1
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Epidemiology, Transmission Mode, and Pathogenesis of Chlamydia pecorum Infection in Koalas ( Phascolarctos cinereus): An Overview. Animals (Basel) 2024; 14:2686. [PMID: 39335275 PMCID: PMC11440102 DOI: 10.3390/ani14182686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Chlamydial infections pose a significant threat to koala populations. Chlamydia pecorum (C. pecorum) remains the major chlamydial species affecting koala health, both in the wild and in captivity, and chlamydial infections are considered important factors affecting the long-term survival of koalas. A clear understanding of chlamydial infections, including the epidemiology, transmission mode, pathogenesis, immune response, control, and prevention thereof, is essential for improving the management of chlamydial infections in koalas. In this study, we discuss the important advances made in our understanding of C. pecorum infection in koalas, focusing on the epidemiology of chlamydial infections, and the transmission, pathogenesis, immune response, and control strategies for chlamydial infection, with the aim of improving koala health and achieving effective conservation strategies.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Pagliarani S, Johnston SD, Beagley KW, Palmieri C. Immunohistochemical characterization of the immune cell response during chlamydial infection in the male and female koala ( Phascolarctos cinereus) reproductive tract. Vet Pathol 2024; 61:621-632. [PMID: 38240274 PMCID: PMC11264539 DOI: 10.1177/03009858231225499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chlamydiosis is one of the main causes of the progressive decline of koala populations in eastern Australia. While histologic, immunologic, and molecular studies have provided insights into the basic function of the koala immune system, the in situ immune cell signatures during chlamydial infection of the reproductive tract in koalas have not been investigated. Thirty-two female koalas and 47 males presented to wildlife hospitals with clinical signs suggestive of Chlamydia infection were euthanized with the entire reproductive tract collected for histology; immunohistochemistry (IHC) for T-cell (CD3ε, CD4, and CD8α), B-cell (CD79b), and human leukocyte antigen (HLA)-DR markers; and quantitative real-time polymerase chain reaction (rtPCR) for Chlamydia pecorum. T-cells, B-cells, and HLA-DR-positive cells were observed in both the lower and upper reproductive tracts of male and female koalas with a statistically significant associations between the degree of the inflammatory reaction; the number of CD3, CD4, CD79b, and HLA-DR positive cells; and the PCR load. CD4-positive cells were negatively associated with the severity of the gross lesions. The distribution of immune cells was also variable according to the location within the genital tract in both male and female koalas. These preliminary results represent a step forward towards further exploring mechanisms behind chlamydial infection immunopathogenesis, thus providing valuable information about the immune response and infectious diseases in free-ranging koalas.
Collapse
Affiliation(s)
- Sara Pagliarani
- The University of Queensland, Gatton, QLD, Australia
- University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
3
|
Simpson SJ, Higgins DP, Timms P, Mella VSA, Crowther MS, Fernandez CM, McArthur C, Phillips S, Krockenberger MB. Efficacy of a synthetic peptide Chlamydia pecorum major outer membrane protein vaccine in a wild koala (Phascolarctos cinereus) population. Sci Rep 2023; 13:15087. [PMID: 37699951 PMCID: PMC10497537 DOI: 10.1038/s41598-023-42296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Chlamydiosis is a significant disease affecting Eastern Australian koala (Phascolarctos cinereus) populations, impacting individual animal welfare and fecundity and therefore influencing population dynamics. The aim of this study was to investigate the effect of a synthetic peptide vaccine based on 4 components of the Chlamydia pecorum major outer membrane protein (MOMP), over an 18-month period in a koala population severely impacted by chlamydiosis. Wild koalas were recruited into a vaccination or a placebo treatment group on a random allocation, then followed through a period of 18 months, with recapture at 6 monthly intervals. Vaccination did not alter clinical disease expression or chlamydial shedding from the ocular or urogenital sites. Vaccination did not stimulate a significant plasma anti-MOMP IgG response, when compared to the placebo group. There was no significant effect of vaccination on IFN-γ and IL-17A mRNA expression of peripheral blood lymphocytes when stimulated with rMOMP. We have demonstrated that a synthetic peptide vaccination against chlamydiosis is not an effective management tool in a koala population with a high prevalence of C. pecorum infection and related disease. The lack of antigenic response found in this study suggests that further research utilising a larger, full-length antigen is an avenue worth investigation if we are to consider vaccination as a part of a management strategy in diseased koala populations.
Collapse
Affiliation(s)
- Sarah J Simpson
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Damien P Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter Timms
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Valentina S A Mella
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mathew S Crowther
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Cristina M Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
Quigley BL, Timms P, Nyari S, McKay P, Hanger J, Phillips S. Reduction of Chlamydia pecorum and Koala Retrovirus subtype B expression in wild koalas vaccinated with novel peptide and peptide/recombinant protein formulations. Vaccine X 2023; 14:100329. [PMID: 37577264 PMCID: PMC10422670 DOI: 10.1016/j.jvacx.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023] Open
Abstract
Koalas are an endangered species under threat of extinction from several factors, including infections agents. Chlamydia pecorum infection results in morbidity and mortality from ocular and urogenital diseases while Koala Retrovirus (KoRV) infection has been linked to increased rates of cancer and chlamydiosis. Both C. pecorum and KoRV are endemic in many wild Australian koala populations, with limited treatment options available. Fortunately, vaccines for these pathogens are under development and have generated effective immune responses in multiple trials. The current study aimed to improve vaccine formulations by testing a novel peptide version of the Chlamydia vaccine and a combination Chlamydia - KoRV vaccine. Utilising a monitored wild population in Southeast Queensland, this trial followed koalas given either a 'Chlamydia only' vaccine (utilising four peptides from the chlamydial Major Outer Membrane Protein, MOMP), a combination 'Chlamydia and KoRV' vaccine (comprised of the chlamydial peptides plus a KoRV recombinant envelope protein (rEnv)) or no treatment. Clinical observations, C. pecorum and KoRV gene expression, serum IgG, and mucosal immune gene expression were assessed over a 17-month period. Overall, both vaccine formulations resulted in a decrease in chlamydiosis mortality, with decreases in C. pecorum, CD4, CD8β and IL-17A gene expression observed. In addition, the combination vaccine group also showed an increase in anti-KoRV IgG production that corresponded to a decrease in detected KoRV-B expression. While these results are favourable, the chlamydial peptide vaccine did not appear to outperform the established recombinant chlamydial vaccine and suggests that a combination vaccine formulated with recombinant MOMP plus KoRV rEnv could capitalize on the demonstrated benefits of both for the betterment of koalas into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Peter Timms
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Sharon Nyari
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| | - Philippa McKay
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, QLD, Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, QLD, Australia
| | - Samuel Phillips
- The Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, Australia
| |
Collapse
|
5
|
Chen CJ, Gillett A, Booth R, Kimble B, Govendir M. Pharmacokinetic Profile of Doxycycline in Koala Plasma after Weekly Subcutaneous Injections for the Treatment of Chlamydiosis. Animals (Basel) 2022; 12:ani12030250. [PMID: 35158574 PMCID: PMC8833767 DOI: 10.3390/ani12030250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Doxycycline is an antimicrobial used for treating chlamydial infections in various species, including the koala. The dose and route of administration used initially are based on first principles. Therefore, this study investigates the absorption, distribution, metabolism, and excretion of subcutaneous doxycycline injections, and evaluates the suitability of the current dosage regimen for inhibiting chlamydial pathogens. The results suggest that the current doxycycline dosage remained therapeutically effective for up to six days after each dose, with some accumulation over successive doses. All koalas in the study improved clinically and tested negative for chlamydial pathogens post-treatment before being released. This study contributes to determining the optimal dosage of doxycycline to treat chlamydiosis safely and effectively in infected koalas. Abstract Six mature, male koalas (Phascolarctos cinereus), with clinical signs of chlamydiosis, were administered doxycycline as a 5 mg/kg subcutaneous injection, once a week for four weeks. Blood was collected at standardised time points (T = 0 to 672 h) to quantify the plasma doxycycline concentrations through high-pressure liquid chromatography (HPLC). In five koalas, the doxycycline plasma concentration over the first 48 h appeared to have two distinct elimination gradients; therefore, a two-compartmental analysis was undertaken to describe the pharmacokinetic (PK) profile. The average ± SD maximum plasma concentration (Cmax) was 312.30 ± 107.74 ng/mL, while the average time ± SD taken to reach the maximum plasma concentration (Tmax) was 1.68 ± 1.49 h. The mean ± SD half-life of the distribution phase (T1/2 α) and the elimination phase (T1/2 β) were 10.51 ± 7.15 h and 82.93 ± 37.76 h, respectively. The average ± SD percentage of doxycycline binding to koala plasma protein was 83.65 ± 4.03% at three different concentrations, with a mean unbound fraction (fu) of 0.16. Using probability of target attainment modelling, doxycycline plasma concentrations were likely to inhibit 90% of pathogens with the doxycycline minimum inhibitory concentration (MIC) of 8.0–31.0 ng/mL, and the reported doxycycline MIC to inhibit Chlamydia pecorum isolates at the area under the curve/minimum inhibitory concentration (AUC/MIC) target of ≥24. All koalas were confirmed to be negative for Chlamydia pecorum using loop-mediated isothermal amplification (LAMP), from ocular and penile urethra swabs, three weeks after the last doxycycline injection.
Collapse
Affiliation(s)
- Chien-Jung Chen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (B.K.); (M.G.)
- Correspondence:
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD 4519, Australia; (A.G.); (R.B.)
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Beerwah, QLD 4519, Australia; (A.G.); (R.B.)
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (B.K.); (M.G.)
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (B.K.); (M.G.)
| |
Collapse
|
6
|
Phillips S, Timms P, Jelocnik M. Is Chlamydia to Blame for Koala Reproductive Cysts? Pathogens 2021; 10:pathogens10091140. [PMID: 34578173 PMCID: PMC8467779 DOI: 10.3390/pathogens10091140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
A significant threat to koala populations is infection from Chlamydia, which results in disease and death. Wild koalas with Chlamydia infections are admitted to wildlife hospitals and treated with antibiotics; however, up to 50% of koalas that present to wildlife hospitals do not survive. A major contributor to high mortality is the development of reproductive cysts, resulting in female infertility and euthanasia. However, the diagnosis of reproductive disease is limited to ultrasound with no further investigations. This communication highlights reports of histological and microbiological findings, the accuracy of ultrasound to necropsy reports and other possible causes for reproductive cyst development previously reported in other hosts. Our conclusions identify a significant knowledge gap in the aetiology of koala reproductive cysts and highlight the urgent need for future investigations.
Collapse
|
7
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
8
|
The Koala Immune Response to Chlamydial Infection and Vaccine Development-Advancing Our Immunological Understanding. Animals (Basel) 2021; 11:ani11020380. [PMID: 33546104 PMCID: PMC7913230 DOI: 10.3390/ani11020380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chlamydia is a major pathogen of the Australian marsupial, the koala (Phascolarctos cinereus). One approach to improving this situation is to develop a vaccine. Human Chlamydia research suggests that an effective anti-chlamydial response will involve a balance between a cell-mediated Th1 response and a humoral Th2 responses, involving systemic IgG and mucosal IgA. Characterization of koalas with chlamydial disease suggests that increased expression for similar immunological pathways and monitoring of koalas’ post-vaccination can be successful and subsequently lead to improved vaccines. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Abstract Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas’ post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.
Collapse
|