1
|
Cavallari N, Johnson A, Nagl C, Seiser S, Rechberger GN, Züllig T, Kufer TA, Elbe-Bürger A, Geiselhart S, Hoffmann-Sommergruber K. Nonspecific lipid-transfer proteins trigger TLR2 and NOD2 signaling and undergo ligand-dependent endocytosis in epithelial cells. J Allergy Clin Immunol 2024; 154:1289-1299. [PMID: 39084297 DOI: 10.1016/j.jaci.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.
Collapse
Affiliation(s)
- Nicola Cavallari
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Alexander Johnson
- Center for Anatomy & Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria; Medical Imaging Cluster, Vienna, Austria
| | - Christoph Nagl
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Saskia Seiser
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria.
| |
Collapse
|
2
|
Lee MS, Webb TJ. Novel lipid antigens for NKT cells in cancer. Front Immunol 2023; 14:1173375. [PMID: 37908366 PMCID: PMC10613688 DOI: 10.3389/fimmu.2023.1173375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy aims to unleash the power of the immune system against tumors without the side effects of traditional chemotherapy. Immunotherapeutic methods vary widely, but all follow the same basic principle: overcome the barriers utilized by cancers to avoid immune destruction. These approaches often revolve around classical T cells, such as with CAR T cells and neoantigen vaccines; however, the utility of the innate-like iNKT cell in cancer immunotherapy has gained significant recognition. iNKT cells parallel classic T cell recognition of peptide antigens presented on MHC through their recognition of lipid antigens presented on the MHC I-like molecule CD1d. Altered metabolism and a lipogenic phenotype are essential properties of tumor cells, representing a unique feature that may be exploited by iNKT cells. In this review, we will cover properties of iNKT cells, CD1d, and lipid antigen presentation. Next, we will discuss the cancer lipidome and how it may be exploited by iNKT cells through a window of opportunity. Finally, we will review, in detail, novel lipid antigens for iNKT cells in cancer.
Collapse
Affiliation(s)
- Michael S. Lee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Gonzalez-Klein Z, Pazos-Castro D, Hernandez-Ramirez G, Garrido-Arandia M, Diaz-Perales A, Tome-Amat J. Lipid Ligands and Allergenic LTPs: Redefining the Paradigm of the Protein-Centered Vision in Allergy. FRONTIERS IN ALLERGY 2022; 3:864652. [PMID: 35769581 PMCID: PMC9234880 DOI: 10.3389/falgy.2022.864652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Lipid Transfer Proteins (LTPs) have been described as one of the most prevalent and cross-reactive allergen families in the general population. They are widely distributed among the plant kingdom, as well as in different plant organs ranging from pollen to fruits. Thus, they can initiate allergic reactions with very different outcomes, such as asthma and food allergy. Several mouse models have been developed to unravel the mechanisms that lead LTPs to promote such strong sensitization patterns. Interestingly, the union of certain ligands can strengthen the allergenic capacity of LTPs, suggesting that not only is the protein relevant in the sensitization process, but also the ligands that LTPs carry in their cavity. In fact, different LTPs with pro-allergenic capacity have been shown to transport similar ligands, thus positioning lipids in a central role during the first stages of the allergic response. Here, we offer the latest advances in the use of experimental animals to study the topic, remarking differences among them and providing future researchers a tool to choose the most suitable model to achieve their goals. Also, recent results derived from metabolomic studies in humans are included, highlighting how allergic diseases alter the lipidic metabolism toward a pathogenic state in the individual. Altogether, this review offers a comprehensive body of work that sums up the background evidence supporting the role of lipids as modulators of allergic diseases. Studying the role of lipids during allergic sensitization might broaden our understanding of the molecular events leading to tolerance breakdown in the epithelium, thus helping us to understand how allergy is initiated and established in the individuals.
Collapse
Affiliation(s)
- Zulema Gonzalez-Klein
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Diego Pazos-Castro
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Guadalupe Hernandez-Ramirez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Jaime Tome-Amat
| |
Collapse
|