1
|
Chen J, Zhuang J, Dai T, Zhang R, Zeng Y, Jiang B, Guo H, Guo X, Yang Y. Enhancing soil petrochemical contaminant remediation through nutrient addition and exogenous bacterial introduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135078. [PMID: 38964043 DOI: 10.1016/j.jhazmat.2024.135078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil. We compared the effects of adding nutrients, introducing exogenous bacterial degraders, and their combination on remediating petroleum contamination in the soil. Adding nutrients more effectively accelerated total petroleum hydrocarbon (TPH) degradation than other treatments in the initial 60 days' incubation. Despite both approaches stimulating bacterial richness, the community turnover caused by nutrient addition was gentler than bacterial degrader introduction. As TPH concentrations decreased, we observed a succession in microbial communities characterized by a decline in copiotrophic, fast-growing bacterial r-strategists with high rRNA operon (rrn) copy numbers. Ecological network analysis indicated that both nutrient addition and bacterial degrader introduction enhanced the complexity and stability of bacterial networks. Compared to the other treatment, the bacterial network with nutrient addition had more keystone species and a higher proportion of negative associations, factors that may enhance microbial community stability. Our study demonstrated that nutrient addition effectively regulates community succession and ecological interaction to accelerate the soil TPH degradation.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jugui Zhuang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianjiao Dai
- School of Environment, Tsinghua University, Beijing 100084, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Ruihuan Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufei Zeng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xue Guo
- School of Environment, Tsinghua University, Beijing 100084, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Durand-Bessart C, Akomo-Okoue EF, Ebang Ella GW, Porcher V, Bitome Essono PY, Bretagnolle F, Fontaine C. Local people enhance our understanding of Afrotropical frugivory networks. Curr Biol 2024; 34:1541-1548.e3. [PMID: 38452760 DOI: 10.1016/j.cub.2024.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Afrotropical forests are undergoing massive change caused by defaunation, i.e., the human-induced decline of animal species,1 most of which are frugivorous species.1,2,3 Frugivores' depletion and their functional disappearance are expected to cascade on tree dispersal and forest structure via interaction networks,4,5,6,7 as the majority of tree species depend on frugivores for their dispersal.8 However, frugivory networks remain largely unknown, especially in Afrotropical areas,9,10,11 which considerably limits our ability to predict changes in forest dynamics and structures using network analysis.12,13,14,15 While the academic workforce may be inadequate to fill this knowledge gap before it is too late, local ecological knowledge appears as a valuable source of ecological information and could significantly contribute to our understanding of such crucial interactions for tropical forests.16,17,18,19,20,21 To investigate potential synergies between local ecological knowledge and academic knowledge,20,21 we compiled frugivory interactions linking 286 trees to 100 frugivore species from the academic literature and local ecological knowledge coming from interviews of Gabonese forest-dependent people. Here, we showed that local ecological knowledge on frugivory interactions was substantial and original, with 39% of these interactions unknown by science. We demonstrated that combining academic and local ecological knowledge affects the functional relationship linking frugivore body mass to seed size, as well as the network structure. Our results highlight the benefits of bridging knowledge systems between academics and local communities for a better understanding of the functioning and response to perturbations of Afrotropical forests.
Collapse
Affiliation(s)
- Clémentine Durand-Bessart
- Biogeosciences, UMR 6282, Université Bourgogne Franche Comte-CNRS, 21000 Dijon, France; Centre d'Ecologie et des Sciences de la Conservation, CESCO, UMR 7204, MNHN-CNRS-SU, 75005 Paris, France; SENS, IRD, CIRAD, 34000 Montpellier, France.
| | | | | | - Vincent Porcher
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; SENS, IRD, CIRAD, 34000 Montpellier, France
| | | | - François Bretagnolle
- Biogeosciences, UMR 6282, Université Bourgogne Franche Comte-CNRS, 21000 Dijon, France
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, UMR 7204, MNHN-CNRS-SU, 75005 Paris, France
| |
Collapse
|
3
|
Dáttilo W, Luna P, Villegas-Patraca R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091845. [PMID: 37176902 PMCID: PMC10181201 DOI: 10.3390/plants12091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Although biological invasions are a common and intensively studied phenomenon, most studies often ignore the biotic interactions that invasive species play in the environment. Here, we evaluated how and why invasive plant species are interconnected within the overall frugivory network of the Brazilian Atlantic Forest, an important global biodiversity hotspot. To do this, we used the recently published Atlantic Frugivory Dataset to build a meta-network (i.e., a general network made of several local networks) that included interactions between 703 native and invasive plant species and 331 frugivore species. Using tools derived from complex network theory and a bootstrap simulation approach, we found that the general structure of the Atlantic Forest frugivory network (i.e., nestedness and modularity) is robust against the entry of invasive plant species. However, we observed that invasive plant species are highly integrated within the frugivory networks, since both native and invasive plant species play similar structural roles (i.e., plant status is not strong enough to explain the interactive roles of plant species). Moreover, we found that plants with smaller fruits and with greater lipid content play a greater interactive role, regardless of their native or invasive status. Our findings highlight the biotic homogenization involving plant-frugivore interactions in the Atlantic Forest and that the impacts and consequences of invasive plant species on native fauna can be anticipated based on the characteristics of their fruits.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Pedro Luna
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Rafael Villegas-Patraca
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
4
|
Durand‐Bessart C, Cordeiro NJ, Chapman CA, Abernethy K, Forget P, Fontaine C, Bretagnolle F. Trait matching and sampling effort shape the structure of the frugivory network in Afrotropical forests. THE NEW PHYTOLOGIST 2023; 237:1446-1462. [PMID: 36377098 PMCID: PMC10108259 DOI: 10.1111/nph.18619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Frugivory in tropical forests is a major ecological process as most tree species rely on frugivores to disperse their seeds. However, the underlying mechanisms driving frugivore-plant networks remain understudied. Here, we evaluate the data available on the Afrotropical frugivory network to identify structural properties, as well as assess knowledge gaps. We assembled a database of frugivory interactions from the literature with > 10 000 links, between 807 tree and 285 frugivore species. We analysed the network structure using a block model that groups species with similar interaction patterns and estimates interaction probabilities among them. We investigated the species traits related to this grouping structure. This frugivory network was simplified into 14 tree and 14 frugivore blocks. The block structure depended on the sampling effort among species: Large mammals were better-studied, while smaller frugivores were the least studied. Species traits related to frugivory were strong predictors of the species composition of blocks and interactions among them. Fruits from larger trees were consumed by most frugivores, and large frugivores had higher probabilities to consume larger fruits. To conclude, this large-scale frugivory network was mainly structured by species traits involved in frugivory, and as expected by the distribution areas of species, while still being limited by sampling incompleteness.
Collapse
Affiliation(s)
- Clémentine Durand‐Bessart
- Biogeosciences, UMR 6282Université Bourgogne Franche Comte‐CNRS21000DijonFrance
- Centre d'Ecologie et des Sciences de la ConservationCESCO, UMR 7204, MNHN‐CNRS‐SU75005ParisFrance
| | - Norbert J. Cordeiro
- Department of Biology (mc WB 816)Roosevelt University430 S. Michigan AvenueChicagoIL60605USA
- Science & EducationThe Field Museum1400 S. Lake Shore DriveChicagoIL60605USA
| | - Colin A. Chapman
- Wilson Center1300 Pennsylvania Avenue NWWashingtonDC20004USA
- Department of AnthropologyCenter for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonDC20037USA
- School of Life SciencesUniversity of KwaZulu‐NatalScottsville3201PietermaritzburgSouth Africa
- Shaanxi Key Laboratory for Animal ConservationNorthwest University710069Xi'anChina
| | - Katharine Abernethy
- African Forest Ecology Group, School of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
- Institut de Recherches en Ecologie TropicaleCENARESTGros Bouquet2144LibrevilleGabon
| | - Pierre‐Michel Forget
- Muséum National d'Histoire NaturelleUMR 7179 MECADEV CNRS‐MNHN1 Avenue du Petit Château91800BrunoyFrance
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la ConservationCESCO, UMR 7204, MNHN‐CNRS‐SU75005ParisFrance
| | | |
Collapse
|
5
|
Pereyra PER, Hallwass G, Begossi A, Giacomin LL, Silvano RAM. Fishers' Knowledge Reveals Ecological Interactions Between Fish and Plants in High Diverse Tropical Rivers. Ecosystems 2023. [DOI: 10.1007/s10021-023-00818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Body mass determines the role of mammal species in a frugivore-large fruit interaction network in a Neotropical savanna. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Frugivorous mammals play an important role in maintaining biodiversity and are considered one of the main dispersers of large seeds. In this study, we describe the structure of the interaction network between non-flying mammals and seven plant species with large fruits in a megadiverse savanna-forest mosaic in the Brazilian Cerrado. We also evaluated the individual contribution of each species to the organization of the interaction network and tested whether body mass determined the mammals’ role in the network. To record frugivory events of mammals with arboreal and terrestrial habits, camera traps were installed at ground and canopy levels. We identified 18 mammal species interacting with seven plant species in 515 frugivory events. Our observations highlight an interaction network with a modular and non-nested topology and the important role of large mammals in the network structure, which reflects the importance of the group in potential seed dispersal. The extinction of large frugivorous mammals can cause several damages to ecosystem services in the Brazilian Cerrado through changes in network structure, especially threatening the survival of plant species with large fruits.
Collapse
|
7
|
Li N, Yang X, Ren Y, Wang Z. Importance of species traits on individual-based seed dispersal networks and dispersal distance for endangered trees in a fragmented forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1010352. [PMID: 36212316 PMCID: PMC9534520 DOI: 10.3389/fpls.2022.1010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Although mutualistic network analyses have sparked a renewed interest in the patterns and drivers of network structures within communities, few studies have explored structural patterns within populations. In an endangered tree species population, plant individuals share their bird seed dispersers; however, the factors affecting individual interaction patterns are poorly understood. In this study, four individual-based networks were built for the endangered Chinese yew, Taxus chinensis, in a fragmented forest based on bird foraging type (swallowing and pecking networks) and habitat type (networks in a bamboo patch and an evergreen broad-leaved forest patch). Species-level network metrics (species degree and specialization, d') were used to evaluate the effects of species traits (bird and plant traits) on species-level networks and dispersal distance for T. chinensis. It was revealed that the interaction networks between T. chinensis individuals and their bird partners were influenced by foraging type and the habitat of plant distribution. Compared to the other two networks, bird swallowing and bird-fruit networks in the evergreen broad-leaved patch habitat had higher nestedness and connectance but lower modules and specialization. Bird (body weight and wing and bill lengths) and plant traits (height, crop size, and cover) significantly affected species-level network metrics such as degree and specialization. Furthermore, seed dispersal distance was influenced by species traits and the species-level metrics of fruit-bird interaction networks. These results provide new insights into individual-based seed dispersal mutualistic networks of endangered plant species under habitat fragmentation. Moreover, these findings have relevant implications for conserving and managing individual endangered trees in increasingly disturbed ecosystems.
Collapse
Affiliation(s)
- Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanhao Ren
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Zheng Wang
- College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees. Sci Rep 2022; 12:7513. [PMID: 35525878 PMCID: PMC9079064 DOI: 10.1038/s41598-022-11568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Arboreal and flying frugivorous animals represent primary dispersers in the Neotropics. Studies suggest a possible compensation for the loss of large species by smaller ones with expanding rampant anthropogenic pressures and declining populations of larger frugivores. However, studies on seed dispersal by frugivores vertebrates generally focus on the diurnal, terrestrial, canopy, and flying species, with the nocturnal canopy ones being less studied. Setting camera traps high in the canopy of fruiting nutmeg trees revealed for the first time the high frequency of the kinkajou (Potos flavus, Schreber, 1774, Procyonidae), an overlooked nocturnal frugivore species (Order Carnivora) in the Guianas. The diversity of the fruit species consumed by the kinkajou calls for considering it as an important seed disperser. The overlap of the size of seeds dispersed by frugivores observed in nutmeg trees suggests that the small (2-5 kg) kinkajou may compensate for the loss of large (5-10 kg) frugivorous vertebrates in the canopy. Camera traps visualise how the kinkajou is adapted to forage in the nutmeg tree crown and grab the fruit. Such information is vital for conservation because compensation of seed dispersal by small frugivores is crucial in increasing anthropogenic stressors.
Collapse
|
9
|
Coutant O, Boissier O, Ducrettet M, Albert-Daviaud A, Bouiges A, Dracxler CM, Feer F, Mendoza I, Guilbert E, Forget PM. Roads Disrupt Frugivory and Seed Removal in Tropical Animal-Dispersed Plants in French Guiana. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.805376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological interactions are being affected at unprecedented rates by human activities in tropical forests. Yet, the continuity of ecological functions provided by animals, such as seed dispersal, is crucial for forest regeneration and species resilience to anthropogenic pressures. The construction of new roads in tropical forests is one of the main boosters of habitat destruction as it facilitates human access to previously isolated areas and increases defaunation and loss of ecological functions. It, therefore, becomes increasingly urgent to rapidly assess how recently opened roads and associated anthropogenic activities affect ecological processes in natural habitats, so that appropriate management measures to conserve diversity can be taken. In this study, we aimed to evaluate the effects of anthropogenic pressures on the health status of a mature rainforest crossed by a newly opened road in French Guiana. For this, we combined different methods to conduct a rapid assessment of the forest’s health status. Firstly, we evaluated the activity of frugivores using camera traps deployed in four forest patches located near (<1 km) ecological corridors preserved as canopy bridges over the road during the fruiting periods of four animal-dispersed tree species. Secondly, we analyzed the fate of seeds enclosed in animal-dispersed tropical fruits by calculating the proportions of fruits consumed and seeds removed (either dispersed or predated) by frugivores. Results show that the proportion of fruits opened and consumed was lower in the forest areas located near the road than in the control forest, and this difference was more significant for plant species strictly dependent on large-bodied primates for seed dispersal than for species relying on both primates and birds. Camera traps showed the presence of small primates and kinkajous feeding on Virola fruits in the forest impacted by the road, where large primates were absent. It is thus likely that smaller frugivores exert a compensatory effect that maintains ecological functions near the road. Despite efforts made to preserve forest continuity through ecological corridors, anthropogenic pressures associated with road proximity are affecting wildlife and disrupting associated ecological functions crucial for plant regeneration, contributing to further forest degradation.
Collapse
|
10
|
Fuzessy L, Sobral G, Carreira D, Rother DC, Barbosa G, Landis M, Galetti M, Dallas T, Cardoso Cláudio V, Culot L, Jordano P. Functional roles of frugivores and plants shape hyper‐diverse mutualistic interactions under two antagonistic conservation scenarios. Biotropica 2022. [DOI: 10.1111/btp.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisieux Fuzessy
- São Paulo State University UNESP Rio Claro SP Brazil
- Estación Biológica de Doñana EBD‐CSIC Sevilla Spain
| | | | - Daiane Carreira
- University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Esalq USP Piracicaba SP Brazil
| | - Débora Cristina Rother
- University of São Paulo USP São Paulo SP Brazil
- University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Esalq USP Piracicaba SP Brazil
| | | | | | - Mauro Galetti
- São Paulo State University UNESP Rio Claro SP Brazil
- Department of Biology University of Miami Coral Gables Florida USA
| | - Tad Dallas
- Louisiana State University Baton Rouge Louisiana USA
| | | | | | | |
Collapse
|
11
|
Delgado-Martínez CM, Mendoza E. Human disturbance modifies the identity and interaction strength of mammals that consume Attalea butyracea fruit in a neotropical forest. ANIMAL BIODIVERSITY AND CONSERVATION 2021. [DOI: 10.32800/abc.2022.45.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Habitat loss and hunting are important drivers of mammal defaunation, affecting not only species presence but also their ecological roles. Frugivory is a key biotic interaction in the tropics due to its wide representation among mammals and its effects on forest dynamics. We assessed how human disturbance affects interactions between mammalian frugivores and Attalea butyracea fruit deposited on the forest floor by comparing visits to palms at two sites with contrasting levels of human disturbance (non–disturbed vs. disturbed sites) in the Lacandon rainforest in southern Mexico. Using camera traps, we recorded mammal species interacting with fruit and estimated their interaction strength. The frugivore ensemble was richer in the non–disturbed forest (nine species) than in the disturbed forest (four species), which lacked the largest body–sized mammals. Large–bodied mammals showed a stronger interaction with fruit in terms of the frequency and length of their visits. Our study highlights the need to undertake conservation actions not only to ensure that the species are maintained in disturbed forests but also to ensure that their biotic interactions remain unchanged.
Collapse
Affiliation(s)
- C. M. Delgado-Martínez
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - E. Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| |
Collapse
|
12
|
Villalobos-Chaves D, Rodríguez-Herrera B. Frugivorous bats promote epizoochoric seed dispersal and seedling survival in a disturbed Neotropical forest. J Mammal 2021. [DOI: 10.1093/jmammal/gyab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Animal-dispersed plants usually rely upon multiple dispersers. In many ecosystems, most of these interactions have yet to be explored; thus, documenting the extent of contribution of each animal partner to the reproduction and survival of plant species is key to understanding the ecology and evolution of animal–plant mutualism, as well as the potential responses of the ecological networks to biodiversity loss through defaunation. Here, by characterizing the outcomes and differences of the epizoochoric seed dispersal carried out by two species of frugivorous bats (Artibeus phaeotis and Uroderma convexum) in a Neotropical forest, we tested the prediction that, through their feeding activity, both bat species disperse and influence the subsequent seedling survival of multiple seed species. By direct sampling on bats’ dispersing sites and surrounding areas, we found evidence of the dispersal of 2,310 seeds of eight plant species, of which 118 survived to become seedlings. The total density of seeds and the seedling survival were significantly higher in areas directly influenced by the bats (i.e., feeding roosts) than in peripheral areas. Positive density-dependent effects nevertheless were detected in both sampling areas (feeding roosts and peripheral areas). Interspecific comparisons showed that despite both bat species having similar dispersal outcomes, seedlings in peripheral areas related to A. phaeotis have better survival rates. Our results demonstrate that both bat species primarily disperse by epizoochoric means seeds of various tree species at several localities in the study site. This result, together with the positive density-dependent effects, suggests that bats are moving seeds away from maternal trees and depositing them in locations where some of the seeds can germinate, establish, and survive, thereby highlighting the positive contribution of these bat species to the reproductive success of trees inhabiting Neotropical habitats. Our results contribute to the growing knowledge of frugivorous interactions on hyperdiverse forests and the role of small vertebrates on seed dispersal mutualisms.
Collapse
Affiliation(s)
| | - Bernal Rodríguez-Herrera
- Escuela de Biología, Universidad de Costa Rica, 11501 Montes de Oca, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, 11501 Montes de Oca, San José, Costa Rica
| |
Collapse
|
13
|
Ong L, Campos‐Arceiz A, Loke VPW, Pura PB, Tunil CMTB, Din HSA, Angah RB, Amirrudin NAB, Tan WH, Lily O, Solana‐Mena A, McConkey KR. Building ecological networks with local ecological knowledge in hyper‐diverse and logistically challenging ecosystems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisa Ong
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Ahimsa Campos‐Arceiz
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Vivienne P. W. Loke
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Param bin Pura
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | | | - Husin Sudin A/L Din
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Rizuan bin Angah
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Nurul Ain binti Amirrudin
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Wei Harn Tan
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences & Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Yunnan China
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Ong Lily
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Alicia Solana‐Mena
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| | - Kim R. McConkey
- School of Environmental and Geographical Sciences University of Nottingham Malaysia Semenyih Malaysia
| |
Collapse
|
14
|
Monteiro ECS, Pizo MA, Vancine MH, Ribeiro MC. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. OIKOS 2021. [DOI: 10.1111/oik.08240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erison C. S. Monteiro
- Depto de Biodiversidade, Inst. de Biociências, Univ. Estadual Paulista (UNESP) Rio Claro Brasil
| | - Marco A. Pizo
- Depto de Biodiversidade, Inst. de Biociências, Univ. Estadual Paulista (UNESP) Rio Claro Brasil
| | | | - Milton Cezar Ribeiro
- Depto de Biodiversidade, Inst. de Biociências, Univ. Estadual Paulista (UNESP) Rio Claro Brasil
| |
Collapse
|
15
|
Salas D, Villalobos-Chávez D. Frugivory and Seed predation of Jacaratia spinosa (Caricaceae) by Sumichrast’s Vesper Rat, Nyctomys sumichrasti (Rodentia: Cricetidae). MAMMALOGY NOTES 2021. [DOI: 10.47603/mano.v7n1.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal-plant interactions are ubiquitous and critical for tropical ecosystem functioning. Neotropical rodents perform key ecosystem functions such as seed dispersal and predation, however few information is available regarding their ecological interactions. Here, we reported the interaction between the Sumichrast’s Vesper Rat, Nyctomys sumichrasti, and the plant Jacaratia spinosa in the Central Caribbean of Costa Rica. Rodents were observed feeding on the flesh and seeds of the plants. Natural history observations such as this are critical to the knowledge on the feeding links of poorly known Neotropical rodents.
Collapse
|
16
|
Sherry TW. Sensitivity of Tropical Insectivorous Birds to the Anthropocene: A Review of Multiple Mechanisms and Conservation Implications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epigraph: “The house is burning. We do not need a thermometer. We need a fire hose.” (P. 102, Janzen and Hallwachs, 2019). Insectivorous birds are declining widely, and for diverse reasons. Tropical insectivorous birds, more than 60% of all tropical birds, are particularly sensitive to human disturbances including habitat loss and fragmentation, intensive agriculture and pesticide use, and climate change; and the mechanisms are incompletely understood. This review addresses multiple, complementary and sometimes synergistic explanations for tropical insectivore declines, by categorizing explanations into ultimate vs. proximate, and direct versus indirect. Ultimate explanations are diverse human Anthropocene activities and the evolutionary history of these birds. This evolutionary history, synthesized by the Biotic Challenge Hypothesis (BCH), explains tropical insectivorous birds' vulnerabilities to many proximate threats as a function of both these birds' evolutionary feeding specialization and poor dispersal capacity. These traits were favored evolutionarily by both the diversity of insectivorous clades competing intensely for prey and co-evolution with arthropods over long evolutionary time periods. More proximate, ecological threats include bottom-up forces like declining insect populations, top-down forces like meso-predator increases, plus the Anthropocene activities underlying these factors, especially habitat loss and fragmentation, agricultural intensification, and climate change. All these conditions peak in the lowland, mainland Neotropics, where insectivorous bird declines have been repeatedly documented, but also occur in other tropical locales and continents. This multiplicity of interacting evolutionary and ecological factors informs conservation implications and recommendations for tropical insectivorous birds: (1) Why they are so sensitive to global change phenomena is no longer enigmatic, (2) distinguishing ultimate versus proximate stressors matters, (3) evolutionary life-histories predispose these birds to be particularly sensitive to the Anthropocene, (4) tropical regions and continents vary with respect to these birds' ecological sensitivity, (5) biodiversity concepts need stronger incorporation of species' evolutionary histories, (6) protecting these birds will require more, larger reserves for multiple reasons, and (7) these birds have greater value than generally recognized.
Collapse
|
17
|
Hinton CR, Peters VE. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol Evol 2021; 11:2346-2359. [PMID: 33717460 PMCID: PMC7920781 DOI: 10.1002/ece3.7203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Plant-animal interaction science repeatedly finds that plant species differ by orders of magnitude in the number of interactions they support. The identification of plant species that play key structural roles in plant-animal networks is a global conservation priority; however, in hyperdiverse systems such as tropical forests, empirical datasets are scarce. Plant species with longer reproductive seasons are posited to support more interactions compared to plant species with shorter reproductive seasons but this hypothesis has not been evaluated for plant species with the longest reproductive season possible at the individual plant level, the continuous reproductive phenology. Resource predictability is also associated with promoting specialization, and therefore, continuous reproduction may instead favor specialist interactions. Here, we use quantitative pollinating insect-plant networks constructed from countryside habitat of the Tropical Wet forest Life Zone and modularity analysis to test whether plant species that share the trait of continuous flowering hold core roles in mutualistic networks. With a few exceptions, most plant species sampled within our network were assigned to the role of peripheral. All but one network had significantly high modularity scores and each continuous flowering plant species was in a different module. Our work reveals that the continuous flowering plant species differed in some networks in their topological role, and that more evidence was found for the phenology to support specialized subsets of interactions. Our findings suggest that the conservation of Neotropical pollinating insect communities may require planting species from each module rather than identifying and conserving network hubs.
Collapse
Affiliation(s)
- Chelsea R. Hinton
- Department of Biological SciencesEastern Kentucky UniversityRichmondKYUSA
| | - Valerie E. Peters
- Department of Biological SciencesEastern Kentucky UniversityRichmondKYUSA
| |
Collapse
|