1
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Wang L, Liu J, Shen Y, Yin Y, Ni Z, Xi J, Hu Y, Yuan Q. Preparation and Immobilization Mechanism on a Novel Composite Carrier PDA-CF/PUF to Improve Cells Immobilization and Xylitol Production. Foods 2024; 13:1911. [PMID: 38928852 PMCID: PMC11202654 DOI: 10.3390/foods13121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The preparation of a novel composite carrier of polydopamine-modified carbon fiber/polyurethane foam (PDA-CF/PUF) was proposed to improve cell immobilization and the fermentation of xylitol, which is an important food sweetener and multifunctional food additive. Candida tropicalis was immobilized on the composite carrier by adsorption and covalent binding. The properties and immobilization mechanism of the composite carrier and its effect on immobilized cells were investigated. It showed that the modification of PDA enhanced the loading of CF on the PUF surface and the adhesion of cells on the composite carrier surface. Also, the biocompatibility of carriers to cells was improved. In addition, the introduction of PDA increased the active groups on the surface of the carrier, enhanced the hydrophilicity, promoted the cells immobilization, and increased the xylitol yield. It was also found that expression of the related gene XYL1 in cells was significantly increased after the immobilization of the PDA-CF/PUF composite carrier during the fermentation. The PDA-CF/PUF was an immobilized carrier with the excellent biocompatibility and immobilization performance, which has great development potential in the industrial production of xylitol.
Collapse
Affiliation(s)
- Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Shen
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuansen Hu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Bupphathong S, Lim J, Fang HW, Tao HY, Yeh CE, Ku TA, Huang W, Kuo TY, Lin CH. Enhanced Vascular-like Network Formation of Encapsulated HUVECs and ADSCs Coculture in Growth Factors Conjugated GelMA Hydrogels. ACS Biomater Sci Eng 2024; 10:3306-3315. [PMID: 38634810 PMCID: PMC11094682 DOI: 10.1021/acsbiomaterials.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Hsu-Wei Fang
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsuan-Ya Tao
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Tian-An Ku
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Ting-Yu Kuo
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Boyetey MJ, Sukyai P, Kamonsutthipaijit N, Nijpanich S, Chanlek N. Fabrication and Characterization of a Polydopamine-Modified Bacterial Cellulose and Sugarcane Filter Cake-Derived Hydroxyapatite Composite Scaffold. ACS OMEGA 2023; 8:43295-43303. [PMID: 38024664 PMCID: PMC10652255 DOI: 10.1021/acsomega.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The search for environmentally friendly and sustainable sources of raw materials has been ongoing for quite a while, and currently, the utilization and applications of agro-industrial biomass residues in biomedicine are being researched. In this study, a polydopamine (PDA)-modified bacterial cellulose (BC) and hydroxyapatite (HA) composite scaffold was fabricated using the freeze-drying method. The as-prepared hydroxyapatite was synthesized via the chemical precipitation method using sugarcane filter cake as a calcium source, as reported in a previous study. X-ray diffraction analysis revealed a carbonated phase of the prepared hydroxyapatite, similar to that of the natural bone mineral. Wide-angle X-ray scattering analysis revealed the successful fabrication of BC/HA composite scaffolds, while X-ray photoelectron spectroscopy suggested that PDA was deposited on the surface of the BC/HA composite scaffolds. In vitro cell viability assays indicated that BC/HA and PDA-modified composite scaffolds did not induce cytotoxicity and were biocompatible with MC3T3-E1 preosteoblasts. PDA-modified composite scaffolds showed enhanced protein adsorption capacity in vitro compared to the unmodified scaffolds. On a concluding note, these results demonstrate that agro-industrial biomass residues have the potential to be used in biomedical applications and that PDA-modified BC/HA composite scaffolds are a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Mark-Jefferson
Buer Boyetey
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose
for Future Materials and Technologies Special Research Unit, Department
of Biotechnology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University
Institute for Advanced Studies, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization) 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Ghaderi M, SaadatAbadi AR, Mahdavian M, Haddadi SA. pH-Sensitive Polydopamine-La (III) Complex Decorated on Carbon Nanofiber toward On-Demand Release Functioning of Epoxy Anti-Corrosion Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11707-11723. [PMID: 36098635 DOI: 10.1021/acs.langmuir.2c01801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La extract had a total corrosion resistance (RT) of 3107 Ω cm2 after 24 h, which is much greater than the MS immersed in the blank solution (1378 Ω cm2). Furthermore, the potentiodynamic polarization analysis indicated a 50% reduction in the corrosion rate (CR) of the MS soaked in the solution containing released PDA and La3+ inhibitors compared to the blank solution. EIS and salt spray analysis were used to assess the self-healing capabilities of epoxy coatings incorporating modified CNFs. EIS assessment of scratched coatings revealed a 117% improvement in RT of the CNF-PDA-La/EP coating compared to the Blank/EP after 10 h of immersion in the saline solution. This enhancement is due to the intelligent release of PDA and La3+ inhibitors at the scratch sites, which can mitigate MS corrosion by forming a PDA-Fe complex and the deposition of La(OH)3 on the MS surface. The salt spray test results also exhibited the CNF-PDA-La/EP coating's superior anti-corrosion capabilities after 20 days. Hence, this research presents a logical approach for developing anti-corrosion coatings with improved nanofiller compatibility and self-healing characteristics.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran 111559465, Iran
| | | | - Mohammad Mahdavian
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran 1668836471, Iran
| | - Seyyed Arash Haddadi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran 111559465, Iran
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Tissue regenerative solutions for musculoskeletal disorders have become increasingly important with a growing aged population. Current growth factor treatments often require high dosages with the potential for off-target effects. Growth factor immobilization strategies offer approaches towards alleviating these concerns. This review summarizes current growth factor immobilization techniques (encapsulation, affinity interactions, and covalent binding) and the effects of immobilization on growth factor loading, release, and bioactivity. RECENT FINDINGS The breadth of immobilization techniques based on encapsulation, affinity, and covalent binding offer multiple methods to improve the therapeutic efficacy of growth factors by controlling bioactivity and release. Growth factor immobilization strategies have evolved to more complex systems with the capacity to load and release multiple growth factors with spatiotemporal control. The advancements in immobilization strategies allow for development of new, complex musculoskeletal tissue treatment strategies with improved spatiotemporal control of loading, release, and bioactivity.
Collapse
Affiliation(s)
- Joseph J Pearson
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Wei L, Tan J, Li L, Wang H, Liu S, Chen J, Weng Y, Liu T. Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. Int J Mol Sci 2022; 23:ijms23031249. [PMID: 35163172 PMCID: PMC8835731 DOI: 10.3390/ijms23031249] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The process of full-thickness skin regeneration is complex and has many parameters involved, which makes it difficult to use a single dressing to meet the various requirements of the complete regeneration at the same time. Therefore, developing hydrogel dressings with multifunction, including tunable rheological properties and aperture, hemostatic, antibacterial and super cytocompatibility, is a desirable candidate in wound healing. In this study, a series of complex hydrogels were developed via the hydrogen bond and covalent bond between chitosan (CS) and alginate (SA). These hydrogels exhibited suitable pore size and tunable rheological properties for cell adhesion. Chitosan endowed hemostatic, antibacterial properties and great cytocompatibility and thus solved two primary problems in the early stage of the wound healing process. Moreover, the sustained cytocompatibility of the hydrogels was further investigated after adding FGF and VE-cadherin via the co-culture of L929 and EC for 12 days. The confocal 3D fluorescent images showed that the cells were spherical and tended to form multicellular spheroids, which distributed in about 40-60 μm thick hydrogels. Furthermore, the hydrogel dressings significantly accelerate defected skin turn to normal skin with proper epithelial thickness and new blood vessels and hair follicles through the histological analysis of in vivo wound healing. The findings mentioned above demonstrated that the CS/SA hydrogels with growth factors have great potential as multifunctional hydrogel dressings for full-thickness skin regeneration incorporated with hemostatic, antibacterial, sustained cytocompatibility for 3D cell culture and normal skin repairing.
Collapse
Affiliation(s)
| | | | | | | | | | - Junying Chen
- Correspondence: ; Tel.: +86-028-87634148; Fax: +86-028-87600625
| | | | | |
Collapse
|
8
|
Wu XY, Zhu YM, Qi Y, Xu WW, Jing-Zhai. Erythropoietin, as a biological macromolecule in modification of tissue engineered constructs: A review. Int J Biol Macromol 2021; 193:2332-2342. [PMID: 34793816 DOI: 10.1016/j.ijbiomac.2021.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
In recent years, tissue engineering has emerged as a promising approach to address limitations of organ transplantation. The ultimate goal of tissue engineering is to provide scaffolds that closely mimic the physicochemical and biological cues of native tissues' extracellular matrix. In this endeavor, new generation of scaffolds have been designed that utilize the incorporation of signaling molecules in order to improve cell recruitment, enhance angiogenesis, exert healing activities, and increase the engraftment of the scaffolds. Among different signaling molecules, the role of erythropoietin (EPO) in regenerative medicine is increasingly being appreciated. It is a biological macromolecule which can prevent programed cell death, modulate inflammation, induce cell proliferation, and provide tissue protection in different disease models. In this review, we have outlined and critically analyzed different techniques of scaffolds' modification with EPO or EPO-loaded nanoparticles. We have also explored different strategies for the incorporation of EPO into scaffolds. Non-hematopoietic functions of EPO have also been discussed. Finalizing with detailed discussion surrounding the applications, challenges, and future perspectives of EPO-modified scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yi-Miao Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Yang Qi
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Jing-Zhai
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
Farooq M, Khan AW, Kim MS, Choi S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021; 10:cells10113242. [PMID: 34831463 PMCID: PMC8622657 DOI: 10.3390/cells10113242] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation, as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–protein kinase B (AKT), phospholipase C gamma (PLCγ), and signal transducer and activator of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on the importance of FGF signaling in mechanisms of tissue repair and regeneration.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (M.F.); (A.W.K.); (M.S.K.)
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
- Correspondence:
| |
Collapse
|
10
|
Sedlář A, Trávníčková M, Matějka R, Pražák Š, Mészáros Z, Bojarová P, Bačáková L, Křen V, Slámová K. Growth Factors VEGF-A 165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int J Mol Sci 2021; 22:1843. [PMID: 33673317 PMCID: PMC7917819 DOI: 10.3390/ijms22041843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 12844 Praha 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Roman Matějka
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Šimon Pražák
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, CZ 16628 Praha 6, Czech Republic
| | - Pavla Bojarová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| |
Collapse
|
11
|
Ahuja V, Macho M, Ewe D, Singh M, Saha S, Saurav K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020; 9:E1592. [PMID: 33147854 PMCID: PMC7693686 DOI: 10.3390/foods9111592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India;
| | - Markéta Macho
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India;
| | - Subhasish Saha
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Kumar Saurav
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| |
Collapse
|