1
|
Zhao Z, Liu Z, Wang Y, Liang J, Song Y, Zhang D, Guan Y, Shi H. Increasing phosphorus ratios between overlying and surface water inhibits intracellular antibiotic resistance gene transformation in a large shallow lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135847. [PMID: 39288521 DOI: 10.1016/j.jhazmat.2024.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
The rising prevalence of antibiotic resistance genes (ARGs) in the surface waters of lakes poses a significant threat to human health. The overlying water in these lakes serves as a critical hotspot for the accumulation of ARGs in surface water. However, the mobility of extracellular (adsorbed ARGs (a-eARGs) and free ARGs (f-eARGs)), and intracellular ARGs (i-ARGs) from overlying water to surface water remains unknown. This study examined the mobility of ARGs between water layers, as well as the underlying mechanisms involved. Significant variations in ARG abundance were observed between overlying and surface water according to PCoA analysis (p < 0.05), with significant reductions in i-ARGs (p < 0.05) in surface water and no significant difference in a-eARGs and f-eARGs. Aminoglycoside and tetracycline i-ARGs had the highest and lowest mobility from overlying water to surface water, respectively. Additionally, the transformation of i-ARGs from overlying water to surface water was significantly correlated with total phosphorus ratio. According to the direct analysis of partial least squares-path modeling, the key drivers of a- and f-eARGs movement from overlying water to surface water were free-living and particle-attached bacteria, respectively, whereas heavy metals gradually became the driving force for i-ARGs by regulating mobile genetic elements. This study illustrated the transmission mechanisms of ARGs from overlying water to surface water in lakes, which will be useful for ARG treatment strategies, especially in eutrophic water.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Huijuan Shi
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China; Museum, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
2
|
Van Le V, Kang M, Ko SR, Park CY, Lee JJ, Choi IC, Oh HM, Ahn CY. Response of particle-attached and free-living bacterial communities to Microcystis blooms. Appl Microbiol Biotechnol 2024; 108:42. [PMID: 38183480 DOI: 10.1007/s00253-023-12828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Fang C, Liu KD, Tian FJ, Li JY, Li SJ, Zhang RM, Sun J, Fang LX, Ren H, Wang MG, Liao XP. Metagenomic analysis unveiled the response of microbial community and antimicrobial resistome in natural water body to duck farm sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124784. [PMID: 39182818 DOI: 10.1016/j.envpol.2024.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Sewages from duck farms are often recognized as a major source of antimicrobial resistance and pathogenic bacteria discharged to natural water bodies, but few studies depicted the dynamic changes in resistome and microbial communities in the rivers under immense exposure of sewage discharge. In this study, we investigated the ecological and environmental risks of duck sewages to the rivers that geographically near to the duck farms with short-distance (<1 km) using 16S rRNA amplicon and metagenomic sequencing. The results showed that a total of 20 ARG types were identified with abundances ranged from 0.61 to 1.33 cpc. Of note, the genes modulate resistances against aminoglycoside, bacitracin and beta-lactam were the most abundant ARGs. Limnohabitans, Fluviibacter and Cyanobium were the top 3 predominant genera in the microbial community. The alpha diversity of overall microbial community decrease while the abundance of pathogen increase during the input of sewage within 200 m. Sul1 and bacA were the dominant ARGs brought from duck farm sewage. The community variations of ARGs and microbiome were primarily driven by pH and temperature. Total phosphorus was significantly correlated to alpha diversity and top 30 ARGs subtype. Stochastic processes was the dominated microbial assembly pattern and did not be altered by sewage. We also highlighted the ecological risk caused by blaGES which possibly could be mitigated by Cyanobacteria, and the natural water body can purify partial ARGs as well as microbiome from duck farms sewage. These findings expanded our knowledge regarding the ecological risks by wastes from the livestock farm, and underscoring the necessity to monitor ARGs in farm-surrounding water bodies.
Collapse
Affiliation(s)
- Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; College of Marine Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai-di Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Feng-Jie Tian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jin-Ying Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Si-Jie Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Hao Ren
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Phage Research Center, Liaocheng University, Liaocheng, 252000, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
4
|
Freixa A, González-Trujillo JD, Sacristán-Soriano O, Borrego CM, Sabater S. Terrestrialization of sediment bacterial assemblages when temporary rivers run dry. FEMS Microbiol Ecol 2024; 100:fiae126. [PMID: 39277783 PMCID: PMC11460285 DOI: 10.1093/femsec/fiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024] Open
Abstract
Bacterial communities in river sediments are shaped by a trade-off between dispersal from upstream or nearby land and selection by the local environmental conditions. In temporary rivers (i.e. those characterized by long drying periods and subsequent rewetting) seasonal hydrological dynamics shape bacterial communities by connecting or disconnecting different river habitats. In this study, we tracked and compared the temporal and spatial changes in the composition of bacterial communities in streambed sediments and floodplain habitats across both permanent and intermittent river segments. Our findings revealed that environmental selection played a key role in assembling bacterial communities in both segments. We argue that distinct environmental features act as filters at the local scale, favoring specific bacterial taxa in isolated pools and promoting some typically terrestrial taxa in dry areas. Considering the prospective extension of drying intervals due to climate change, our results suggest an emerging trend wherein bacterial assemblages in temporary streams progressively incorporate microorganisms of terrestrial origin, well-adapted to tolerate desiccation phases. This phenomenon may constitute an integral facet of the broader adaptive dynamics of temporary river ecosystems in response to the impacts of climate change.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Juan David González-Trujillo
- Facultad de Ciencias, Departamento de Biología, Universidad Nacional de Colombia, Cra 30 45 02, Ciudad universitaria, Bogotá 111321, Colombia
| | - Oriol Sacristán-Soriano
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| |
Collapse
|
5
|
Xie G, Sun C, Luo W, Gong Y, Tang X. Distinct ecological niches and community dynamics: understanding free-living and particle-attached bacterial communities in an oligotrophic deep lake. Appl Environ Microbiol 2024; 90:e0071424. [PMID: 38940583 PMCID: PMC11267872 DOI: 10.1128/aem.00714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and β-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Chuanbo Sun
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, Yuxi, China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Le VV, Ko SR, Shin Y, Kim K, Ahn CY. Succession of particle-attached and free-living bacterial communities in response to microalgal dynamics induced by the biological cyanocide paucibactin A. CHEMOSPHERE 2024; 358:142197. [PMID: 38692365 DOI: 10.1016/j.chemosphere.2024.142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Microalgae, including cyanobacteria and eukaryotic algae, are hotspots of primary production and play a critical role in global carbon cycling. However, these species often form blooms that poses a threat to aquatic ecosystems. Although the use of bacteria-derived cyanocides is regarded as an environmentally friendly method for controlling cyanobacterial blooms, only a few studies have examined their potential impact on ecosystems. This study is the first to explore the response of particle-attached (PA) and free-living (FL) bacteria to the dynamics of microalgal communities induced by the biological cyanocide paucibactin A. The microalgal community dynamics were divided into two distinct phases [phase I (days 0-2) and phase II (days 3-7)]. In phase I, paucibactin A caused a sudden decrease in the cyanobacterial concentration. Phase II was characterized by increased growth of eukaryotic microalgae (Scenedesmus, Pediastrum, Selenastrum, and Coelastrum). The stability of the bacterial community and the contribution of stochastic processes to community assembly were more pronounced in phase II than in phase I. The microalgal dynamics triggered by paucibactin A coincided with the succession of the PA and FL bacterial communities. The lysis of cyanobacteria in phase I favored the growth of microbial organic matter degraders in both the PA (e.g., Aeromonas and Rheinheimera) and FL (e.g., Vogesella) bacterial communities. In phase II, Lacibacter, Phycisphaeraceae, and Hydrogenophaga in the PA bacterial community and Lacibacter, Peredibacter, and Prosthecobacter in the FL bacterial community showed increased relative abundances. Overall, the FL bacterial community exhibited greater sensitivity to the two sequential processes compared with the PA bacterial community. These results highlight the need for studies evaluating the impact of biological cyanocides on aquatic ecosystems when used to control natural cyanobacterial blooms.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yuna Shin
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Noyer M, Bernard M, Verneau O, Palacios C. Insights on the particle-attached riverine archaeal community shifts linked to seasons and to multipollution during a Mediterranean extreme storm event. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49685-49702. [PMID: 36780079 DOI: 10.1007/s11356-023-25637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 02/14/2023]
Abstract
Even if Archaea deliver important ecosystem services and are major players in global biogeochemical cycles, they remain poorly understood in freshwater ecosystems. To our knowledge, no studies specifically address the direct impact of xenobiotics on the riverine archaeome. Using environmental DNA metabarcoding of the 16S ribosomal gene, we previously demonstrated bacterial communities significant shifts linked to pollutant mixtures during an extreme flood in a typical Mediterranean coastal watercourse. Here, using the same methodology, we sought to determine whether archaeal community shifts coincided with the delivery of environmental stressors during the same flood. Further, we wanted to determine how archaea taxa compared at different seasons. In contrast to the bacteriome, the archaeome showed a specific community in summer compared to winter and autumn. We also identified a significant relationship between in situ archaeome shifts and changes in physicochemical parameters along the flood, but a less marked link to those parameters correlated to river hydrodynamics than bacteria. New urban-specific archaeal taxa significantly related to multiple stressors were identified. Through statistical modeling of both domains, our results demonstrate that Archaea, seldom considered as bioindicators of water quality, have the potential to improve monitoring methods of watersheds.
Collapse
Affiliation(s)
- Mégane Noyer
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France.,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France
| | - Maria Bernard
- Univ. Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Olivier Verneau
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France.,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France.,Unit. for Environmental Sciences and Management, North-West University, Potchefstroom, ZA-2520, South Africa
| | - Carmen Palacios
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France. .,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France.
| |
Collapse
|
8
|
Adyari B, Hou L, Zhang L, Chen N, Ju F, Zhu L, Yu CP, Hu A. Seasonal hydrological dynamics govern lifestyle preference of aquatic antibiotic resistome. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100223. [PMID: 36437887 PMCID: PMC9691914 DOI: 10.1016/j.ese.2022.100223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are a well-known environmental concern. Yet, limited knowledge exists on the fate and transport of ARGs in deep freshwater reservoirs experiencing seasonal hydrological changes, especially in the context of particle-attached (PA) and free-living (FL) lifestyles. Here, the ARG profiles were examined using high-throughput quantitative PCR in PA and FL lifestyles during four seasons representing two hydrological phenomena (vertical mixing and thermal stratification) in the Shuikou Reservoir (SR), Southern China. The results indicated that seasonal hydrological dynamics were critical for influencing the ARGs in PA and FL and the transition of ARGs between the two lifestyles. ARG profiles both in PA and FL were likely to be shaped by horizontal gene transfer. However, they exhibited distinct responses to the physicochemical (e.g., nutrients and dissolved oxygen) changes under seasonal hydrological dynamics. The particle-association niche (PAN) index revealed 94 non-conservative ARGs (i.e., no preferences for PA and FL) and 23 and 16 conservative ARGs preferring PA and FL lifestyles, respectively. A sharp decline in conservative ARGs under stratified hydrologic suggested seasonal influence on the ARGs transition between PA and FL lifestyles. Remarkably, the conservative ARGs (in PA or FL lifestyle) were more closely related to bacterial OTUs in their preferred lifestyle than their counterparts, indicating lifestyle-dependent ARG enrichment. Altogether, these findings enhanced our understanding of the ARG lifestyles and the role of seasonal hydrological changes in governing the ARG transition between the lifestyles in a typical deep freshwater ecosystem.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Department of Environmental Engineering, Universitas Pertamina, Jakarta, 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT, 84322, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
9
|
Ma Y, Li P, Zhong H, He M, Wang B, Mou X, Wu L. The Ecological Differentiation of Particle-Attached and Free-Living Bacterial Communities in a Seasonal Flooding Lake-the Poyang Lake. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02134-1. [PMID: 36323973 DOI: 10.1007/s00248-022-02134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Particle-attached (PA) and free-living (FL) bacterial communities play essential roles in the biogeochemical cycling of essential nutrients in aquatic environments. However, little is known about the factors that drive the differentiation of bacterial lifestyles, especially in flooding lake systems. Here we assessed the compositional and functional similarities between the FL and PA bacterial fractions in a typical flooding lake-the Poyang Lake (PYL) of China. The results revealed that PA communities had significantly different compositions and functions from FL communities in every hydrological period, and the diversity of both PA and FL communities was affected mainly by the water regime rather than bacterial lifestyles. PA communities were more diverse and enriched with Proteobacteria and Bacteroidetes, while FL communities had more Actinobacteria. There was a higher abundance of photosynthetic and nitrogen-cycling bacterial groups in PA communities, but a higher abundance of members involved in hydrocarbon degradation, aromatic hydrocarbon degradation, and methylotrophy in FL communities. Water properties (e.g., temperature, pH, total phosphorus) significantly regulated the lifestyle variations of PA and FL bacteria in PYL. Collectively, our results have demonstrated a clear ecological differentiation of PA and FL bacterial communities in flooding lakes, suggesting that the connectivity between FL and PA bacterial fractions is water property-related rather than water regime-related.
Collapse
Affiliation(s)
- Yantian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Pan Li
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Hui Zhong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Mengjie He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Binhua Wang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| |
Collapse
|
10
|
Yue Y, Wang F, Pan J, Chen XP, Tang Y, Yang Z, Ma J, Li M, Yang M. Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiol Ecol 2022; 98:6701916. [PMID: 36111740 DOI: 10.1093/femsec/fiac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Archaea participate in biogeochemical cycles in aquatic ecosystems, and deciphering their community dynamics and assembly mechanisms is key to understanding their ecological functions. Here, sediments from 12 selected reservoirs from the Wujiang and Pearl River basins in southwest China were investigated using 16S rRNA Illumina sequencing and quantitative PCR for archaeal abundance and richness in all seasons. Generally, archaeal abundance and α-diversity were significantly correlated with temperature; however, β-diversity analysis showed that community structures varied greatly among locations rather than seasons, indicating a distance-decay pattern with geographical variation. The null model revealed the major contribution of stochasticity to archaeal community assembly, which was further confirmed by the neutral community model that could explain 71.7% and 90.2% of the variance in archaeal assembly in the Wujiang and Pearl River basins, respectively. Moreover, sediment total nitrogen and organic carbon levels were significantly correlated with archaeal abundance and α-diversity. Interestingly, these nutrient levels were positively and negatively correlated, respectively, with the abundance of methanogenic and ammonia-oxidized archaea: the dominant sedimentary archaea in these reservoirs. Taken together, this work systematically characterized archaeal community profiles in reservoir sediments and demonstrated the combined action of stochastic processes and nutrient load in shaping archaeal communities in reservoir ecosystems.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue-Ping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Duan L, Li JL, Yin LZ, Luo XQ, Ahmad M, Fang BZ, Li SH, Deng QQ, Wang P, Li WJ. Habitat-dependent prokaryotic microbial community, potential keystone species, and network complexity in a subtropical estuary. ENVIRONMENTAL RESEARCH 2022; 212:113376. [PMID: 35561827 DOI: 10.1016/j.envres.2022.113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Microbes (e.g., bacteria and archaea) are indispensable components for the key biological processes of estuarine ecosystems and three main habitats (sediment, particle, and water) are harboring diverse estuarine microbes. However, we still know little about how the microbial community structures, potential keystone species, and network properties change among these three habitats in estuarine ecosystems. In this study, we collected size-fractioned water and sediment samples from the Pearl River Estuary to reveal their microbial diversity, community structures, network properties, and potential keystone taxa. We found that the sediment microbial community was remarkably more diverse than particle-attached (PA) and free-living (FL) communities, whereas its ecological network was less complex in terms of node distance and connectivity. TOC was determined as the main driver of sediment community, while the PA and FL communities were predominantly shaped by NO2-, non-ionic ammonia (NH) and pH. Among the bulk water, there were no significant differences between PA and FL communities in diversity, community structure, and network complexity. However, the PA community was more susceptible to metal elements, suggesting their higher level of involvement in physiological metabolism. Potential keystone taxa among community networks were taxonomically divergent in three habitats. Specifically, Synechococcales (Cyanobacteria) and Actinomarinales (Actinobacteria) exclusively served as the module-hubs in FL network, while members from phylum Proteobacteria and Bacteroidetes were the module-hubs and connectors in PA network. Potential keystone taxa in sediment network were more diverse and covered 9 phyla, including the only archaeal lineage Bathyarchaeia (Crenarchaeota). Overall, our study provided more detailed information about estuarine microbial communities in three habitats, especially the potential keystone species, which provided new perspectives on evaluating further effects of anthropogenic disturbances on estuarine microbes and facilitated the environment monitoring based on microbial community.
Collapse
Affiliation(s)
- Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China; School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
12
|
Byappanahalli MN, Nevers MB, Shively D, Nakatsu CH, Kinzelman JL, Phanikumar MS. Influence of Filter Pore Size on Composition and Relative Abundance of Bacterial Communities and Select Host-Specific MST Markers in Coastal Waters of Southern Lake Michigan. Front Microbiol 2021; 12:665664. [PMID: 34335496 PMCID: PMC8319913 DOI: 10.3389/fmicb.2021.665664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Water clarity is often the primary guiding factor in determining whether a prefiltration step is needed to increase volumes processed for a range of microbial endpoints. In this study, we evaluate the effect of filter pore size on the bacterial communities detected by 16S rRNA gene sequencing and incidence of two host-specific microbial source tracking (MST) markers in a range of coastal waters from southern Lake Michigan, using two independent data sets collected in 2015 (bacterial communities) and 2016–2017 (MST markers). Water samples were collected from river, shoreline, and offshore areas. For bacterial communities, each sample was filtered through a 5.0-μm filter, followed by filtration through a 0.22-μm filter, resulting in 70 and 143 filter pairs for bacterial communities and MST markers, respectively. Following DNA extraction, the bacterial communities were compared using 16S rRNA gene amplicons of the V3–V4 region sequenced on a MiSeq Illumina platform. Presence of human (Bacteroides HF183) and gull (Gull2, Catellicoccus marimammalium) host-specific MST markers were detected by qPCR. Actinobacteriota, Bacteroidota, and Proteobacteria, collectively represented 96.9% and 93.9% of the relative proportion of all phyla in the 0.22- and 5.0-μm pore size filters, respectively. There were more families detected in the 5.0-μm pore size filter (368) than the 0.22-μm (228). There were significant differences in the number of taxa between the two filter sizes at all levels of taxonomic classification according to linear discriminant analysis (LDA) effect size (LEfSe) with as many as 986 taxa from both filter sizes at LDA effect sizes greater than 2.0. Overall, the Gull2 marker was found in higher abundance on the 5.0-μm filter than 0.22 μm with the reverse pattern for the HF183 marker. This discrepancy could lead to problems with identifying microbial sources of contamination. Collectively, these results highlight the importance of analyzing pre- and final filters for a wide range of microbial endpoints, including host-specific MST markers routinely used in water quality monitoring programs. Analysis of both filters may increase costs but provides more complete genomic data via increased sample volume for characterizing microbial communities in coastal waters.
Collapse
Affiliation(s)
| | - Meredith B Nevers
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States
| | - Dawn Shively
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States.,Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Jain A, Krishnan KP. Marine Group-II archaea dominate particle-attached as well as free-living archaeal assemblages in the surface waters of Kongsfjorden, Svalbard, Arctic Ocean. Antonie van Leeuwenhoek 2021; 114:633-647. [PMID: 33694023 PMCID: PMC7945612 DOI: 10.1007/s10482-021-01547-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Marine archaea are a significant component of the global oceanic ecosystems, including the polar oceans. However, only a few attempts have been made to study archaea in the high Arctic fjords. Given the importance of Archaea in carbon and nitrogen cycling, it is imperative to explore their diversity and community composition in the high Arctic fjords, such as Kongsfjorden (Svalbard). In the present study, we evaluated archaeal diversity and community composition in the size-fractionated microbial population, viz-a-viz free-living (FL; 0.2-3 μm) and particle-attached (PA; > 3 μm) using archaeal V3-V4 16S rRNA gene amplicon sequencing. Our results indicate that the overall archaeal community in the surface water of Kongsfjorden was dominated by the members of the marine group-II (MGII) archaea, followed by the MGI group members, including Nitrosopumilaceae and Nitrososphaeraceae. Although a clear niche partitioning between PA and FL archaeal communities was not observed, 2 OTUs among 682 OTUs, and 3 ASVs out of 1932 ASVs were differentially abundant among the fractions. OTU001/ASV0002, classified as MGIIa, was differentially abundant in the PA fraction. OTU006/ASV0006/ASV0010 affiliated with MGIIb were differentially abundant in the FL fraction. Particulate organic nitrogen and C:N ratio were the most significant variables (P < 0.05) explaining the observed variation in the FL and PA archaeal communities, respectively. These results indicate an exchange between archaeal communities or a generalist lifestyle switching between FL and PA fractions. Besides, the particles' elemental composition (carbon and nitrogen) seems to play an essential role in shaping the PA archaeal communities in the surface waters of Kongsfjorden.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India.
| | | |
Collapse
|