1
|
Rose RA, Howlett SE. Preclinical Studies on the Effects of Frailty in the Aging Heart. Can J Cardiol 2024; 40:1379-1393. [PMID: 38460611 DOI: 10.1016/j.cjca.2024.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Bisset ES, Howlett SE. Sex-specific effects of frailty on cardiac structure and function: insights from preclinical models. Can J Physiol Pharmacol 2024; 102:476-486. [PMID: 38489788 DOI: 10.1139/cjpp-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Advanced age is an independent risk factor for cardiovascular diseases in both sexes. This is thought to be due, in part, to age-dependent cellular, structural, and functional changes in the heart, a process known as cardiac aging. An emerging view is that cardiac aging leads to the accumulation of cellular and subcellular deficits that increase susceptibility to cardiovascular diseases. Still, people age at different rates, with those aging rapidly considered frail. Evidence suggests that frailty, rather than simply age, is a major risk factor for cardiovascular disease and predicts adverse outcomes in those affected. Recent studies in mouse models of frailty show that many adverse changes associated with cardiac aging are more prominent in mice with a high degree of frailty. This suggests that frailty sets the stage for late life cardiovascular diseases to flourish and raises the possibility that treating frailty may treat cardiovascular diseases. These studies show that ventricular dysfunction increases with frailty in males only, whereas atrial dysfunction increases with frailty in both sexes. These results may shed light on the reasons that men and women can be susceptible to different cardiovascular diseases as they age, and why frail individuals are especially vulnerable to these disorders.
Collapse
Affiliation(s)
- Elise S Bisset
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
3
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Calvo-López M, Ortega-Paz L, Jimenez-Trinidad FR, Brugaletta S, Sabaté M, Dantas AP. Sex-associated differences in cardiac ageing: Clinical aspects and molecular mechanisms. Eur J Clin Invest 2024; 54:e14215. [PMID: 38624065 DOI: 10.1111/eci.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Despite the extensive clinical and scientific advances in prevention, diagnostics and treatment, cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality worldwide for people aged 65 and over. Of all ageing-related diseases, CVD are responsible for almost one-third of deaths in the elderly, being above all cancers combined. Age is an independent and unavoidable risk factor contributing to the impairment of heart and blood vessels. As the average age of the population in industrialized countries has doubled in the last century, and almost a fifth of the world's population is predicted to be over 65 in the next decade, we can assume that the burden of CVD will fall primarily on the elderly. Evidence from basic and clinical science has shown that sex significantly influences the onset and severity of CVD. In women, CVD usually develop later than in men and with atypical symptomatology. After menopause, however, the incidence and severity of CVD increase in women, reaching equality in both sexes. Although intrinsic sexual dimorphism in cardiovascular ageing may contribute to the sex differences in CVD progression, the molecular mechanisms associated with cardiovascular ageing and their clinical value are not known in detail. In this review, we discuss the scientific knowledge available, focusing on structural, hormonal, genetic/epigenetic and inflammatory pathways, seeking to transfer these findings to the cardiovascular clinic in terms of prevention, diagnosis, prognosis and management of these pathologies and proposing possible validation of target specifics.
Collapse
Affiliation(s)
- Margarita Calvo-López
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Luis Ortega-Paz
- Department of Medicine, Division of Cardiology, UF Health Cardiovascular Center, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, USA
| | - Francisco Rafael Jimenez-Trinidad
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Salvatore Brugaletta
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manel Sabaté
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Paula Dantas
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Jones TLM, Woulfe KC. Considering impact of age and sex on cardiac cytoskeletal components. Am J Physiol Heart Circ Physiol 2024; 326:H470-H478. [PMID: 38133622 PMCID: PMC11219061 DOI: 10.1152/ajpheart.00619.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The cardiac cytoskeletal components are integral to cardiomyocyte function and are responsible for contraction, sustaining cell structure, and providing scaffolding to direct signaling. Cytoskeletal components have been implicated in cardiac pathology; however, less attention has been paid to age-related modifications of cardiac cytoskeletal components and how these contribute to dysfunction with increased age. Moreover, significant sex differences in cardiac aging have been identified, but we still lack a complete understanding to the mechanisms behind these differences. This review summarizes what is known about how key cardiomyocyte cytoskeletal components are modified because of age, as well as reported sex-specific differences. Thorough consideration of both age and sex as integral players in cytoskeletal function may reveal potential avenues for more personalized therapeutics.
Collapse
Affiliation(s)
- Timothy L M Jones
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
Mishra M, Kane AE, Young AP, Howlett SE. Age, sex, and frailty modify the expression of common reference genes in skeletal muscle from ageing mice. Mech Ageing Dev 2023; 210:111762. [PMID: 36509213 DOI: 10.1016/j.mad.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Changes in gene expression with age are typically normalised to constitutively expressed reference genes (RGs). However, RG expression may be affected by age or overall health and most studies use only male animals. We investigated whether expression of common RGs (Gapdh, Gusb, Rplp0, B2m, Tubb5, Rpl7l1, Hprt, Rer1) was affected by age, sex and/or overall health (frailty index) in skeletal muscle from young (4-mos) and aged (25-26-mos) mice. Standard RG selection programs recommended Gapdh (RefFinder/Genorm/NormFinder) or Rpl7l1 (BestKeeper) without considering age and sex. Analysis of raw Cq values showed only Rplp0 was stable in both sexes at both ages. When qPCR data were normalised to Rplp0, age affected RG expression, especially in females. For example, Hprt expression declined with age (Hprt=9.8 ×10-2 ± 4.7 ×10-2 vs. 6.5 ×10-3 ± 8.8 ×10-4; mean±SEM), while Gusb expression increased (6.0 ×10-4 ± 5.5 ×10-5 vs. 1.7 ×10-3 ± 3.1 ×10-4; n = 5/group; p < 0.05). These effects were not seen in males. Tubb5 and Gapdh were not affected by age or sex when normalised to Rplp0. Similar results were seen with normalisation by Gapdh or the Rplp0/Gapdh pair. Interestingly, RG expression was graded not only by age but by frailty. These data demonstrate that age, sex, and frailty of animals must be carefully considered when selecting RGs to normalise mRNA abundance data.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, USA.
| | - Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
8
|
Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, Petr M, Charles S, de Cabo R, Yaniv Y, Lakatta EG. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience 2022; 44:2801-2830. [PMID: 35759167 PMCID: PMC9768068 DOI: 10.1007/s11357-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."
Collapse
Affiliation(s)
- Jack M Moen
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael G Matt
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Michael Petr
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Shaquille Charles
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Lackner I, Weber B, Pressmar J, Odwarka A, Lam C, Haffner-Luntzer M, Marcucio R, Miclau T, Kalbitz M. Cardiac alterations following experimental hip fracture - inflammaging as independent risk factor. Front Immunol 2022; 13:895888. [PMID: 36131923 PMCID: PMC9484325 DOI: 10.3389/fimmu.2022.895888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cardiac injuries following trauma are associated with a worse clinical outcome. So-called trauma-induced secondary cardiac injuries have been recently described after experimental long bone fracture even in absence of direct heart damage. With the progressive aging of our society, the number of elderly trauma victims rises and therefore the incidence of hip fractures increases. Hip fractures were previously shown to be associated with adverse cardiac events in elderly individuals, which have mainly been attributed to pre-conditioned cardiac diseases. The aim of the present study was to investigate the effect of hip fractures on the heart in healthy young and middle-aged mice. Materials and Methods Young (12-week-old) and middle-aged (52-week-old) female C57BL/6 mice either received an intramedullary stabilized proximal femur fracture or sham treatment. The observation time points included 6 and 24 h. Systemic levels of pro-inflammatory mediators as well as local inflammation and alterations in myocardial structure, metabolism and calcium homeostasis in left ventricular tissue was analyzed following hip fracture by multiplex analysis, RT-qPCR and immunohistochemistry. Results After hip fracture young and middle-aged mice showed increased systemic IL-6 and KC levels, which were significantly elevated in the middle-aged animals. Furthermore, the middle-aged mice showed enhanced myocardial expression of HMGB1, TLR2/4, TNF, IL1β and NLRP3 as well as considerable alterations in the myocardial expression of glucose- and fatty acid transporters (HFABP, GLUT4), calcium homeostasis proteins (SERCA) and cardiac structure proteins (desmin, troponin I) compared to the young animals following hip fracture. Conclusion Young and middle-aged mice showed local myocardial alterations, which might predispose for the development of secondary cardiac injury following hip fracture. Age and the age-associated phenomenon of ‘inflammaging’ seemed to be an independent risk factor aggravating and accelerating cardiac alterations following hip fracture.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University of Frankfurt, Frankfurt, Germany
| | - Jochen Pressmar
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Anna Odwarka
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Charles Lam
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie Haffner-Luntzer
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Miriam Kalbitz,
| |
Collapse
|
10
|
Yusifov A, Woulfe KC, Bruns DR. Mechanisms and implications of sex differences in cardiac aging. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:20. [PMID: 35419571 PMCID: PMC9004711 DOI: 10.20517/jca.2022.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how these differences are established and regulated remains limited. In addition to contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female patients.
Collapse
Affiliation(s)
- Aykhan Yusifov
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Danielle R. Bruns
- Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
- Wyoming WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
11
|
Ticinesi A, Nouvenne A, Cerundolo N, Prati B, Parise A, Tana C, Rendo M, Guerra A, Meschi T. Accounting for frailty and multimorbidity when interpreting high-sensitivity troponin I tests in oldest old. J Am Geriatr Soc 2021; 70:549-559. [PMID: 34792185 PMCID: PMC9299120 DOI: 10.1111/jgs.17566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Background Older patients evaluated in Emergency Departments (ED) for suspect Myocardial Infarction (MI) frequently exhibit unspecific elevations of serum high‐sensitivity troponin I (hs‐TnI), making interpretation particularly challenging for emergency physicians. The aim of this longitudinal study was to identify the interaction of multimorbidity and frailty with hs‐TnI levels in older patients seeking emergency care. Methods A group of patients aged≥75 with suspected MI was enrolled in our acute geriatric ward immediately after ED visit. Multimorbidity and frailty were measured with Cumulative Illness Rating Scale (CIRS) and Clinical Frailty Scale (CFS), respectively. The association of hs‐TnI with MI (main endpoint) was assessed by calculation of the Area Under the Receiver‐Operating Characteristic Curve (AUROC), deriving population‐specific cut‐offs with Youden test. The factors associated with hs‐TnI categories, including MI, CFS and CIRS, were determined with stepwise multinomial logistic regression. The association of hs‐TnI with 3‐month mortality (secondary endpoint) was also investigated with stepwise logistic regression. Results Among 268 participants (147 F, median age 85, IQR 80–89), hs‐TnI elevation was found in 191 cases (71%, median 23 ng/L, IQR 11–65), but MI was present in only 12 cases (4.5%). hs‐TnI was significantly associated with MI (AUROC 0.751, 95% CI 0.580–0.922, p = 0.003), with an optimal cut‐off of 141 ng/L. hs‐TnI levels ≥141 ng/L were significantly associated with CFS (OR 1.58, 95% CI 1.15–2.18, p = 0.005), while levels <141 ng/L were associated with the cardiac subscore of CIRS (OR 1.36, 95% CI 1.07–1.71, p = 0.011). CFS, but not hs‐TnI levels, predicted 3‐month mortality. Conclusions In geriatric patients with suspected MI, frailty and cardiovascular multimorbidity should be carefully considered when interpreting emergency hs‐TnI testing.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Claudio Tana
- Internal Medicine Unit and Geriatrics Clinic, SS Annunziata Hospital, Chieti, Italy
| | - Martina Rendo
- Primary Care Department, Parma District, Azienda Unità Sanitaria Locale di Parma, Parma, Italy
| | - Angela Guerra
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
12
|
Cole JA, Kehmeier MN, Bedell BR, Krishna Kumaran S, Henson GD, Walker AE. Sex Differences in the Relation Between Frailty and Endothelial Dysfunction in Old Mice. J Gerontol A Biol Sci Med Sci 2021; 77:416-423. [PMID: 34664649 DOI: 10.1093/gerona/glab317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/14/2022] Open
Abstract
Vascular endothelial function declines with age on average, but there is high variability in the magnitude of this decline within populations. Measurements of frailty, known as frailty index (FI), can be used as surrogates for biological age, but it is unknown if frailty relates to the age-related decline in vascular function. To examine this relation, we studied young (4-9 months) and old (23-32 months) C57BL6 mice of both sexes. We found that FI was greater in old compared with young mice, but did not differ between old male and female mice. Middle cerebral artery (MCA) and mesenteric artery endothelium-dependent dilation (EDD) also did not differ between old male and female mice; however, there were sex differences in the relations between FI and EDD. For the MCA, FI was inversely related to EDD among old female mice, but not old male mice. In contrast, for the mesenteric artery, FI was inversely related to EDD among old male mice, but not old female mice. A higher FI was related to a greater improvement in EDD with the superoxide scavenger TEMPOL in the MCAs for old female mice and in the mesenteric arteries for old male mice. FI related to mesenteric artery gene expression negatively for extracellular superoxide dismutase (Sod3) and positively for interleukin-1β (Il1b). In summary, we found that the relation between frailty and endothelial function is dependent on sex and the artery examined. Arterial oxidative stress and pro-inflammatory signaling are potential mediators of the relations of frailty and endothelial function.
Collapse
Affiliation(s)
- Jazmin A Cole
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Bradley R Bedell
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
13
|
Capote AE, Batra A, Warren CM, Chowdhury SAK, Wolska BM, Solaro RJ, Rosas PC. B-arrestin-2 Signaling Is Important to Preserve Cardiac Function During Aging. Front Physiol 2021; 12:696852. [PMID: 34512376 PMCID: PMC8430342 DOI: 10.3389/fphys.2021.696852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Experiments reported here tested the hypothesis that β-arrestin-2 is an important element in the preservation of cardiac function during aging. We tested this hypothesis by aging β-arrestin-2 knock-out (KO) mice, and wild-type equivalent (WT) to 12-16months. We developed the rationale for these experiments on the basis that angiotensin II (ang II) signaling at ang II receptor type 1 (AT1R), which is a G-protein coupled receptor (GPCR) promotes both G-protein signaling as well as β-arrestin-2 signaling. β-arrestin-2 participates in GPCR desensitization, internalization, but also acts as a scaffold for adaptive signal transduction that may occur independently or in parallel to G-protein signaling. We have previously reported that biased ligands acting at the AT1R promote β-arrestin-2 signaling increasing cardiac contractility and reducing maladaptations in a mouse model of dilated cardiomyopathy. Although there is evidence that ang II induces maladaptive senescence in the cardiovascular system, a role for β-arrestin-2 signaling has not been studied in aging. By echocardiography, we found that compared to controls aged KO mice exhibited enlarged left atria and left ventricular diameters as well as depressed contractility parameters with preserved ejection fraction. Aged KO also exhibited depressed relaxation parameters when compared to WT controls at the same age. Moreover, cardiac dysfunction in aged KO mice was correlated with alterations in the phosphorylation of myofilament proteins, such as cardiac myosin binding protein-C, and myosin regulatory light chain. Our evidence provides novel insights into a role for β-arrestin-2 as an important signaling mechanism that preserves cardiac function during aging.
Collapse
Affiliation(s)
- Andrielle E. Capote
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim A. K. Chowdhury
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Paola C. Rosas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Howlett SE, Rutenberg AD, Rockwood K. The degree of frailty as a translational measure of health in aging. NATURE AGING 2021; 1:651-665. [PMID: 37117769 DOI: 10.1038/s43587-021-00099-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/06/2021] [Indexed: 04/30/2023]
Abstract
Frailty is a multiply determined, age-related state of increased risk for adverse health outcomes. We review how the degree of frailty conditions the development of late-life diseases and modifies their expression. The risks for frailty range from subcellular damage to social determinants. These risks are often synergistic-circumstances that favor damage also make repair less likely. We explore how age-related damage and decline in repair result in cellular and molecular deficits that scale up to tissue, organ and system levels, where they are jointly expressed as frailty. The degree of frailty can help to explain the distinction between carrying damage and expressing its usual clinical manifestations. Studying people-and animals-who live with frailty, including them in clinical trials and measuring the impact of the degree of frailty are ways to better understand the diseases of old age and to establish best practices for the care of older adults.
Collapse
Affiliation(s)
- Susan E Howlett
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University & Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth Rockwood
- Geriatric Medicine Research Unit, Department of Medicine, Dalhousie University & Nova Scotia Health, Halifax, Nova Scotia, Canada.
| |
Collapse
|
15
|
Kane AE, Howlett SE. Sex differences in frailty: Comparisons between humans and preclinical models. Mech Ageing Dev 2021; 198:111546. [PMID: 34324923 DOI: 10.1016/j.mad.2021.111546] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Frailty can be viewed as a state of physiological decline that increases susceptibility to adverse health outcomes. This loss of physiological reserve means that even small stressors can lead to disability and death in frail individuals. Frailty can be measured with various clinical tools; the two most popular are the frailty index and the frailty phenotype. Clinical studies have used these tools to show that women are frailer than men even though they have longer lifespans. Still, factors responsible for this frailty-mortality paradox are not well understood. This review highlights evidence for male-female differences in frailty from both the clinical literature and in animal models of frailty. We review evidence for higher frailty levels in female animals as seen in many preclinical models. Mechanisms that may contribute to sex differences in frailty are highlighted. In addition, we review work that suggests frailty may play a role in susceptibility to chronic diseases of aging in a sex-specific fashion. Additional mechanistic studies in preclinical models are needed to understand factors involved in male-female differences in frailty in late life.
Collapse
Affiliation(s)
- Alice E Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA, United States.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
16
|
Kane AE, Bisset ES, Heinze-Milne S, Keller KM, Grandy SA, Howlett SE. Maladaptive Changes Associated With Cardiac Aging Are Sex-Specific and Graded by Frailty and Inflammation in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2021; 76:233-243. [PMID: 32857156 PMCID: PMC7812442 DOI: 10.1093/gerona/glaa212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
We investigated whether late-life changes in cardiac structure and function were related to high levels of frailty and inflammation in male and female mice. Frailty (frailty index), ventricular structure/function (echocardiography), and serum cytokines (multiplex immunoassay) were measured in 16- and 23-month-old mice. Left ventricular (LV) mass and septal wall thickness increased with age in both sexes. Ejection fraction increased with age in males (60.4 ± 1.4 vs 68.9 ± 1.8%; p < .05) but not females (58.8 ± 2.5 vs 62.6 ± 2.4%). E/A ratios declined with age in males (1.6 ± 0.1 vs 1.3 ± 0.1; p < .05) but not females (1.4 ± 0.1 vs 1.3 ± 0.1) and this was accompanied by increased ventricular collagen levels in males. These changes in ejection fraction (r = 0.52; p = .01), septal wall thickness (r = 0.59; p = .002), E/A ratios (r = -0.49; p = .04), and fibrosis (r = 0.82; p = .002) were closely graded by frailty scores in males. Only septal wall thickness and LV mass increased with frailty in females. Serum cytokines changed modestly with age in both sexes. Nonetheless, in males, E/A ratios, LV mass, LV posterior wall thickness, and septal wall thickness increased as serum cytokines increased (eg, IL-6, IL-3, IL-1α, IL-1β, tumor necrosis factor-α, eotaxin, and macrophage inflammatory protein-1α), while ejection fraction declined with increasing IL-3 and granulocyte-macrophage colony stimulating factor. Cardiac outcomes were not correlated with inflammatory cytokines in females. Thus, changes in cardiac structure and function in late life are closely graded by both frailty and markers of inflammation, but this occurs primarily in males. This suggests poor overall health and inflammation drive maladaptive changes in older male hearts, while older females may be resistant to these adverse effects of frailty.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Charles Perkins Center, The University of Sydney, Australia
| | - Elise S Bisset
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stefan Heinze-Milne
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kaitlyn M Keller
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Scott A Grandy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Mishra M, Howlett SE. Preclinical models of frailty: Focus on interventions and their translational impact: A review. ACTA ACUST UNITED AC 2021. [DOI: 10.3233/nha-200103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of frailty refers to heterogeneity in the risk of adverse outcomes for people of the same age. It is traditionally thought of as the inability of the body to maintain homeostasis. It can help explain differences between chronological and biological age and can quantify healthspan in experimental studies. Although clinical studies have developed tools to quantify frailty over the past two decades, preclinical models of frailty have only recently been introduced. This review describes the notion of frailty and outlines two commonly used clinical approaches to quantify frailty: the frailty phenotype and the frailty index. Translation of these methodologies for use in animals is introduced and studies that use these models to evaluate interventions designed to attenuate or exacerbate frailty are discussed. These include studies involving manipulation of diet, implementation of exercise regimens and tests of pharmaceutical agents to exacerbate or attenuate frailty. Together, this body of work suggests that preclinical frailty assessment tools are a valuable new resource to quantify the impact of interventions on overall health. Future studies could deploy these models to evaluate new frailty therapies, test combinations of interventions and assess interventions to enhance the ability to resist stressors in the setting of ageing.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|