1
|
Ilyas T, Shahid M, Shafi Z, Aijaz SA, Wasiullah. Molecular mechanisms of methyl jasmonate (MeJAs)-mediated detoxification of heavy metals (HMs) in agricultural crops: An interactive review. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:139-159. [DOI: 10.1016/j.sajb.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Liu M, Wu S, Song Y, Shi M, Yi L. Physiological and transcriptome analysis of sex-specific responses to cadmium stress in poplars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117675. [PMID: 39788028 DOI: 10.1016/j.ecoenv.2025.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg-1). The results showed that Cd stress significantly inhibited the growth of aboveground parts. Over 70 % of the Cd was distributed in the cell wall fraction of roots, stems, and leaves, with the majority accumulating in the roots. Poplars can conjugate Cd with phytochelatins to reduce Cd damage, which is more evident in males than females. The antioxidant defense system of females is more effective than that of males at reducing the damage from Cd. Females demonstrated a stronger Cd-regulation ability than males under the 100 mg·kg-1 Cd treatment. Sex-specific responses to Cd were associated with differential gene expression. Under Cd stress, the genes related to oxidation-reduction processes, antioxidant enzyme activity and defense mechanisms, cell wall synthesis, and glutathione metabolism were mainly enriched and upregulated in females, whereas in males, genes related to photosynthesis and photosynthetic pigment biosynthesis were mainly enriched and downregulated, indicating greater damage to the photosynthetic system than in females. Our study provides novel insights into the mechanisms responding to Cd tolerance in poplars. Further studies should be carried out to assess the impact of soil Cd pollution on the wood quality of poplars.
Collapse
Affiliation(s)
- Meihua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Sumei Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yigang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Mengjiao Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Lita Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Xiao C, Yang H, Chen X, Li J, Cai X, Long J. Application of Lanthanum at the Heading Stage Effectively Suppresses Cadmium Accumulation in Wheat Grains by Downregulating the Expression of TaZIP7 to Increase Cadmium Retention in Nodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2921. [PMID: 39458868 PMCID: PMC11510972 DOI: 10.3390/plants13202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Reducing cadmium (Cd) accumulation in wheat is an effective way to decrease the potential threats of Cd to human health. The application of lanthanum (La) in agricultural fields is eliciting extensive attention due to its beneficial effects on improving yields and inhibiting Cd accumulation in edible parts of crops. However, the potential mechanism of La-restricted Cd accumulation in crop grains is not entirely understood. Here, we investigated the effects of La and Cd accumulation in wheat grains by implementing application at the shooting and heading stages. Some associated mechanisms were explored. Results showed that La application at the shooting and heading stages considerably promoted the thousand-grain weight. La application at the shooting and heading stages increased Cd accumulation in the first node beneath the panicle (N1) but reduced Cd levels in the other tissues. La application at the heading stage exerted greater effects on Cd storage in N1 while reducing Cd concentrations in the other tissues compared with La application at the shooting stage. La addition substantially decreased the translocation of Cd from the lower nodes to the upper internodes, but increased Cd translocation from the lower internodes to the upper nodes. The expression of TaZIP7 in N1 was downregulated by La treatment. These results suggest that the effective reduction in Cd in wheat grains by La application at the heading stage is probably a consequence of the successful promotion of Cd storage in nodes by downregulating the expression of TaZIP7 during the grain-filling stage, thereby hindering the redirection Cd from nodes to grains.
Collapse
Affiliation(s)
- Caixia Xiao
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Hua Yang
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Xingwang Chen
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Jie Li
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Xiongfei Cai
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; (C.X.); (X.C.)
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
| | - Jian Long
- Guizhou Key Laboratory of Mountain Environment, Guizhou Normal University, Guiyang 550001, China;
| |
Collapse
|
4
|
Saeed W, Mubeen S, Pan J, Rehman M, Fang W, Luo D, Liu P, Li Y, Chen P. Integrated physiological and metabolomic responses reveal mechanisms of Cd tolerance and detoxification in kenaf ( Hibiscus cannabinus L.) under Cd stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332426. [PMID: 39175486 PMCID: PMC11340530 DOI: 10.3389/fpls.2024.1332426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2024] [Indexed: 08/24/2024]
Abstract
Introduction Cadmium (Cd) is a highly toxic trace element that occurs in large quantities in agricultural soils. The cultivation of industrial crops with high phytoremediation potential, such as kenaf, could effectively reduce soil Cd contamination, but the mechanisms of toxicity, tolerance, and detoxification remain unclear. Methods In this study, the effects of different Cd concentrations (0, 100, 250, and 400 µM) on growth, biomass, Cd uptake, physiological parameters, metabolites and gene expression response of kenaf were investigated in a hydroponic experiment. Results and discussion The results showed that Cd stress significantly altered the ability of kenaf to accumulate and transport Cd; increased the activity of hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA); reduced the activities of superoxide dismutase (SOD) and catalase (CAT); and decreased the content of photosynthetic pigments, resulting in significant changes in growth and biomass production. Exposure to Cd was found to have a detrimental effect on the ascorbate-glutathione (AsA-GSH) cycle in the roots, whereas it resulted in an elevation in AsA levels and a reduction in GSH levels in the leaves. The increased content of cell wall polysaccharides under Cd stress could contribute to Cd retention in roots and limited Cd transport to above-ground plant tissues. Metabolomic analyses revealed that alanine, aspartate, and glutamate metabolism, oxidative phosphorylation, ABC transporter, and carbon metabolism were the major metabolic pathways associated with Cd stress tolerance. Cd stress increased gene expression of IRT1 and MTP1 in roots, which resulted in kenaf roots accumulating high Cd concentrations. This study extends our knowledge of the factors regulating the response of kenaf to Cd stress. This work provided a physiological and metabolomic perspective on the mechanism controlling the response of kenaf to Cd stress.
Collapse
Affiliation(s)
- Wajid Saeed
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wangqiang Fang
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Pingwu Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Yun Li
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhang X, Zhang Y, Chen Z, Gu P, Li X, Wang G. Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167045. [PMID: 37709088 DOI: 10.1016/j.scitotenv.2023.167045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Perchlorate (ClO4-) is a type of novel, widely distributed, and persistent inorganic pollutant. However, the impacts of perchlorate on freshwater algae remain unclear. In this study, the response and defense mechanisms of microalgae (Chlamydomonas reinhardtii) under perchlorate stress were investigated by integrating physiological and biochemical monitoring, transcriptomics, and metabolomics. Weighted gene co-expression network analysis (WGCNA) of transcriptome data was used to analyze the relationship between genes and phenotype and screen the key pathways. C. reinhardtii exhibited aggregate behavior when exposed to 100- and 200-mM perchlorate but was restored to its unicellular lifestyle when transferred to fresh medium. WGCNA results found that the "carbohydrate metabolism" and "lipid metabolism" pathways were closely related to cell aggregation phenotype. The differential expression genes (DEGs) and differentially accumulated metabolites (DAMs) of these pathways were upregulated, indicating that the lipid and carbohydrate metabolisms were enhanced in aggregated cells. Additionally, most genes and metabolites related to phytohormone abscisic acid (ABA) biosynthesis and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly upregulated, indicating their crucial roles in the signal transmission of aggregated cells. Meanwhile, in aggregated cells, extracellular polymeric substances (EPS) and lipid contents increased, photosynthesis activity decreased, and the antioxidant system was activated. These characteristics contributed to C. reinhardtii's improved resistance to perchlorate stress. Above results demonstrated that cell aggregation behavior was the principal defense strategy of C. reinhardtii against perchlorate. Overall, this study sheds new light on the impact mechanisms of perchlorate to aquatic microalgae and provides multi-omics insights into the research of multicellular-like aggregation as an adaptation strategy to abiotic stress. These results are beneficial for assessing the risk of perchlorate in aquatic environments.
Collapse
Affiliation(s)
- Xianyuan Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Science, Tibet University, Lasha 850000, China
| | - Zixu Chen
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifan Gu
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gaohong Wang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Bilal S, Saad Jan S, Shahid M, Asaf S, Khan AL, Lubna, Al-Rawahi A, Lee IJ, AL-Harrasi A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites 2023; 13:1036. [PMID: 37887361 PMCID: PMC10608868 DOI: 10.3390/metabo13101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Rice (Oryza sativa) is a research model for monocotyledonous plants. Rice is also one of the major staple foods and the primary crop for more than half of the world's population. Increasing industrial activities and the use of different fertilizers and pesticides containing heavy metals (HMs) contribute to the contamination of agriculture fields. HM contamination is among the leading causes that affect the health of rice plants by limiting their growth and causing plant death. Phytohormones have a crucial role in stress-coping mechanisms and in determining a range of plant development and growth aspects during heavy metal stress. This review summarizes the role of different exogenous applications of phytohormones including auxin, cytokinin, gibberellins, ethylene, abscisic acid, strigolactones, jasmonates, brassinosteroids, and salicylic acids in rice plants for mitigating heavy metal stress via manipulation of their stress-related physiological and biochemical processes, and alterations of signaling and biosynthesis of genes. Exogenous administration of phytohormones and regulation of endogenous levels by targeting their biosynthesis/signaling machineries is a potential strategy for protecting rice from HM stress. The current review primarily emphasizes the key mechanistic phytohormonal-mediated strategies for reducing the adverse effects of HM toxicity in rice. Herein, we have provided comprehensive evidence for the effective role of exogenous phytohormones in employing defense responses and tolerance in rice to the phytotoxic effects of HM toxicity along with endogenous hormonal crosstalk for modulation of subcellular mechanisms and modification of stress-related signaling pathways, and uptake and translocation of metals. Altogether, this information offers a systematic understanding of how phytohormones modulate a plant's tolerance to heavy metals and may assist in directing the development of new approaches to strengthen rice plant resistance to HM toxicity.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Shahid
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Lubna
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed AL-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
8
|
Cai L, Adelberg J, Naylor-Adelberg J, Schnabel G, Calle A, Li Z, Reighard G, Gasic K, Saski CA. Transcriptomics reveal the genetic coordination of early defense to Armillaria root rot (ARR) in Prunus spp. FRONTIERS IN PLANT SCIENCE 2023; 14:1181153. [PMID: 37332708 PMCID: PMC10274510 DOI: 10.3389/fpls.2023.1181153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
Armillaria root rot (ARR) poses a significant threat to the long-term productivity of stone-fruit and nut crops in the predominant production area of the United States. To mitigate this issue, the development of ARR-resistant and horticulturally-acceptable rootstocks is a crucial step towards the maintenance of production sustainability. To date, genetic resistance to ARR has been found in exotic plum germplasm and a peach/plum hybrid rootstock, 'MP-29'. However, the widely-used peach rootstock Guardian® is susceptible to the pathogen. To understand the molecular defense mechanisms involved in ARR resistance in Prunus rootstocks, transcriptomic analyses of one susceptible and two resistant Prunus spp. were performed using two causal agents of ARR, including Armillaria mellea and Desarmillaria tabescens. The results of in vitro co-culture experiments revealed that the two resistant genotypes showed different temporal response dynamics and fungus-specific responses, as seen in the genetic response. Gene expression analysis over time indicated an enrichment of defense-related ontologies, including glucosyltransferase activity, monooxygenase activity, glutathione transferase activity, and peroxidase activity. Differential gene expression and co-expression network analysis highlighted key hub genes involved in the sensing and enzymatic degradation of chitin, GSTs, oxidoreductases, transcription factors, and biochemical pathways likely involved in Armillaria resistance. These data provide valuable resources for the improvement of ARR resistance in Prunus rootstocks through breeding.
Collapse
|
9
|
Rahman IMM, Khan BM. Physiological responses of wild grass Holcus lanatus L. to potentially toxic elements in soils: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54470-54482. [PMID: 36995503 DOI: 10.1007/s11356-023-26472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Potentially toxic elements (PTEs) in soils accumulate in plants, obstruct their growth, and pose hazards to the consumer via the food chain. Many kinds of grass, grass-like plants, and other higher plant species have evolved a tolerance to PTEs. Holcus lanatus L., a wild grass, is also tolerant (an excluder) of PTEs, such as arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn). However, the extent of tolerance varies among ecotypes and genotypes. The PTE tolerance mechanism of H. lanatus curtails the typical uptake process and causes a reduced translocation of PTEs from the roots to the shoots, while such a characteristic is useful for contaminated land management. The ecology and response patterns of Holcus lanatus L. to PTEs, along with the associated mechanisms, are reviewed in the current work.
Collapse
Affiliation(s)
- Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Bayezid M Khan
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan
- Institute of Forestry and Environmental Sciences, Faculty of Science, University of Chittagong, Chattogram, 4331, Bangladesh
| |
Collapse
|
10
|
Xia R, Zhou J, Cui H, Liang J, Liu Q, Zhou J. Nodes play a major role in cadmium (Cd) storage and redistribution in low-Cd-accumulating rice (Oryza sativa L.) cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160436. [PMID: 36427718 DOI: 10.1016/j.scitotenv.2022.160436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Rice cadmium (Cd) contamination is one of the critical agricultural issues. Breeding of low-Cd-accumulating cultivar is an effective approach to reduce Cd bioaccumulation in rice. To investigate the molecular mechanism underlying Cd transport in rice, the functions of nodes in Cd transport are explored. The results show that different nodes have different functions of Cd transport in the rice plant and the physiological structure of the first node under panicle (N1) determine the Cd accumulation in the brown rice. The upper nodes can redistribute the Cd transport in aboveground tissues. The expressions of Cd-efflux transporter genes (OsLCT1 and OsHMA2) located on the plasma-membrane are the main factors affecting the Cd transport form node to brown rice, which are more depended on the node functions but not the node Cd concentrations. Lower expressions of OsLCT1 and OsHMA2 in N1 result in lower Cd transport from node to brown rice. The size of vascular-bundle (VB) areas in the junctional node with the flag leaf can determine the expression of OsHMA2 and the expression of OsLCT1 positively correlated with the Cd transport ability of first node (N1). The expressions of OsVIT2 and OsABCC1 cannot allow Cd to be immobilized into the vacuoles in node. The VB structure and Cd transporter gene expression level of N1 proved that the Cd concentration of N1 can be used as an important indicator for screening low-Cd-accumulating cultivars. The major implication is that selecting or breeding cultivars with lower Cd accumulations in N1 could be an effective strategy to reduce Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China.
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Qiqi Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
11
|
Tan JW, Shinde H, Tesfamicael K, Hu Y, Fruzangohar M, Tricker P, Baumann U, Edwards EJ, Rodríguez López CM. Global transcriptome and gene co-expression network analyses reveal regulatory and non-additive effects of drought and heat stress in grapevine. FRONTIERS IN PLANT SCIENCE 2023; 14:1096225. [PMID: 36818880 PMCID: PMC9932518 DOI: 10.3389/fpls.2023.1096225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Despite frequent co-occurrence of drought and heat stress, the molecular mechanisms governing plant responses to these stresses in combination have not often been studied. This is particularly evident in non-model, perennial plants. We conducted large scale physiological and transcriptome analyses to identify genes and pathways associated with grapevine response to drought and/or heat stress during stress progression and recovery. We identified gene clusters with expression correlated to leaf temperature and water stress and five hub genes for the combined stress co-expression network. Several differentially expressed genes were common to the individual and combined stresses, but the majority were unique to the individual or combined stress treatments. These included heat-shock proteins, mitogen-activated kinases, sugar metabolizing enzymes, and transcription factors, while phenylpropanoid biosynthesis and histone modifying genes were unique to the combined stress treatment. Following physiological recovery, differentially expressed genes were found only in plants under heat stress, both alone and combined with drought. Taken collectively, our results suggest that the effect of the combined stress on physiology and gene expression is more severe than that of individual stresses, but not simply additive, and that epigenetic chromatin modifications may play an important role in grapevine responses to combined drought and heat stress.
Collapse
Affiliation(s)
- Jia W. Tan
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Harshraj Shinde
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Kiflu Tesfamicael
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- School of Biological Science, The University of Adelaide, Adelaide, SA, Australia
| | - Yikang Hu
- School of Biological Science, The University of Adelaide, Adelaide, SA, Australia
| | - Mario Fruzangohar
- The Biometry Hub, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Penny Tricker
- School of Agriculture, Food and Wine, The University of Adelaide, Hartley Grove, SA, Australia
- The New Zealand Institute for Plant and Food Research Limited, Plant & Food Research Canterbury Agriculture & Science Centre, Lincoln, New Zealand
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Hartley Grove, SA, Australia
| | - Everard J. Edwards
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture & Food, Glen Osmond, SA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Zaid IU, Faheem M, Zia MA, Abbas Z, Noor S, Ali GM, Haider Z. Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:642. [PMID: 36771731 PMCID: PMC9921683 DOI: 10.3390/plants12030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a non-essential and toxic metal that accumulates in plant's tissues and diminishes plant growth and productivity. In the present study, differential root transcriptomic analysis was carried out to identify Cd stress-responsive gene networks and functional annotation under Cd stress in wheat seedlings. For this purpose, the Yannong 0428 wheat cultivar was incubated with 40 µm/L of CdCl2·2.5H2O for 6 h at three different seedling growth days. After the quality screening, using the Illumina Hiseq 2000 platform, more than 2482 million clean reads were retrieved. Following this, 84.8% to 89.3% of the clean reads at three time points under normal conditions and 86.5% to 89.1% of the reads from the Cd stress condition were mapped onto the wheat reference genome. In contrast, at three separate seedling growth days, the data analysis revealed a total of 6221 differentially expressed genes (DEGs), including 1543 (24.8%) up-regulated genes and 4678 (75.8%) down-regulated genes. In total, 120 DEGs were co-expressed throughout all the growth days, whereas 1096, 1088, and 2265 DEGs were found to be selectively up-/down-regulated at 7d, 14d, and 30d, respectively. However, the clustering of DEGs, through utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG), revealed that the DEGs in the metabolic category were frequently annotated for phenylpropanoid biosynthesis. In comparison, a considerable number of DEGs were linked to protein processing in the endoplasmic reticulum under the process of genetic information processing. Similarly, in categories in organismal systems and cellular processes, DEGs were found in plant hormone signal transduction pathways, and DEGs were identified in the plant-pathogen interaction pathway, respectively. However, DEGs in "endocytosis pathways" were enriched in environmental information processing. In addition, in-depth annotations of roughly specific heavy metal stress-response genes and pathways were also mined, and the expression patterns of eight DEGs were studied using quantitative real-time PCR. The results were congruent with the findings of RNA sequencing regarding transcript abundance in the studied wheat cultivar.
Collapse
Affiliation(s)
- Imdad Ullah Zaid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | | | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Zaheer Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Sabahat Noor
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Zeeshan Haider
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| |
Collapse
|
13
|
Li Z, Jiang L, Wang C, Liu P, Ma L, Zou C, Pan G, Shen Y. Combined genome-wide association study and gene co-expression network analysis identified ZmAKINβγ1 involved in lead tolerance and accumulation in maize seedlings. Int J Biol Macromol 2023; 226:1374-1386. [PMID: 36455818 DOI: 10.1016/j.ijbiomac.2022.11.250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Lead (Pb) contamination has become an important abiotic stress that negatively influences crop biomass and yield, threatening human health via food chains. The excavation of causal genes for Pb tolerance in maize will contribute to the breeding of Pb-tolerant maize germplasms. This study aimed to demonstrate the effects of AKINbetagamma-1 protein kinase (ZmAKINβγ1) on maize tolerance to Pb and reveal its molecular mechanisms underlying Pb tolerance. ZmAKINβγ1 was identified using genome-wide association study and weighted gene co-expression network analysis for shoot dry weight (SDW) and root dry weight (RDW) under Pb treatment. The OE and RNAi experiments showed that ZmAKINβγ1 negatively regulated maize tolerance to Pb by reducing SDW and RDW and increasing Pb accumulation in maize. Comparative transcriptome analysis between the OE/RNAi and wild-type lines revealed that ZmAKINβγ1 participated in the pectin metabolism process and nitrogen compound response. Gene-based association analyses revealed that three variants located in ZmAKINβγ1 promoter induced changes in its expression and Pb tolerance among maize lines. The dual-luciferase reporter system verified that the two genotypes (AAT and CGG) of ZmAKINβγ1 promoter had contrasting transcriptional activities. Collectively, ZmAKINβγ1-mediated Pb tolerance provided new insights into the cultivation of Pb-tolerant maize varieties and phytoremediation of Pb-polluted soils.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; College of Bioengineering, Sichuan University of Science & Engneering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Comparative Transcriptome Analysis Unveils the Molecular Mechanism Underlying Sepal Colour Changes under Acidic pH Substratum in Hydrangea macrophylla. Int J Mol Sci 2022; 23:ijms232315428. [PMID: 36499756 PMCID: PMC9739076 DOI: 10.3390/ijms232315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.
Collapse
|
15
|
Shanks CM, Huang J, Cheng CY, Shih HJS, Brooks MD, Alvarez JM, Araus V, Swift J, Henry A, Coruzzi GM. Validation of a high-confidence regulatory network for gene-to-NUE phenotype in field-grown rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1006044. [PMID: 36507422 PMCID: PMC9732682 DOI: 10.3389/fpls.2022.1006044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and Water (W) - two resources critical for crop productivity - are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils.
Collapse
Affiliation(s)
- Carly M. Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Ji Huang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Chia-Yi Cheng
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hung-Jui S. Shih
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Matthew D. Brooks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Urbana, IL, United States
| | - José M. Alvarez
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Viviana Araus
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joseph Swift
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amelia Henry
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| |
Collapse
|
16
|
Jaramillo-Botero A, Colorado J, Quimbaya M, Rebolledo MC, Lorieux M, Ghneim-Herrera T, Arango CA, Tobón LE, Finke J, Rocha C, Muñoz F, Riascos JJ, Silva F, Chirinda N, Caccamo M, Vandepoele K, Goddard WA. The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization. FRONTIERS IN PLANT SCIENCE 2022; 13:992663. [PMID: 36311093 PMCID: PMC9614048 DOI: 10.3389/fpls.2022.992663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools to discover complex underlying structure-function associations, which are then carried over to the production of new germplasm with improved agricultural traits. Here, we describe OMICAS' R&D trans-disciplinary multi-project architecture, explain the overall strategy and methods for crop-breeding, recent progress and results, and the overarching challenges that lay ahead in the field.
Collapse
Affiliation(s)
- Andres Jaramillo-Botero
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
| | - Julian Colorado
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería, Departamento de Ingeniería Electrónica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mauricio Quimbaya
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | - Maria Camila Rebolledo
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mathias Lorieux
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Thaura Ghneim-Herrera
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia
| | - Carlos A. Arango
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ciencias Naturales, Departamento de Ciencias Químicas, Universidad Icesi, Cali, Colombia
| | - Luis E. Tobón
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Jorge Finke
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Camilo Rocha
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
| | - Fernando Muñoz
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - John J. Riascos
- Facultad de Ingeniería y Ciencias, Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana, Cali, Colombia
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - Fernando Silva
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- Centro de Investigación de la Caña de Azúcar de Colombia, Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali, Colombia
| | - Ngonidzashe Chirinda
- Optimización Multiescala In-Silico de Cultivos Agrícolas Sostenibles (ÓMICAS) Alliance, Pontificia Universidad Javeriana, Cali, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Mario Caccamo
- National Institute of Agricultural Botanics (NIAB), Cambridge, United Kingdom
| | - Klaas Vandepoele
- Vlaams Instituut voor Biotechnologie, Bioinformatics Systems Biology, Ghent University, Gent, Belgium
| | - William A. Goddard
- Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
17
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
18
|
Hassan SH, Sferra G, Simiele M, Scippa GS, Morabito D, Trupiano D. Root and shoot biology of Arabidopsis halleri dissected by WGCNA: an insight into the organ pivotal pathways and genes of an hyperaccumulator. Funct Integr Genomics 2022; 22:1159-1172. [PMID: 36094581 DOI: 10.1007/s10142-022-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Arabidopsis halleri is a hyperaccumulating pseudo-metallophyte and an emerging model to explore molecular basis of metal tolerance and hyperaccumulation. In this regard, understanding of interacting genes can be a crucial aspect as these interactions regulate several biological functions at molecular level in response to multiple signals. In this current study, we applied a weighted gene co-expression network analysis (WGCNA) on root and shoot RNA-seq data of A. halleri to predict the related scale-free organ specific co-expression networks, for the first time. A total of 19,653 genes of root and 18,081 genes of shoot were grouped into 14 modules and subjected to GO and KEGG enrichment analysis. "Photosynthesis" and "photosynthesis-antenna proteins" were identified as the most enriched and common pathway to both root and shoot. Whereas "glucosinolate biosynthesis," "autophagy," and "SNARE interactions in vesicular transport" were specific to root, and "circadian rhythm" was found to be enriched only in shoot. Later, hub and bottleneck genes were identified in each module by using cytoHubba plugin based on Cytoscape and scoring the relevance of each gene to the topology of the network. The modules with the most significant differential expression pattern across control and treatment (Cd-Zn treatment) were selected and their hub and bottleneck genes were screened to validate their possible involvement in heavy metal stress. Moreover, we combined the analysis of co-expression modules together with protein-protein interactions (PPIs), confirming some genes as potential candidates in plant heavy metal stress and as biomarkers. The results from this analysis shed the light on the pivotal functions to the hyperaccumulative trait of A. halleri, giving perspective to new paths for future research on this species.
Collapse
Affiliation(s)
- Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy.
| | - Melissa Simiele
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| | | | - Domenico Morabito
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC-EA1207), Université d'Orléans, 45067, Orléans CEDEX 2, France
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090, Pesche, Italy
| |
Collapse
|
19
|
Ahmad N, Su B, Ibrahim S, Kuang L, Tian Z, Wang X, Wang H, Dun X. Deciphering the Genetic Basis of Root and Biomass Traits in Rapeseed (Brassica napus L.) through the Integration of GWAS and RNA-Seq under Nitrogen Stress. Int J Mol Sci 2022; 23:ijms23147958. [PMID: 35887301 PMCID: PMC9323118 DOI: 10.3390/ijms23147958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Bin Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Ze Tian
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (H.W.); (X.D.)
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (N.A.); (B.S.); (S.I.); (L.K.); (Z.T.); (X.W.)
- Correspondence: (H.W.); (X.D.)
| |
Collapse
|
20
|
de Silva KK, Dunwell JM, Wickramasuriya AM. Weighted Gene Correlation Network Analysis (WGCNA) of Arabidopsis Somatic Embryogenesis (SE) and Identification of Key Gene Modules to Uncover SE-Associated Hub Genes. Int J Genomics 2022; 2022:7471063. [PMID: 35837132 PMCID: PMC9274236 DOI: 10.1155/2022/7471063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023] Open
Abstract
Somatic embryogenesis (SE), which occurs naturally in many plant species, serves as a model to elucidate cellular and molecular mechanisms of embryo patterning in plants. Decoding the regulatory landscape of SE is essential for its further application. Hence, the present study was aimed at employing Weighted Gene Correlation Network Analysis (WGCNA) to construct a gene coexpression network (GCN) for Arabidopsis SE and then identifying highly correlated gene modules to uncover the hub genes associated with SE that may serve as potential molecular targets. A total of 17,059 genes were filtered from a microarray dataset comprising four stages of SE, i.e., stage I (zygotic embryos), stage II (proliferating tissues at 7 days of induction), stage III (proliferating tissues at 14 days of induction), and stage IV (mature somatic embryos). This included 1,711 transcription factors and 445 EMBRYO DEFECTIVE genes. GCN analysis identified a total of 26 gene modules with the module size ranging from 35 to 3,418 genes using a dynamic cut tree algorithm. The module-trait analysis revealed that four, four, seven, and four modules were associated with stages I, II, III, and IV, respectively. Further, we identified a total of 260 hub genes based on the degree of intramodular connectivity. Validation of the hub genes using publicly available expression datasets demonstrated that at least 78 hub genes are potentially associated with embryogenesis; of these, many genes remain functionally uncharacterized thus far. In silico promoter analysis of these genes revealed the presence of cis-acting regulatory elements, "soybean embryo factor 4 (SEF4) binding site," and "E-box" of the napA storage-protein gene of Brassica napus; this suggests that these genes may play important roles in plant embryo development. The present study successfully applied WGCNA to construct a GCN for SE in Arabidopsis and identified hub genes involved in the development of somatic embryos. These hub genes could be used as molecular targets to further elucidate the molecular mechanisms underlying SE in plants.
Collapse
Affiliation(s)
- Kithmee K. de Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | | |
Collapse
|
21
|
Yu X, Liang L, Xie Y, Tang Y, Tan H, Zhang J, Lin L, Sun B, Huang Z, Liu J, Li X, Tu L, Li H. Comparative Analysis of Italian Lettuce ( Lactuca sativa L. var. ramose) Transcriptome Profiles Reveals the Molecular Mechanism on Exogenous Melatonin Preventing Cadmium Toxicity. Genes (Basel) 2022; 13:955. [PMID: 35741717 PMCID: PMC9223142 DOI: 10.3390/genes13060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) accumulation in lettuce causes a large amount of yield loss during industry. Although many studies report that exogenous melatonin helps to alleviate the Cd stress of lettuce, the molecular mechanism for how plant tissue responds to Cd treatment is unclear. Herein, we applied both PacBio and Illumina techniques for Italian lettuce under different designed treatments of Cd and melatonin, aiming to reveal the potential molecular pathway of the response to Cd stress as well as the how the pre-application of exogenous melatonin affect this process. This result reveals that the root has the biggest expression pattern shift and is a more essential tissue to respond to both Cd and melatonin treatments than leaves. We reveal the molecular background of the Cd stress response in prospects of antioxidant and hormone signal transduction pathways, and we found that their functions are diverged and specifically expressed in tissues. We also found that candidate genes related to melatonin detoxify during Cd stress. Our study sheds new light for future research on how melatonin improves the cadmium resistance of lettuce and also provide valuable data for lettuce breeding.
Collapse
Affiliation(s)
- Xuena Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Yongdong Xie
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Huaqiang Tan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Ji Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Xiaomei Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Chengdu 610300, China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| |
Collapse
|
22
|
Rana N, Kumawat S, Kumar V, Bansal R, Mandlik R, Dhiman P, Patil GB, Deshmukh R, Sharma TR, Sonah H. Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells 2022; 11:cells11071144. [PMID: 35406707 PMCID: PMC8998046 DOI: 10.3390/cells11071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.
Collapse
Affiliation(s)
- Nitika Rana
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Surbhi Kumawat
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Virender Kumar
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Ruchi Bansal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rushil Mandlik
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Pallavi Dhiman
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Gunvant B. Patil
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Rupesh Deshmukh
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Tilak Raj Sharma
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, India
| | - Humira Sonah
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Correspondence: ; Tel.: +91-6239715281
| |
Collapse
|
23
|
Lian J, Liu W, Sun Y, Men S, Wu J, Zeb A, Yang T, Ma LQ, Zhou Q. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127241. [PMID: 34844359 DOI: 10.1016/j.jhazmat.2021.127241] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
At present, the uptake and accumulation of nanoplastics by plants have raised particular concerns. However, molecular mechanisms underlying nanoplastic phytotoxicity are still vague and insufficient. To address this scientific gap, we analyzed the transcriptome response of hydroponically grown wheat (Triticum aestivum L.) to polystyrene nanoplastics (PSNPs) (100 nm) by integrating the differentially expressed gene analysis (DEGA) and the weighted gene correlation network analysis (WGCNA). PSNPs could significantly shape the gene expression patterns of wheat in a tissue-specific manner. Four candidate modules and corresponding hub genes associated with plant traits were identified using WGCNA. PSNPs significantly altered carbon metabolism, amino acid biosynthesis, mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, and plant-pathogen interaction Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, some Gene Ontology (GO) terms associated with the metal ion transport were further screened. These findings shed new light on the phytotoxic mechanism and environmental implication behind the interaction of nanoplastics and crop plants, and advance our understanding of the potential adverse effect induced by the presence of nanoplastics in agricultural systems.
Collapse
Affiliation(s)
- Jiapan Lian
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental Sciences and Resources, Zhejiang University, Hangzhou 310058, China
| | - Weitao Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiani Wu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianzhi Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lena Qiying Ma
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental Sciences and Resources, Zhejiang University, Hangzhou 310058, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Ojeda-Martinez D, Diaz I, Santamaria ME. Transcriptomic Landscape of Herbivore Oviposition in Arabidopsis: A Systematic Review. FRONTIERS IN PLANT SCIENCE 2022; 12:772492. [PMID: 35126411 PMCID: PMC8815302 DOI: 10.3389/fpls.2021.772492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Herbivore oviposition produces all sorts of responses in plants, involving wide and complex genetic rearrangements. Many transcriptomic studies have been performed to understand this interaction, producing a bulk of transcriptomic data. However, the use of many transcriptomic techniques across the years, the lack of comparable transcriptomic context at the time of publication, and the use of outdated databases are limitations to understand this biological process. The current analysis intends to retrieve oviposition studies and process them with up-to-date techniques and updated databases. To reduce heterogeneities, the same processing techniques were applied, and Arabidopsis was selected to avoid divergencies on plant taxa stress response strategies. By doing so, we intended to understand the major mechanisms and regulatory processes linked to oviposition response. Differentially expressed gene (DEG) identification and co-expression network-based analyses were the main tools to achieve this goal. Two microarray studies and three RNA-seq analyses passed the screening criteria. The collected data pertained to the lepidopteran Pieris brassicae and the mite Tetranychus urticae, and covered a timeline from 3 to 144 h. Among the 18, 221 DEGs found, 15, 406 were exclusive of P. brassicae (72 h) and 801 were exclusive for the rest of the experiments. Excluding P. brassicae (72 h), shared genes on the rest of the experiments were twice the unique genes, indicating common response mechanisms were predominant. Enrichment analyses indicated that shared processes were circumscribed to earlier time points, and after 24 h, the divergences escalated. The response was characterized by patterns of time-dependent waves of unique processes. P. brassicae oviposition induced a rich response that shared functions across time points, while T. urticae eggs triggered less but more diverse time-dependent functions. The main processes altered were associated with hormonal cascades [e.g., salicilic acid (SA) and jasmonic acid (JA)], defense [reactive oxygen species (ROS) and glucosinolates], cell wall rearrangements, abiotic stress responses, and energy metabolism. Key gene drivers of the identified processes were also identified and presented. The current results enrich and clarify the information regarding the molecular behavior of the plant in response to oviposition by herbivores. This information is valuable for multiple stress response engineering tools, among other applications.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| |
Collapse
|
25
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|
26
|
Gupta OP, Deshmukh R, Kumar A, Singh SK, Sharma P, Ram S, Singh GP. From gene to biomolecular networks: a review of evidences for understanding complex biological function in plants. Curr Opin Biotechnol 2021; 74:66-74. [PMID: 34800849 DOI: 10.1016/j.copbio.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/10/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Although at the infancy stage, biomolecular network biology is a comprehensive approach to understand complex biological function in plants. Recent advancements in the accumulation of multi-omics data coupled with computational approach have accelerated our current understanding of the complexities of gene function at the system level. Biomolecular networks such as protein-protein interaction, co-expression and gene regulatory networks have extensively been used to decipher the intricacies of transcriptional reprogramming of hundreds of genes and their regulatory interaction in response to various environmental perturbations mainly in the model plant Arabidopsis. This review describes recent applications of network-based approaches to understand the biological functions in plants and focuses on the challenges and opportunities to harness the full potential of the approach.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160 055, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute (ICAR-NRRI), Cuttack, Odisha, 753 006, India
| | - Sanjay Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Pradeep Sharma
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| | - Gyanendra Pratap Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132 001, India
| |
Collapse
|
27
|
Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus. Int J Mol Sci 2021; 22:ijms22168835. [PMID: 34445541 PMCID: PMC8396295 DOI: 10.3390/ijms22168835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.
Collapse
|
28
|
Yu J, Liu C, Lin H, Zhang B, Li X, Yuan Q, Liu T, He H, Wei Z, Ding S, Zhang C, Gao H, Guo L, Wang Q, Qian Q, Shang L. Loci and natural alleles for cadmium-mediated growth responses revealed by a genome wide association study and transcriptome analysis in rice. BMC PLANT BIOLOGY 2021; 21:374. [PMID: 34388987 DOI: 10.1186/s12870-021-03145-3149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/19/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cadmium (Cd) is a toxic heavy metal that is harmful to the environment and human health. Cd pollution threatens the cultivation of rice (Oryza sativa L.) in many countries. Improving rice performance under Cd stress could potentially improve rice productivity. RESULTS In this study, 9 growth traits of 188 different cultivated rice accessions under normal and Cd stress conditions were found to be highly variable during the seedling stage. Based on ~3.3 million single nucleotide polymorphisms (SNPs), 119 Cd-mediated growth response (CGR) quantitative trait loci (QTL) were identified by a genome-wide association study (GWAS), 55 of which have been validated by previously reported QTL and 64 were new CGR loci. Combined with the data from the GWAS, transcriptome analysis, gene annotations from the gene ontology (GO) Slim database, and annotations and functions of homologous genes, 148 CGR candidate genes were obtained. Additionally, several reported genes have been found to play certain roles in CGRs. Seven Cd-related cloned genes were found among the CGR genes. Natural elite haplotypes/alleles in these genes that increased Cd tolerance were identified by a haplotype analysis of a diverse mini core collection. More importantly, this study was the first to uncover the natural variations of 5 GST genes that play important roles in CGRs. CONCLUSION The exploration of Cd-resistant rice germplasm resources and the identification of elite natural variations related to Cd-resistance will help improve the tolerance of current major rice varieties to Cd, as well as provide raw materials and new genes for breeding Cd-resistant varieties.
Collapse
Affiliation(s)
- Jianping Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/ Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tianjiao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Chao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongsheng Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longbiao Guo
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/ Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
29
|
Yu J, Liu C, Lin H, Zhang B, Li X, Yuan Q, Liu T, He H, Wei Z, Ding S, Zhang C, Gao H, Guo L, Wang Q, Qian Q, Shang L. Loci and natural alleles for cadmium-mediated growth responses revealed by a genome wide association study and transcriptome analysis in rice. BMC PLANT BIOLOGY 2021; 21:374. [PMID: 34388987 PMCID: PMC8362254 DOI: 10.1186/s12870-021-03145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cadmium (Cd) is a toxic heavy metal that is harmful to the environment and human health. Cd pollution threatens the cultivation of rice (Oryza sativa L.) in many countries. Improving rice performance under Cd stress could potentially improve rice productivity. RESULTS In this study, 9 growth traits of 188 different cultivated rice accessions under normal and Cd stress conditions were found to be highly variable during the seedling stage. Based on ~3.3 million single nucleotide polymorphisms (SNPs), 119 Cd-mediated growth response (CGR) quantitative trait loci (QTL) were identified by a genome-wide association study (GWAS), 55 of which have been validated by previously reported QTL and 64 were new CGR loci. Combined with the data from the GWAS, transcriptome analysis, gene annotations from the gene ontology (GO) Slim database, and annotations and functions of homologous genes, 148 CGR candidate genes were obtained. Additionally, several reported genes have been found to play certain roles in CGRs. Seven Cd-related cloned genes were found among the CGR genes. Natural elite haplotypes/alleles in these genes that increased Cd tolerance were identified by a haplotype analysis of a diverse mini core collection. More importantly, this study was the first to uncover the natural variations of 5 GST genes that play important roles in CGRs. CONCLUSION The exploration of Cd-resistant rice germplasm resources and the identification of elite natural variations related to Cd-resistance will help improve the tolerance of current major rice varieties to Cd, as well as provide raw materials and new genes for breeding Cd-resistant varieties.
Collapse
Affiliation(s)
- Jianping Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/ Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Hai Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tianjiao Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoran Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Chao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongsheng Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longbiao Guo
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/ Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
30
|
Chen X, Jiang W, Tong T, Chen G, Zeng F, Jang S, Gao W, Li Z, Mak M, Deng F, Chen ZH. Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665842. [PMID: 33936156 PMCID: PMC8079949 DOI: 10.3389/fpls.2021.665842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
An increase in environmental pollution resulting from toxic heavy metals and metalloids [e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans and animals. Mitigation strategies need to be developed to reduce the accumulation of the toxic elements in plant-derived foods. Natural and genetically-engineered plants with hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for phytoremediation. However, the molecular mechanisms of detoxification and accumulation in plants have only been demonstrated in very few plant species such as Arabidopsis and rice. Here, we review the physiological and molecular aspects of jasmonic acid and the jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates have been identified in, limiting the accumulation and enhancing the tolerance to the toxic elements, by coordinating the ion transport system, the activity of antioxidant enzymes, and the chelating capacity in plants. We also propose the potential involvement of Ca2+ signaling in the stress-induced production of jasmonates. Comparative transcriptomics analyses using the public datasets reveal the key gene families involved in the JA-responsive routes. Furthermore, we show that JAs may function as a fundamental phytohormone that protects plants from heavy metals and metalloids as demonstrated by the evolutionary conservation and diversity of these gene families in a large number of species of the major green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six representative green plant species, we propose that JA transporters in Subgroup 4 of ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance toward the selection and development of suitable plant and crop species that are tolerant to toxic heavy metals and metalloids.
Collapse
Affiliation(s)
- Xuan Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Sunghoon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|