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Hakim Çelik
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Şeyda Nur Dağlı
- Department of Physiology, Faculty of Medicine, İstinye University, İstanbul 34000, Turkey
| | - Seyhan Taşkın
- Department of Physiology, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| | - Uğur Şeker
- Department of Histology and Embryology, Faculty of Medicine, Mardin Artuklu University, Mardin 47100, Turkey
| | - Mustafa Deniz
- Department of Anatomy, Faculty of Medicine, Harran University, Şanlıurfa 63050, Turkey
| |
Collapse
|
19
|
Jin J, Shang Y, Zheng S, Dai L, Tang J, Bian X, He Q. Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation. Aging (Albany NY) 2024; 16:3302-3331. [PMID: 38334961 PMCID: PMC10929828 DOI: 10.18632/aging.205535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN. METHODS Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined. RESULTS Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the in vitro model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction. CONCLUSIONS ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Yiwei Shang
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310004, China
| | - Siqiang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Limiao Dai
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Jiyu Tang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| | - Xueyan Bian
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
20
|
He L, Shen K, He L, Chen Y, Tang Z. The Mechanism of Plantaginis Semen in the Treatment of Diabetic Nephropathy based on Network Pharmacology and Molecular Docking Technology. Endocr Metab Immune Disord Drug Targets 2024; 24:363-379. [PMID: 37718520 DOI: 10.2174/1871530323666230915100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the common complications of diabetes. Plantaginis Semen (PS) has a variety of therapeutic effects, however its mechanism on DN is unclear. OBJECTIVE This paper aims to find the ingredients, the key targets, and the action pathways of PS on DN from the perspective of network pharmacology. METHODS The databases of network pharmacology, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Pharmmapper, OMIM, DrugBank, Gene- Cards, TTD, Disgenet, STRING, and Cytoscape software, were used to find the main ingredients and targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genome and Genomes (KEGG) pathway enrichment analysis were used to reveal the potential pathways of the PS on DN. The GEO database was used to find the targets of DN based on valid experimental research. The molecular docking technology was used to evaluate the combination between ingredients of PS and the targets. RESULTS A total of 9 active ingredients and 216 potential therapeutic targets were obtained for PS on DN. Hub targets were discovered by the Cytoscape software analysis. CASP3 was screened by Venn diagram by making intersection between GSE30529 and hub genes. Moreover, CASP3 was combined with one of the nine active ingredients, quercetin, by molecular docking analysis. The KEGG pathways were mainly involved in diabetic nephropathy, and were simultaneously associated with CASP3 as followed: AGE-RAGE signaling pathway in diabetic complications, apoptosis, lipid and atherosclerosis, MAPK signaling pathway, TNF signaling pathway, IL-17 signaling pathway, and p53 signaling pathway. CONCLUSION PS can have the treatment on DN through CASP3. Quercetin, as one of the nine active ingredients, can be bounded to CASP3 to inhibit apoptosis in DN. PS can also take action on DN probably through many pathways. The role of PS on DN through other pathways still needs to be further elaborated.
Collapse
Affiliation(s)
- Linlin He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei He
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuqing Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
21
|
Hyla K, Jama D, Grzywacz A, Janek T. Evaluation of the Antitumor Activity of Quaternary Ammonium Surfactants. Int J Mol Sci 2023; 24:17237. [PMID: 38139066 PMCID: PMC10743841 DOI: 10.3390/ijms242417237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Quaternary ammonium surfactants, due to their diverse chemical structure and their biological properties, can be used in medicine as DNA carriers, disinfectants, and antimicrobial and antitumor agents. In this study, using melanoma A375, colon adenocarcinoma HT-29 and normal human dermal fibroblast (NHDF) cells, we tested the hypothesis that the quaternary ammonium surfactants 2-dodecanoyloxyethyl)trimethylammonium bromide (DMM-11), 2-dodecanoyloxypropyl)trimethylammonium bromide (DMPM-11) and 2-pentadecanoyloxymethyl)trimethylammonium bromide (DMGM-14) act selectively against cancer cells. The results showed that these compounds led to the initiation of the apoptotic process of programmed cell death, as evidenced by the ratio of the relative expression of Bax protein to Bcl-2. The encapsulation of surfactants in liposomes allowed lower concentrations to be used. Moreover, encapsulation reduced their toxicity towards non-cancerous cells. The anticancer efficiency and apoptotic effect of the liposomal formulations with surfactants (DMM-11, DMPM-11 and DMGM-14) were higher than those of surfactant-free liposomes. Therefore, quaternary ammonium surfactant-loaded liposomes show significant potential as delivery vehicles for the treatment of melanoma and colon cancers. The use of nano-formulations offers the advantage of optimizing quaternary ammonium surfactant delivery for improved anticancer therapy.
Collapse
Affiliation(s)
| | | | | | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.H.); (D.J.); (A.G.)
| |
Collapse
|
22
|
Umer M, Nisa MU, Ahmad N, Rahim MA, Al-Asmari F. Effects of different levels of dried onion powder on nutrient digestibility, biochemical parameters, and nitrogen balance in Wistar albino rats with induced hyperuricemia. Front Physiol 2023; 14:1273286. [PMID: 38111897 PMCID: PMC10725973 DOI: 10.3389/fphys.2023.1273286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: Onions (Allium cepa L.) are excellent sources of bioactive compounds and phytochemicals such as allicin, quercetin, fisetin, and other sulfurous compounds. Therefore, our study aimed to investigate the effects of dried onion powder on growth performance, nitrogen balance, and biochemical parameters in Wistar albino rats with induced hyperuricemia. Methods: A total of 24 rats were randomly divided into four groups, with six in each group: HU (positive control) and HOT1, HOT2, and HOT3 groups, which received a diet containing onion powder at concentrations of 11.13, 14.84, and 18.61 g/100 g, respectively. Hyperuricemia was induced in rats by administering a new formulation intraperitoneally (250 mg/kg potassium oxonate) and orally (40 mg/kg potassium bromate) daily for 14 days. After confirmation of hyperuricemia induction, rats were fed with onion-treated diets with various concentrations of quercetin for 21 days. Results: Significant decreases (p ≤ 0.05) in serum uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total cholesterol, and low-density lipoprotein were observed. An increasing trend (p ≤ 0.05) in the levels of hemoglobin (Hb), white blood cell (WBC), red blood cell (RBC), and platelet count was observed. An improvement in the levels of serum high-density lipoprotein, triglycerides, blood urea nitrogen, serum creatinine, serum total protein and neutrophils, lymphocytes, and monocytes was observed. A positive progress (p ≤ 0.05) was observed in growth performance and nutrient digestibility. Conclusion: In conclusion, a significantly lower uric acid level was observed in rats fed with HOT2 diet. Based on the ratio of the surface area (human/rat), the best recommended dose of onion for the incidence and prevention of hyperuricemia is 189.95 g, corresponding to the dose of 204 mg/day of quercetin in humans.
Collapse
Affiliation(s)
- Muhammad Umer
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
- Department of Food Science and Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan, Pakistan
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
23
|
Joshi H, Gupta DS, Kaur G, Singh T, Ramniwas S, Sak K, Aggarwal D, Chhabra RS, Gupta M, Saini AK, Tuli HS. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3443-3458. [PMID: 37490121 DOI: 10.1007/s00210-023-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | | | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | | | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
- Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
24
|
Chen X, Dai W, Li H, Yan Z, Liu Z, He L. Targeted drug delivery strategy: a bridge to the therapy of diabetic kidney disease. Drug Deliv 2023; 30:2160518. [PMID: 36576203 PMCID: PMC9809356 DOI: 10.1080/10717544.2022.2160518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the main complication in diabetes mellitus (DM) and the main cause of end-stage kidney disease worldwide. However, sodium glucose cotransporter 2 (SGLT2) inhibition, glucagon-like peptide-1 (GLP-1) receptor agonist, mineralocorticoid receptor antagonists and endothelin receptor A inhibition have yielded promising effects in DKD, a great part of patients inevitably continue to progress to uremia. Newly effective therapeutic options are urgently needed to postpone DKD progression. Recently, accumulating evidence suggests that targeted drug delivery strategies, such as macromolecular carriers, nanoparticles, liposomes and so on, can enhance the drug efficacy and reduce the undesired side effects, which will be a milestone treatment in the management of DKD. The aim of this article is to summarize the current knowledge of targeted drug delivery strategies and select the optimal renal targeting strategy to provide new therapies for DKD.
Collapse
Affiliation(s)
- Xian Chen
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Wenni Dai
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hao Li
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhe Yan
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liyu He
- Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China,CONTACT Liyu He Department of Nephrology, Hunan Key Lab of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
25
|
Soliman MO, El-Kamel AH, Shehat MG, Bakr BA, El-Moslemany RM. Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: In vitro and in vivo appraisal. Int J Pharm 2023; 647:123551. [PMID: 37884217 DOI: 10.1016/j.ijpharm.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Mai O Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
27
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
28
|
Tsichlis I, Manou AP, Manolopoulou V, Matskou K, Chountoulesi M, Pletsa V, Xenakis A, Demetzos C. Development of Liposomal and Liquid Crystalline Lipidic Nanoparticles with Non-Ionic Surfactants for Quercetin Incorporation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5509. [PMID: 37629800 PMCID: PMC10456281 DOI: 10.3390/ma16165509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The aim of the present study is the development, physicochemical characterization, and in vitro cytotoxicity evaluation of both empty and quercetin-loaded HSPC (hydrogenated soy phosphatidylcholine) liposomes, GMO (glyceryl monooleate) liquid crystalline nanoparticles, and PHYT (phytantriol) liquid crystalline nanoparticles. Specifically, HSPC phospholipids were mixed with different non-ionic surfactant molecules (Tween 80 and/or Span 80) for liposomal formulations, whereas both GMO and PHYT lipids were mixed with Span 80 and Tween 80 as alternative stabilizers, as well as with Poloxamer P407 in different ratios for liquid crystalline formulations. Subsequently, their physicochemical properties, such as size, size distribution, and ζ-potential were assessed by the dynamic and electrophoretic light scattering (DLS/ELS) techniques in both aqueous and biological medium with serum proteins. The in vitro biological evaluation of the empty nanosystems was performed by using the MTT cell viability and proliferation assay. Finally, the entrapment efficiency of quercetin was calculated and the differences between the two different categories of lipidic nanoparticles were highlighted. According to the results, the incorporation of the non-ionic surfactants yields a successful stabilization and physicochemical stability of both liposomal and liquid crystalline nanoparticles. Moreover, in combination with an appropriate biosafety in vitro profile, increased encapsulation efficiency of quercetin was achieved. Overall, the addition of surfactants improved the nanosystem's stealth properties. In conclusion, the results indicate that the physicochemical properties were strictly affected by the formulation parameters, such as the type of surfactant.
Collapse
Affiliation(s)
- Ioannis Tsichlis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Athanasia-Paraskevi Manou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Manolopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Konstantina Matskou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (K.M.); (V.P.); (A.X.)
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (I.T.); (A.-P.M.); (V.M.); (C.D.)
| |
Collapse
|
29
|
Abd El-Emam MM, Mostafa M, Farag AA, Youssef HS, El-Demerdash AS, Bayoumi H, Gebba MA, El-Halawani SM, Saleh AM, Badr AM, El Sayed S. The Potential Effects of Quercetin-Loaded Nanoliposomes on Amoxicillin/Clavulanate-Induced Hepatic Damage: Targeting the SIRT1/Nrf2/NF-κB Signaling Pathway and Microbiota Modulation. Antioxidants (Basel) 2023; 12:1487. [PMID: 37627483 PMCID: PMC10451903 DOI: 10.3390/antiox12081487] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1β, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota.
Collapse
Affiliation(s)
- Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Banha 13518, Egypt;
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt;
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Sawsan M. El-Halawani
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Amira M. Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
30
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:1944. [PMID: 37514130 PMCID: PMC10383758 DOI: 10.3390/pharmaceutics15071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.
Collapse
Affiliation(s)
- Shahla Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht 4199613776, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Azadeh Mohammadi Sepahvand
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7148664685, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol 9861335856, Iran
| | - Mohammad Mehdi Zahedi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
32
|
Song M, Chen Y. Local anaesthetic procaine derivatives protect rat against diabetic nephropathy via inhibition of DPP-4, inflammation and oxidative stress. Chem Biol Drug Des 2023; 102:26-37. [PMID: 37076428 DOI: 10.1111/cbdd.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Diabetic nephropathy (DN) is a serious devastating disease. However, the current clinical options to treat DN are not adequate. Thus, in the present study, we intend to develop novel series of procaine-embedded thiazole-pyrazoles as protective agent against DN. The compounds were tested for inhibition of dipeptidyl peptidase (DPP)-4, -8, and - 9 enzyme subtypes, where they selectively and potently inhibit DPP-4 as compared to other subtypes. The top three ranked DPP-4 inhibitors (8i, 8e and 8k) were further screened for inhibitory activity against NF-ĸB transcription. Among these three, compound 8i was identified as the most potent NF-ĸB inhibitor. The pharmacological benefit of compound 8i was further established in streptozotocin-induced diabetic nephropathy in rats. Compound 8i showed marked improvements in blood glucose, ALP, ALT, total protein, serum lipid profile such as total cholesterol, triglyceride, HDL levels and renal functions such as urine volume, urinary protein excretion, serum creatinine, blood urea nitrogen and creatinine clearance as compared to nontreated diabetic control group. It also reduces oxidative stress (MDA, SOD and GPx) and inflammation (TNF-α, IL-1β and IL-6) in the rats as compared to disease control group rats. This study demonstrated the discovery of procaine-embedded thiazole-pyrazole compounds as a novel class of agent against diabetic nephropathy.
Collapse
Affiliation(s)
- Miaomiao Song
- Department of Anesthesiology, Fengxian District Central Hospital, Shanghai, China
| | - Yaping Chen
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023; 15:1656. [PMID: 37376104 DOI: 10.3390/pharmaceutics15061656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Quercetin (QUE) is a flavonol that has recently received great attention from the research community due to its important pharmacological properties. However, QUE's low solubility and extended first-pass metabolism limit its oral administration. This review aims to present the potential of various nanoformulations in the development of QUE dosage forms for bioavailability enhancement. Advanced drug delivery nanosystems can be used for more efficient encapsulation, targeting, and controlled release of QUE. An overview of the primary nanosystem categories, formulation processes, and characterization techniques are described. In particular, lipid-based nanocarriers, such as liposomes, nanostructured-lipid carries, and solid-lipid nanoparticles, are widely used to improve QUE's oral absorption and targeting, increase its antioxidant activity, and ensure sustained release. Moreover, polymer-based nanocarriers exhibit unique properties for the improvement of the Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME(T)) profile. Namely, micelles and hydrogels composed of natural or synthetic polymers have been applied in QUE formulations. Furthermore, cyclodextrin, niosomes, and nanoemulsions are proposed as formulation alternatives for administration via different routes. This comprehensive review provides insight into the role of advanced drug delivery nanosystems for the formulation and delivery of QUE.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Elmina-Marina Saitani
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
34
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
35
|
Zhai Z, Fu Y, Zhang X, Zhang Y, Zhou C, Huang X, Deng L. Liposomes loaded with quercetin for resolution of lung inflammation in a lipopolysaccharide-induced mouse model of sepsis. Biomed Mater 2023; 18. [PMID: 36863020 DOI: 10.1088/1748-605x/acc0bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Quercetin (QU) has been widely used as a dietary supplement and proved useful to treat lung diseases. However, the therapeutic potential of QU may be restricted because of its low bioavailability and poor water solubility. In this study, we investigated the effects of developed QU-loaded liposomes on macrophage-mediated lung inflammation.In vivo, a mouse model of sepsis induced by lipopolysaccharide challenge was used to detect the anti-inflammatory effects of liposomal QU. Hematoxylin/eosin staining and immunostaining were utilized to reveal pathological damage and leukocyte infiltration into the lung tissues. Quantitative reverse transcription-polymerase chain reaction and immunoblotting were used to determine cytokine production in the mouse lungs.In vitro, mouse RAW 264.7 macrophages were treated with free QU and liposomal QU. Cell viability assay and immunostaining were utilized to detect cytotoxicity and distribution of QU in the cells. Thein vivoresults showed that liposomal encapsulation promoted the inhibitory effects of QU on lung inflammation. Liposomal QU decreased mortality in septic mice with no obvious toxicity on vital organs. Mechanistically, the anti-inflammatory effects of liposomal QU were associated with inhibition of nuclear factor-kappa B-dependent cytokine production and inflammasome activation in macrophages. Collectively, the results showed that QU liposomes mitigated lung inflammation in septic mice through inhibition of macrophage inflammatory signaling.
Collapse
Affiliation(s)
- Zhiqi Zhai
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yue Fu
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Xinyue Zhang
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yi Zhang
- Department of Pharmacy, Danyang People's Hospital, Zhenjiang 212300, People's Republic of China
| | - Chao Zhou
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Xiaojia Huang
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Linhong Deng
- Key Laboratory of Respiratory Medical Engineering of Changzhou, Institute of Biomedical Engineering and Health Sciences, School of Medicine and Health Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
36
|
Treatment with quercetin inhibits SARS-CoV-2 N protein-induced acute kidney injury by blocking Smad3-dependent G1 cell-cycle arrest. Mol Ther 2023; 31:344-361. [PMID: 36514292 PMCID: PMC9743779 DOI: 10.1016/j.ymthe.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.
Collapse
|
37
|
Markowski A, Zaremba-Czogalla M, Jaromin A, Olczak E, Zygmunt A, Etezadi H, Boyd BJ, Gubernator J. Novel Liposomal Formulation of Baicalein for the Treatment of Pancreatic Ductal Adenocarcinoma: Design, Characterization, and Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010179. [PMID: 36678808 PMCID: PMC9865389 DOI: 10.3390/pharmaceutics15010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
38
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
39
|
Zhang Y, Ye G, Chen Y, Sheng C, Wang J, Kong L, Yuan L, Lin C. Veratramine ameliorates pain symptoms in rats with diabetic peripheral neuropathy by inhibiting activation of the SIGMAR1-NMDAR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2145-2154. [PMID: 36373991 PMCID: PMC9665081 DOI: 10.1080/13880209.2022.2136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Veratramine may have a potential therapeutic effect for diabetic peripheral neuropathy (DPN). OBJECTIVE To evaluate whether veratramine ameliorates neuropathic pain in a rat diabetic model. MATERIALS AND METHODS Sprague-Dawley rats were used for a diabetic model induced by a streptozotocin + high-fat diet. Two months after the induction of the diabetic model, the rats with DPN were screened according to the mechanical pain threshold. The rats with DPN were divided into a model group (n = 12) and a treated group (n = 12). Rats with diabetes, but without peripheral neuropathy, were used in the vehicle group (n = 9). The treatment group received 50 μg/kg veratramine via the tail vein once a day for 4 weeks. During modelling and treatment, rats in all three groups were fed a high-fat diet. RESULTS The mechanical withdrawal threshold increased from 7.5 ± 1.9 N to 17.9 ± 2.6 N in DPN rats treated with veratramine. The tolerance time of the treated group to hot and cold ectopic pain increased from 11.8 ± 4.2 s and 3.4 ± 0.8 s to 20.4 ± 4.1 s and 5.9 ± 1.7 s, respectively. Veratramine effectively alleviated L4-L5 spinal cord and sciatic nerve pathological injury. Veratramine inhibited the expression of SIGMAR1 and the phosphorylation of the N-methyl-d-aspartate receptor (NMDAR) Ser896 site in spinal cord tissue, as well as inhibited the formation of SIGMAR1-NMDAR and NMDAR-CaMKII complexes. DISCUSSION AND CONCLUSIONS Veratramine may alleviate the occurrence of pain symptoms in rats with DPN by inhibiting activation of the SIGMAR1-NMDAR pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chaoxu Sheng
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Jianlin Wang
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Lingsi Kong
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No.6 Hospital, Ningbo, P. R. China
| |
Collapse
|
40
|
Tilawat M, Bonde S. Nanocochleates as the delivery vehicle for quercetin in the treatment of breast cancer. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2145588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Meena Tilawat
- School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur Campus, Dhule, India
| | - Smita Bonde
- School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur Campus, Dhule, India
| |
Collapse
|
41
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
42
|
Ahmed ZR, Uddin Z, Shah SWA, Zahoor M, Alotaibi A, Shoaib M, Ghias M, Bari WU. Antioxidant, antidiabetic, and anticholinesterase potential of Chenopodium murale L. extracts using in vitro and in vivo approaches. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In this study, Chenopodium murale Linn. extracts have been evaluated for its in vitro antioxidant, enzyme inhibition, and in vivo neuropharmacological properties in streptozotocin (STZ)-induced memory impairment in rat model. First, the plant was subjected to extraction and fractionation, then quantitative phytochemical analysis was performed to estimate the major phytochemical groups in the extract where high amounts of phenolics and saponins were detected in crude and chloroform extract. The highest total phenolic contents, total flavonoid contents, and total tannin content were also recorded in crude extract and chloroform fraction. The in vitro antioxidant potential of chloroform fraction was high with IC50 value of 41.78 and 67.33 μg/mL against DPPH and ABTS radicals, respectively, followed by ethyl acetate fraction. The chloroform fraction (ChMu-Chf) also exhibited potent activity against glucosidase with IC50 of 89.72 ± 0.88 μg/mL followed by ethyl acetate extract (ChMu-Et; IC50 of 140.20 ± 0.98 μg/mL). ChMu-Chf again exhibited potent activity against acetylcholinesterase (AChE) with IC50 of 68.91 ± 0.87 μg/mL followed by ChMu-Et with IC50 of 78.57 ± 0.95 μg/mL. In vivo memory impairment was assessed using the novel object discrimination task, Y-maze, and passive avoidance task. Ex vivo antioxidant enzyme activities and oxidative stress markers like catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione were quantified, and the AChE activity was also determined in the rat brain. No significant differences were observed amongst all the groups treated with crude, chloroform, and ethyl acetate in comparison with positive control donepezil group in connection to initial latency; whereas, the STZ diabetic group displayed a significant fall in recall and retention capability. The blood glucose level was more potently lowered by chloroform extract. The crude extract also increased the SOD level significantly in the brain of the treated rat by 8.01 ± 0.51 and 8.19 ± 0.39 units/mg at 100 and 200 mg/kg body weight (P < 0.01, n = 6), whereas the chloroform extract increased the SOD level to 9.41 ± 0.40 and 9.72 ± 0.51 units/mg, respectively, at 75 and 150 mg/kg body weight as compared to STZ group. The acetylcholine level was also elevated to greater extent by chloroform fraction that might contain a potential inhibitor of acetylcholinesterase. Treatment with C. murale ameliorated cognitive dysfunction in behavioral study, and provided significant defense from neuronal oxidative stress in the brain of the STZ-induced diabetic rats. Thus C. murale Linn. could be an inspiring plant resource that needs to be further investigated for isolation of potential compounds in pure form and their evaluation as a potent neuropharmacological drug.
Collapse
Affiliation(s)
- Zubaida Rasheed Ahmed
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Zaheer Uddin
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh 11564 , Saudi Arabia
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Wasim Ul Bari
- Department of Chemistry, University of Chitral, Seenlasht 17200, Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
43
|
Li Z, Deng H, Guo X, Yan S, Lu C, Zhao Z, Feng X, Li Q, Wang J, Zeng J, Ma X. Effective dose/duration of natural flavonoid quercetin for treatment of diabetic nephropathy: A systematic review and meta-analysis of rodent data. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154348. [PMID: 35908521 DOI: 10.1016/j.phymed.2022.154348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Given the challenges on diabetic nephropathy (DN) treatment, research has been carried out progressively focusing on dietary nutrition and natural products as a novel option with the objective of enhancing curative effect and avoiding adverse reactions. As a representative, Quercetin (Qu) has proved to be of great value in current data. PURPOSE We aimed to synthetize the evidence regarding the therapeutic effect and specific mechanism of quercetin on DN via systematically reviewing and performing meta-analysis. METHODS Preclinical literature published prior to August 2021, was systematical retrieval and manually filtrated across four major databases including PubMed, Web of Science, EMBASE and Cochrane library. Pooled overall effect sizes of results were generated by STATA 16.0, and underlying mechanisms were summarized. Three-dimensional dose/time-effect analyses and radar maps were conducted to examine the dosage/time-response relations between Qu and DN. RESULTS This paper pools all current available evidence in a comprehensive way, and shows the therapeutic benefits as well as potential action mechanisms of Qu in protecting the kidney against damage. A total of 304 potentially relevant citations were identified, of which 18 studies were enrolled into analysis. Methodological quality was calculated, resulting in an average score of 7.06/10. This paper provided the preliminary evidence that consumption of Qu could induce a statistical reduction in mesangial index, Scr, BUN, 24-h urinary protein, serum urea, BG, kidney index, TC, TG, LDL-C, AST, MDA, AGE, TNF-α, TGF-β1, TGF-β1 mRNA, CTGF and IL-1β, whereas HDL-C, SOD, GSH, GSH-Px, CAT and smad-7 were significantly increased. Furthermore, Qu could remarkably improve the renal pathology. In terms of the mechanisms underlying therapy of DN, Qu exerts anti-diabetic nephropathy properties possibly through PI3K/PKB, AMPK-P38 MAPK, SCAP/SREBP2/LDLr, mtROS-TRX/TXNIP/NLRP3/IL-1β, TGF-β1/Smad, Nrf2/HO-1, Hippo, mTORC1/p70S6K and SHH pathways. Dose/time-response images predicted a modest association between Qu dosage consumption/administration length and therapeutic efficacy, with the optimal dosage at 90-150 mg/kg/d and administration length ranging from 8 weeks to 12 weeks. CONCLUSIONS Quercetin exhibit highly pleiotropic actions, which simultaneously contributes to prevent fundamental progression of DN, such as hyperglycemia, dyslipidemia, inflammation, fibrotic lesions and oxidative stress. The therapeutic effect becomes stronger when Qu administration at higher dosages lasts for longer durations. Taken together, quercetin could be used in patients with DN as a promising agent, which has well-established safety profiles and nontoxicity according to existing literature.
Collapse
Affiliation(s)
- Ziyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Haichuan Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sining Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chaorui Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zewei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xinyu Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qihong Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiayi Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
44
|
Tang LX, Wei B, Jiang LY, Ying YY, Li K, Chen TX, Huang RF, Shi MJ, Xu H. Intercellular mitochondrial transfer as a means of revitalizing injured glomerular endothelial cells. World J Stem Cells 2022; 14:729-743. [PMID: 36188114 PMCID: PMC9516466 DOI: 10.4252/wjsc.v14.i9.729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that mesenchymal stem cells (MSCs) can rescue injured target cells via mitochondrial transfer. However, it has not been fully understood how bone marrow-derived MSCs repair glomeruli in diabetic kidney disease (DKD).
AIM To explore the mitochondrial transfer involved in the rescue of injured glomerular endothelial cells (GECs) by MSCs, both in vitro and in vivo.
METHODS In vitro experiments were performed to investigate the effect of co-culture with MSCs on high glucose-induced GECs. The transfer of mitochondria was visualized using fluorescent microscopy. GECs were freshly sorted and ultimately tested for apoptosis, viability, mRNA expression by real-time reverse transcriptase-polymerase chain reaction, protein expression by western blot, and mitochondrial function. Moreover, streptozotocin-induced DKD rats were infused with MSCs, and renal function and oxidative stress were detected with an automatic biochemical analyzer and related-detection kits after 2 wk. Kidney histology was analyzed by hematoxylin and eosin, periodic acid-Schiff, and immunohistochemical staining.
RESULTS Fluorescence imaging confirmed that MSCs transferred mitochondria to injured GECs when co-cultured in vitro. We found that the apoptosis, proliferation, and mitochondrial function of injured GECs were improved following co-culture. Additionally, MSCs decreased pro-inflammatory cytokines [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α] and pro-apoptotic factors (caspase 3 and Bax). Mitochondrial transfer also enhanced the expression of superoxide dismutase 2, B cell lymphoma-2, glutathione peroxidase (GPx) 3, and mitofusin 2 and inhibited reactive oxygen species (ROS) and dynamin-related protein 1 expression. Furthermore, MSCs significantly ameliorated functional parameters (blood urea nitrogen and serum creatinine) and decreased the production of malondialdehyde, advanced glycation end products, and ROS, whereas they increased the levels of GPx and superoxide dismutase in vivo. In addition, significant reductions in the glomerular basement membrane and renal interstitial fibrosis were observed following MSC treatment.
CONCLUSION MSCs can rejuvenate damaged GECs via mitochondrial transfer. Additionally, the improvement of renal function and pathological changes in DKD by MSCs may be related to the mechanism of mitochondrial transfer.
Collapse
Affiliation(s)
- Li-Xia Tang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Bing Wei
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lu-Yao Jiang
- Department of Medical Rehabilitation, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - You-You Ying
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ke Li
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Tian-Xi Chen
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ruo-Fei Huang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Miao-Jun Shi
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Hang Xu
- Department of Hemodialysis/Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| |
Collapse
|
45
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
46
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
47
|
Fu Y, Li Z, Xiao S, Zhao C, Zhou K, Cao S. Ameliorative effects of chickpea flavonoids on redox imbalance and mitochondrial complex I dysfunction in type 2 diabetic rats. Food Funct 2022; 13:8967-8976. [PMID: 35938733 DOI: 10.1039/d2fo00753c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chickpeas are an important source of flavonoids in the human diet, and researchers have demonstrated that flavonoids have antidiabetic compositions in chickpeas. Because the NAD+/NADH redox balance is heavily perturbed in diabetes and complex I is the only site for NADH oxidation and NAD+ regeneration, in the present study, mitochondrial complex I was used as a target for anti-diabetes. The objective of this study was to investigate the effects of a crude chickpea flavonoid extract (CCFE) on NAD+/NADH redox imbalance and mitochondrial complex I dysfunction in the pancreas as well as oxidative stress in type 2 diabetes mellitus (T2DM) rats. Our results demonstrated that the degree of NAD+/NADH redox imbalance in the pancreas of T2DM rats was alleviated by CCFE, which is likely attributed to the inhibition of the polyol pathway and the decrease in poly ADP ribose polymerase (PARP) and sirtuin 3 (Sirt3) activities. Moreover, mitochondrial complex I dysfunction in the pancreas of T2DM rats was ameliorated by CCFE through the suppression of the activity of complex I. Furthermore, CCFE treatment could attenuate oxidative stress in T2DM rats, which was proven by the reduction in hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as the upregulation of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum. CCFE treatment significantly improved dyslipidemia in T2DM rats.
Collapse
Affiliation(s)
- Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Zhenglei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Shiqi Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Caiyun Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Keqiang Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Shenyi Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| |
Collapse
|
48
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
49
|
Chen K, Deng Y, Shang S, Li P, Liu L, Chen X. Network Pharmacology-Based Investigation of the Molecular Mechanisms of the Chinese Herbal Formula Shenyi in the Treatment of Diabetic Nephropathy. Front Med (Lausanne) 2022; 9:898624. [PMID: 35755045 PMCID: PMC9226379 DOI: 10.3389/fmed.2022.898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Chinese herbal formula Shenyi (SY) is a prescription that was developed by the Department of Nephrology, Chinese People's Liberation Army General Hospital. This preparation is mainly used to treat chronic kidney disease (CKD) caused by Diabetic nephropathy (DN) and is effective. However, the active ingredients of SY, DN treatment-related molecular targets and the effector mechanisms are still unclear. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and the Traditional Chinese Medicine and Chemical Component Database of Shanghai Institute of Organic Chemistry were used to screen the active ingredients in SY, the TCMSP database and Swiss Target Prediction database were used to collect the targets of the active ingredients of SY, and the Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases were used to screen for DN pathogenesis targets. The intersections of the component targets and disease targets were mapped to obtain the therapeutic targets. The METASCAPE database was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the therapeutic targets. Cytoscape 3.7.2 was used to analyze topological parameters and construct a network of SY for the treatment of DN. Results Sixty-two active ingredients and 497 active ingredient effector targets in SY, 3260 DN-related targets, and 271 SY treatments for DN targets were identified. Among these targets, 17 were core targets, including AKT1, tumor necrosis factor (TNF), interleukin-6 (IL6), and TP53. The GO and KEGG enrichment analyses show that SY's therapeutic effects for DN occur mainly through pathways such as advanced glycation end product (AGE)-RAGE, PI3K-Akt, and IL-17. Conclusion Multiple active ingredients in SY exhibit treatment effects on DN by affecting metabolism, inhibiting inflammation, and affecting cell structure growth.
Collapse
Affiliation(s)
- Keng Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shunlai Shang
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Linchang Liu
- First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,Department of Nephrology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Xiangmei Chen
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China.,First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
50
|
Qishen Yiqi Dripping Pill Protects Diabetic Nephropathy by Inhibiting the PI3K-AKT Signaling Pathways in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6239829. [PMID: 35754685 PMCID: PMC9232344 DOI: 10.1155/2022/6239829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the potential mechanisms of Qishen Yiqi dripping pill (QYDP) against diabetic nephropathy (DN) through network pharmacology and animal experiments. The components and targets of QYDP and DN-related targets were retrieved from public databases. A total of 116 compounds and 160 targets of QYDP anti-DN were obtained. The top 10 hub targets including AKT1, TNF, ALB, INS, PPARG, IL-6, IL-1B, VEGF-A, JUN, and MAPK3 were screened by Cytoscape software. Then, the key targets of QYDP were enriched in 1815 Gene Ontology (GO) entries (P < 0.01) and 159 Kyoto Encyclopedia of Genomes and Genomes (KEGG) pathways (P < 0.01), mainly including the AGE-RAGE signaling pathway in diabetic complications and the PI3K-AKT signaling pathway. In animal experiments, the results of an ELISA assay showed that QYDP could regulate the expression levels of kidney function-related indexes and reduce the expression of inflammatory factors. qRT-PCR and western blot results showed that QYDP regulated the expression of hub genes. In conclusion, this study shows that QYDP could treat DN by antioxidative and antiinflammatory activity and inhibiting the PI3K-AKT signaling pathway.
Collapse
|