1
|
Rastegar Lari T, Macias L, Robrahn L, Dikmen HO, Prüßmann J, Kiehne C, Engster S, Weyers I, Szymczak S, van Beek N, Hoffmann MH, Schmidt E, Emtenani S. Localization of Lesions in Autoimmune Blistering Diseases Is Independent of Site-Specific Target Antigen Expression. Life (Basel) 2025; 15:218. [PMID: 40003627 PMCID: PMC11857079 DOI: 10.3390/life15020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autoimmune blistering diseases (AIBDs) involve autoantibodies targeting proteins in the epidermal/epithelial desmosome (pemphigus) or basement membrane zone (pemphigoid). Despite widespread antigen distribution, lesions exhibit a scattered involvement pattern. This study maps the frequency/severity of AIBD lesions on various body parts and investigates whether differential antigen expression contributes to specific predilection sites. We analyzed affected sites presenting blisters/erosions, erythematous/urticarial lesions, and mucosal lesions in bullous pemphigoid (BP-cohort 1, n = 65; BP-cohort 2, n = 119), pemphigus vulgaris (PV, n = 67), and pemphigus foliaceus (PF, n = 20) patients. To assess antigen expression, we conducted indirect immunofluorescence (IF) staining of 11 AIBD antigens from 13 anatomical sites of 10 body donors without AIBD. In BP, blisters/erosions and erythematous/urticarial lesions predominantly affected arms and legs, while PV/PF patients exhibited frequent involvement of buccal mucosa and back, respectively. IF staining identified significant regional differences in BP180, BP230, and integrin β4 expression, although these variations did not correlate with a higher lesion frequency/severity. Other antigens showed consistent expression across all regions. Our findings suggest that predilection sites for BP and PV/PF are largely unaffected by regional variations in antigen expression but may be influenced by factors like microbiota, mechanical stress, sunlight exposure, local immunity, or genetics.
Collapse
Affiliation(s)
- Tina Rastegar Lari
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| | - Louis Macias
- Institute of Medical Biometry and Statistics, University of Lübeck, 23562 Lübeck, Germany; (L.M.); (S.S.)
| | - Lara Robrahn
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Hasan Onur Dikmen
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Jasper Prüßmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Charlotte Kiehne
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Simon Engster
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| | - Imke Weyers
- Institute of Anatomy, University of Lübeck, 23562 Lübeck, Germany;
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, 23562 Lübeck, Germany; (L.M.); (S.S.)
| | - Nina van Beek
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Markus H. Hoffmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
- Department of Dermatology, Allergology and Venerology, University of Lübeck, 23562 Lübeck, Germany; (L.R.); (J.P.); (N.v.B.); (M.H.H.)
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany; (T.R.L.); (H.O.D.); (C.K.); (S.E.); (E.S.)
| |
Collapse
|
2
|
Akbarzadeh R, Czyz C, Thomsen SY, Schilf P, Murthy S, Sadik CD, König P. Monocyte populations are involved in the pathogenesis of experimental epidermolysis bullosa acquisita. Front Immunol 2023; 14:1241461. [PMID: 38116004 PMCID: PMC10728641 DOI: 10.3389/fimmu.2023.1241461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Monocytes play a significant role in the pathogenesis of most inflammatory diseases, including autoimmune diseases. Herein, different subpopulations of monocytes often play differential, partially antagonistic roles, in the regulation of tissue populations. Pemphigoid diseases constitute a group of autoimmune blistering skin diseases featuring a marked infiltration of the dermis with immune cells, including monocytes. The monocyte subsets infiltrating the skin, however, have largely remained elusive. Monocyte adhesion and recruitment into the inflamed tissues are regulated by chemokine receptors, most prominently by CCR2 and CX3CR1. To delineate the involvement of monocyte populations in autoimmune blistering skin diseases, we spatiotemporally monitored the dynamic spectrum of monocyte populations that infiltrate the inflamed skin using multiphoton intravital imaging and reporter mice for chemokine receptors. Experimental epidermolysis bullosa acquisita (EBA) was induced by injection of anti-murine type VII collagen (amCOLVII) IgG into the Csf1rEGFP-reporter mice, where circulating myeloid cells, such as monocytes and neutrophils, express an EGFP. EGFP+ cells, including neutrophils and monocytes, were present in the skin, immediately after the deposition of the amCOLVII antibody at the dermal-epidermal junction. To investigate the recruitment and involvement of different monocyte-derived cell populations in the disease course further, EBA was induced in CCR2RFP/+-reporter and CX3CR1GFP/+-reporter mice. A comparable distribution of red fluorescent protein (RFP)+ or green fluorescent protein (GFP)+ was found in both diseased mice and their respective controls over time, indicating the similar recruitment of monocytes into the skin following the binding of autoantibodies. Experiments were extended to the CCR2RFP/RFP-deficient and CX3CR1GFP/GFP-deficient mice to determine whether monocyte recruitment and disease severity are compromised in the absence of the receptor. A comparable pattern was seen in the recruitment of monocytes into the skin in both reporter and deficient mice. However, in contrast to similar disease severity between CX3CR1-deficient and reporter mice, CCR2-deficient mice developed significantly less disease than CCR2-reporter mice, as indicated by the percentage of affected area of ears. Collectively, our observations indicate that while CCR2 and CX3CR1 receptors are not involved in the recruitment of monocytes into the skin, CCR2 deficiency is associated with improved disease outcomes in experimental EBA in mice.
Collapse
Affiliation(s)
- Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | - Sarah-Yasmin Thomsen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Corbella-Bagot L, Gil-Lianes J, Fernández-Vela J, Martí-Martí I, Alegre-Fernández M, Fuertes I, Garbayo-Salmons P, Bosch-Amate X, Guilabert A, Mascaró JM. Case Report: Localized bullous pemphigoid induced by local triggers: a case series and a proposal for diagnostic criteria based on a literature review. Front Immunol 2023; 14:1160779. [PMID: 37334352 PMCID: PMC10272756 DOI: 10.3389/fimmu.2023.1160779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Localized bullous pemphigoid (LBP) is an infrequent bullous pemphigoid (BP) variant restricted to a body region. According to the most compelling evidence, LBP occurs in patients with pre-existent serum antibodies against the basement membrane zone, which occasionally acquire the capacity to induce disease after the influence of different local factors acting as triggers. Methods We hereby present a multicenter cohort of 7 patients with LBP developed after local triggers: radiotherapy, thermal burns, surgery, rosacea, edema and a paretic leg. In addition, we conducted a review of the literature, and we propose a set of diagnostic criteria for LBP, also based on our case series and the 2022 BP guidelines from the European Academy of Dermatology and Venereology. Results During follow-up, three of the patients from our series evolved to a generalized BP, with only one requiring hospitalization. Our literature search retrieved 47 articles including a total of 108 patients with LBP, with a 63% with a potential local precipitating factor previous to their diagnosis. LBP mostly affected older females, and a subsequent generalized progression occurred in 16.7% of the cases. The most frequently involved areas were the lower limbs. Radiation therapy and surgery were responsible for the inducement of nearly 2 in 3 cases of LBP. We observed a significantly higher risk of generalization in cases where the trigger led to the developing of LBP earlier (p=0.016). Our statistical analysis did not detect any other prognosis factor for generalization when assessing direct immunofluorescence, histological and serological results, or other patient related factors. Conclusion LBP should be suspected in patients with recurrent localized bullous eruptions. The presence of a trauma history in the same anatomic area is reported in most cases.
Collapse
Affiliation(s)
- Lluís Corbella-Bagot
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier Gil-Lianes
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Ignasi Martí-Martí
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Marta Alegre-Fernández
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Irene Fuertes
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Xavier Bosch-Amate
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Antonio Guilabert
- Department of Dermatology, Hospital General de Granollers, Granollers, Spain
| | - José M. Mascaró
- Department of Dermatology, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Kridin K, Vorobyev A, Papara C, De Luca DA, Bieber K, Ludwig RJ. Risk factors and sequelae of epidermolysis bullosa acquisita: A propensity-matched global study in 1,344 patients. Front Immunol 2023; 13:1103533. [PMID: 36776391 PMCID: PMC9910332 DOI: 10.3389/fimmu.2022.1103533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Identification of risk factors and sequelae of any given disease is of key importance. For common diseases, primary prevention and disease management are based on this knowledge. For orphan diseases, identification of risk factors and sequelae has been challenging. With the advent of large databases, e.g., TriNetX, this can now be addressed. We used TriNetX to identify risk factors and sequelae of epidermolysis bullosa acquisita (EBA), a severe and orphan autoimmune disease. To date, there is only enigmatic information on EBA comorbidity. We recruited 1,344 EBA patients in the Global Collaborative Network of TriNetX. Using the "explore outcomes" function we identified 55 diagnoses with a different prevalence between EBA and no-EBA patients. We next performed propensity-matched, retrospective cohort studies in which we determined the risk of EBA development following any of the identified 55 diseases. Here, 31/55 diseases were identified as risk factors for subsequent EBA. Importantly, the highest risk for EBA were other chronic inflammatory diseases (CID), especially lupus erythematosus and lichen planus. Lastly, we determined the risk to develop any of the identified diseases after EBA diagnosis. Here, 38/55 diseases were identified as sequelae. Notably, EBA patients showed an increased risk for metabolic and cardiovascular disease, and thrombosis. Furthermore, the risk for CIDs, especially lupus erythematosus and lichen planus, was elevated. These insights into risk factors and sequelae of EBA are not only of clinical relevance, e.g., optimizing cardiovascular disease risk, but in addition, point to shared pathogenetic pathways between EBA and other inflammatory diseases.
Collapse
Affiliation(s)
- Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel,Unit of Dermatology and Skin Research Laboratory, Barch Padeh Medical Center, Tiberias, Israel
| | - Artem Vorobyev
- Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Cristian Papara
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David A. De Luca
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany,Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany,*Correspondence: Ralf J. Ludwig,
| |
Collapse
|
6
|
Haeger SC, Kridin K, Pieper M, Griewahn L, Nimmerjahn F, Zillikens D, König P, Ludwig RJ, Hundt JE. Therapeutic effects of Fc gamma RIV inhibition are mediated by selectively blocking immune complex-induced neutrophil activation in epidermolysis bullosa acquisita. Front Immunol 2022; 13:938306. [PMID: 36311755 PMCID: PMC9606225 DOI: 10.3389/fimmu.2022.938306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a subepidermal autoimmune bullous disease caused by autoantibodies targeting type VII collagen (COL7). It is characterized by inflammation and subepidermal blistering mainly through immune complex (IC)-mediated activation of neutrophils. In experimental EBA, binding of neutrophils to ICs in the skin and induction of clinical disease depends on the expression of the Fc gamma receptor (FcγR) IV. As activating FcγR mediate both neutrophil extravasation and activation, we used multiphoton imaging to obtain further insights into the mechanistic contribution of FcγRIV in the pathogenesis of EBA. First, we demonstrated that blocking FcγRIV function completely protects LysM-eGFP mice against induction of antibody transfer-induced EBA. To visualize the interactions of anti-COL7 IgG and neutrophils in vivo, fluorescently labeled anti-COL7 IgG was injected into LysM-eGFP mice. Multiphoton microscopy was sequentially performed over a period of 8 days. At all time points, we observed a significantly higher extravasation of neutrophils into the skin of mice treated with anti-FcγRIV antibody compared to controls. However, the percentage of detected neutrophils localized to the target antigen along the dermal-epidermal junction was comparable between both groups. Additionally, reactive oxygen release and migration in vitro assay data demonstrate that FcγRIV antibody treatment inhibits the activation, but not the migration, of neutrophils. Our findings underscore the importance of advanced in vivo imaging techniques to understand the complexity of IC-mediated neutrophil-dependent inflammation, and indicate that the therapeutic utility of FcγRIV blockade is achieved through impairment of IC-mediated neutrophil activation.
Collapse
Affiliation(s)
- Swantje C. Haeger
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Khalaf Kridin
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Laura Griewahn
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | - Detlef Zillikens
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Peter König
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Ralf J. Ludwig
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Jennifer E. Hundt
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- *Correspondence: Jennifer E. Hundt,
| |
Collapse
|
7
|
Tukaj S, Mantej J, Sitko K, Bednarek M, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Evidence for a role of extracellular heat shock protein 70 in epidermolysis bullosa acquisita. Exp Dermatol 2021; 31:528-534. [PMID: 34741567 DOI: 10.1111/exd.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Heat shock protein 90 (Hsp90) and Hsp70 are chaperones implicated in different inflammatory disorders, given their property to impact innate and adaptive immune responses. Here, we determined the so far unknown role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated blistering dermatosis. The in vivo pathophysiological relevance of extracellular Hsp70 was demonstrated in an anti-type VII collagen antibody transfer-induced EBA mouse model in which elevated blood levels of this chaperone were recorded. We found that Hsp70-treated mice had a more intense clinical disease severity compared to controls that were paralleled by increased levels of cutaneous matrix metalloproteinase 9 and plasma hydrogen peroxide. The latter finding was confirmed in an independent reactive oxygen species release assay using EBA-specific immune complexes combined with recombinant Hsp70. Finally, cell culture experiments using human naive peripheral blood mononuclear cells (PBMC) revealed that extracellular Hsp70 stimulated the secretion of the T cell-derived pro-inflammatory cytokines IL-6 and IL-8. This work extends knowledge about the role of Hsps in autoimmune bullous diseases, suggesting that extracellular Hsp70 represents a pathophysiological factor and potential treatment target in EBA.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Szilveszter KP, Vikár S, Horváth ÁI, Helyes Z, Sárdy M, Mócsai A. Phospholipase Cγ2 is Essential for Experimental Models of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 142:1114-1125. [PMID: 34656615 DOI: 10.1016/j.jid.2021.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Phospholipase Cγ2 (PLCγ2) mediates tyrosine kinase‒coupled receptor signaling in various hematopoietic lineages. Although PLCγ2 has been implicated in certain human and mouse inflammatory disorders, its contribution to autoimmune and inflammatory skin diseases is poorly understood. In this study, we tested the role of PLCγ2 in a mouse model of epidermolysis bullosa acquisita triggered by antibodies against type VII collagen (C7), a component of the dermo-epidermal junction. PLCγ2-deficient (Plcg2-/-) mice and bone marrow chimeras with a Plcg2-/- hematopoietic system were completely protected from signs of anti-C7-induced skin disease, including skin erosions, dermal‒epidermal separation, and inflammation, despite normal circulating levels and skin deposition of anti-C7 antibodies. PLCγ2 was required for the tissue infiltration of neutrophils, eosinophils, and monocytes/macrophages as well as for the accumulation of proinflammatory mediators (including IL-1β, MIP-2, and LTB4) and reactive oxygen species. Mechanistic experiments revealed a role for PLCγ2 in the release of proinflammatory mediators and reactive oxygen species but not in the intrinsic migratory capacity of leukocytes. The phospholipase C inhibitor U73122 inhibited dermal-epidermal separation of human skin sections incubated with human neutrophils in the presence of anti-C7 antibodies. Taken together, our results suggest a critical role for PLCγ2 in the pathogenesis of the inflammatory form of epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Simon Vikár
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám I Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Ständer S, Kasperkiewicz M, Thaçi D, Schmidt E, Zillikens D, Vorobyev A, Ludwig RJ. Prevalence and presumptive triggers of localized bullous pemphigoid. J Dermatol 2021; 48:1257-1261. [PMID: 33998059 DOI: 10.1111/1346-8138.15912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune skin disease, caused by autoantibodies to BP180 and/or BP230. While both these autoantigens are expressed in the entire skin, only some parts of the body become affected. Rare clinical observations indicate that BP may also manifest locally, usually following exposure to triggers. Here, we evaluated the occurrence and potential triggers of localized BP (LBP) in a cohort of 285 BP patients. Medical records of all BP patients hospitalized between 2009 and 2019 were reviewed. In 7/285 BP patients, a localized variant was identified. In 5/7 LBP patients, the disease remained local, while in 2/7 patients, an initial LBP subsequently spread. All cases were preceded by presumptive triggers, including previously described triggers and bacterial infections. Overall, LBP is rare. LBP, however, might be underdiagnosed and should thus be considered in the differential diagnosis, particularly when trigger factors preceded.
Collapse
Affiliation(s)
- Sascha Ständer
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Diamant Thaçi
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany.,Comprehensive Center of Inflammation Medicine, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Niebuhr M, Bieber K, Banczyk D, Maass S, Klein S, Becker M, Ludwig R, Zillikens D, Westermann J, Kalies K. Epidermal Damage Induces Th1 Polarization and Defines the Site of Inflammation in Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2020; 140:1713-1722.e9. [PMID: 32057838 DOI: 10.1016/j.jid.2020.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa acquisita is an autoimmune skin disease characterized by subepidermal blisters. The pathogenesis is mediated by deposits of autoantibodies directed against type VII collagen in the skin, but the sequence of events regulating the localization of skin blisters is not fully understood. In this study, using the immunization-induced mouse model of epidermolysis bullosa acquisita, we demonstrate that epidermal disruption induces not only an infiltration of CD4+ T cells but also a T helper type 1 phenotype as it has been described for delayed-type hypersensitivity reactions. This T helper type 1 reaction was not found when different antigens were applied. Deep T-cell receptor β profiling revealed shifts in the V/J gene usage only in epidermolysis bullosa acquisita, suggesting an infiltration of autoantigen-specific T cells. To target these autoantigen-specific T cells, we established an approach with which skin inflammation could be prevented without impairing the functionality of autoantibodies. We conclude that T-cell involvement in skin blistering diseases such as epidermolysis bullosa acquisita relates not only to T-cell help for B cells that produce pathogenic autoantibodies but also to autoreactive T helper type 1 effector cells that migrate into injured skin sites, exacerbate inflammation through production of inflammatory cytokines such as IFNγ, and prevent wound healing.
Collapse
Affiliation(s)
- Markus Niebuhr
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Institute of Anatomy, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David Banczyk
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | - Mareike Becker
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.
| |
Collapse
|