1
|
Phong NV, Kim HS, Zhao Y, Yeom E, Yang SY. Indirubin-3'-oxime as a dual-action agent: mitigating heat-induced male infertility in Drosophila melanogaster and inhibiting soluble epoxide hydrolase. J Enzyme Inhib Med Chem 2025; 40:2447719. [PMID: 39840826 PMCID: PMC11755746 DOI: 10.1080/14756366.2024.2447719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in Drosophila melanogaster. Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health. I3O exhibited sEH inhibitions with an IC50 value of 59.74 ± 0.41 µM. Enzyme kinetics revealed that I3O acts as a non-competitive inhibitor of sEH with a Ki value of 78.88 µM. Molecular docking showed strong interactions between I3O and key residues in the allosteric regions within the sEH enzyme, with a binding affinity of -9.2 kcal/mol. These interactions were supported by 100 ns molecular dynamics simulations, which confirmed the stability of the sEH-I3O complex.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Sung Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, College of Natural Sciences, KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yan Zhao
- School of Pharmacy, Yantai University, Yantai, PR China
| | - Eunbyul Yeom
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, College of Natural Sciences, KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Nguyen TTT, Tran VA, Tran TH, Ho VD, Do TH, Truong QK, Pham MQ, Le THV. Megastigmanes isolated from Boehmeria nivea leaves and their immunomodulatory effect on IL-1β and IL-10 production in RAW264.7 macrophages. RSC Adv 2025; 15:11549-11561. [PMID: 40230633 PMCID: PMC11995158 DOI: 10.1039/d4ra06545j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
With the aim of isolating immunomodulatory compounds from the n-butanol extract of Boehmeria nivea leaves, nine megastigmane compounds were identified. Among these, the structure of the new compound 1, namely, "boehmegaside A", was established using NMR and HR-ESI-MS, and its absolute configurations were established through ECD calculations and DP4+ analysis using DFT-NMR chemical shift calculations. Furthermore, eight of these compounds were discovered for the first time in the Boehmeria genus, marking this the first report on megastigmane compounds isolated from this genus. Regarding their immunomodulatory activity, the isolated megastigmane compounds 3, 2, and 6 exhibited pro-inflammatory cytokine IL-1β secretion inhibitory activity. Compounds 3 and 6 significantly increased anti-inflammatory cytokine IL-10 secretion in LPS-activated RAW264.7 cells. Furthermore, the study on the mechanism of the immunomodulatory and other biological activities of megastigmane compounds through molecular docking simulations revealed that the planar structures of 3, 2, and 6 were critical in their ability to directly suppress TLR4 signalling. Instead, they attached to a nearby smooth area in TLR4. This interference likely disrupted the ability of TLR4 and MD-2 to form their primary contact interface and recognize LPS. These findings highlight the significant role of TLR4 in inflammation and immunity, indicating that these megastigmane compounds may be beneficial in treating various inflammatory disorders associated with immunological issues.
Collapse
Affiliation(s)
- Thi Thu Thao Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
- University of Health Sciences, Vietnam National University Ho Chi Minh City Vietnam
| | - Vy Anh Tran
- Department of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University Box 117 Lund SE-221 00 Sweden
| | - Viet Duc Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University 06 Ngo Quyen Hue City Vietnam
| | - Thi Ha Do
- Department of Medical Plant Chemistry, National Institute of Medical Materials (NIMM) Hanoi 11022 Vietnam
| | - Quoc Ky Truong
- Faculty of Pharmacy, Pham Ngoc Thach University of Medicine Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thi Hong Van Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Van TTH, Pham MQ, Huong TTT, Long BNT, Long PQ, Huong LTT, Lenon GB, Uyen NTT, Ngo ST. Searching potential GSK-3β inhibitors from marine sources using atomistic simulations. Mol Divers 2025:10.1007/s11030-025-11174-x. [PMID: 40172822 DOI: 10.1007/s11030-025-11174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Glycogen synthase kinase-3 beta, GSK-3β, is one of the most common targets for cancer treatment. Inhibiting the biological activity of the enzyme can lead to the prevention of cancer development. Especially, estimating a new inhibitor for preventing GSK-3β by using natural compounds is of great interest. In this context, the marine compounds were investigated for their ligand-binding affinity to GSK-3β via atomistic simulations. The compounds, including xanalteric acid I, chaunolidone A, macrolactin V, and aspergiolide A, were suggested that can inhibit GSK-3β via molecular docking and steered-MD simulations. Moreover, the potency of these compounds was also confirmed via the perturbation simulations. Furthermore, the toxicity prediction also indicates that these compounds would adopt less toxicity. Therefore, it may be argued that four compounds can play as potential inhibitors preventing GSK-3β. In addition, the residues including Ile62, Val135, Pro136, Arg141, Lys183, Gln185, Asn186, and Asp200 play a crucial role in the GSK-3β binding process.
Collapse
Affiliation(s)
- Tran Thi Hoai Van
- Vietnam University of Traditional Medicine, Ministry of Health, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | | | - Bui Nguyen Thanh Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quoc Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Nguyen LTH, Vu DH, Pham MQ, Ngo QA, Vo NB. Design, synthesis, anti-inflammatory evaluation, and molecular docking studies of novel quinazoline-4(3 H)-one-2-carbothioamide derivatives. RSC Adv 2025; 15:2850-2861. [PMID: 39877699 PMCID: PMC11774271 DOI: 10.1039/d4ra09094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
In this paper, a series of novel quinazoline-4(3H)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized via the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S8/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. Compounds 8d (IC50 = 2.99 μM), 8g (IC50 = 3.27 μM), and 8k (IC50 = 1.12 μM) exhibited potent inhibition of NO production compared to the standard drug dexamethasone (IC50 = 14.20 μM). Compound 8a (IC50 = 13.44 μM) exhibited NO inhibition comparable to dexamethasone. Structure-activity relationship (SAR) studies indicated that the presence of both the thioamide functional group (NH-C[double bond, length as m-dash]S) directly attached to the phenyl ring containing halogen substituents (4-Cl, 8d), (4-Br, 8g) and (4-CF3, 8k), is responsible for the potent anti-inflammatory activity of these novel quinazolinone derivatives. Computational modeling studies revealed that compounds 8d, 8g, and 8k are potent inhibitors of TLR4 signaling through the formation of hydrophobic interactions and are stabilized by hydrogen bonds. Replacing the thioamide (8k) with an amide (8q) resulted in an 83-fold decrease in NO inhibitory potency. This highlights the important role of H-bonding involving the thioamide group. The structural shape difference results in favorable interactions of quinazolinones containing thioamide linkers compared to amide linkers to the target receptor. Furthermore, the ADMET profiles and physicochemical properties of these three lead compounds were predicted to meet the criteria for drug-like properties. Therefore, these compounds may be potential candidates for the treatment of many inflammatory diseases associated with immune disorders.
Collapse
Affiliation(s)
- Le Thanh Hang Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Dinh Hoang Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry (INPC), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
5
|
Liu M, Peng W, Ji X. Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review. Mini Rev Med Chem 2025; 25:178-189. [PMID: 39185650 DOI: 10.2174/0113895575311618240820103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]
Abstract
Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.
Collapse
Affiliation(s)
- Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| |
Collapse
|
6
|
Costa I, Lopes I, Morais M, Silva R, Remião F, Medeiros R, Alves LG, Pinto E, Cerqueira F. Disclosing the Antifungal Mechanisms of the Cyclam Salt H 4[H 2( 4-CF3PhCH 2) 2Cyclam]Cl 4 against Candida albicans and Candida krusei. Int J Mol Sci 2024; 25:5209. [PMID: 38791254 PMCID: PMC11121207 DOI: 10.3390/ijms25105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoses are one of the major causes of morbidity/mortality among immunocompromised individuals. Considering the importance of these infections, the World Health Organization (WHO) defined a priority list of fungi for health in 2022 that include Candida albicans as belonging to the critical priority group and Pichia kudriavzevii (Candida krusei) to the medium priority group. The existence of few available antifungal drugs, their high toxicity, the acquired fungal resistance, and the appearance of new species with a broader spectrum of resistance, points out the need for searching for new antifungals, preferably with new and multiple mechanisms of action. The cyclam salt H4[H2(4-CF3PhCH2)2Cyclam]Cl4 was previously tested against several fungi and revealed an interesting activity, with minimal inhibitory concentration (MIC) values of 8 µg/mL for C. krusei and of 128 µg/mL for C. albicans. The main objective of the present work was to deeply understand the mechanisms involved in its antifungal activity. The effects of the cyclam salt on yeast metabolic viability (resazurin reduction assay), yeast mitochondrial function (JC-1 probe), production of reactive oxygen species (DCFH-DA probe) and on intracellular ATP levels (luciferin/luciferase assay) were evaluated. H4[H2(4-CF3PhCH2)2Cyclam]Cl4 induced a significant decrease in the metabolic activity of both C. albicans and C. krusei, an increase in Reactive Oxygen Species (ROS) production, and an impaired mitochondrial function. The latter was observed by the depolarization of the mitochondrial membrane and decrease in ATP intracellular levels, mechanisms that seems to be involved in the antifungal activity of H4[H2(4-CF3PhCH2)2Cyclam]Cl4. The interference of the cyclam salt with human cells revealed a CC50 value against HEK-293 embryonic kidney cells of 1.1 μg/mL and a HC10 value against human red blood cells of 0.8 μg/mL.
Collapse
Affiliation(s)
- Inês Costa
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (I.C.); (R.S.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Lopes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4169-007 Porto, Portugal; (I.L.); (M.M.); (R.M.); (F.C.)
- School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4169-007 Porto, Portugal; (I.L.); (M.M.); (R.M.); (F.C.)
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (I.C.); (R.S.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (I.C.); (R.S.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4169-007 Porto, Portugal; (I.L.); (M.M.); (R.M.); (F.C.)
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Luís G. Alves
- Centro de Química Estrutural—Institute of Molecular Sciences, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Av. António José de Almeida nº 12, 1000-043 Lisboa, Portugal;
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4169-007 Porto, Portugal; (I.L.); (M.M.); (R.M.); (F.C.)
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
7
|
Pandya V, Rao P, Prajapati J, Rawal RM, Goswami D. Pinpointing top inhibitors for GSK3β from pool of indirubin derivatives using rigorous computational workflow and their validation using molecular dynamics (MD) simulations. Sci Rep 2024; 14:49. [PMID: 38168595 PMCID: PMC10761884 DOI: 10.1038/s41598-023-50992-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is a pivotal protein kinase implicated in a spectrum of debilitating diseases, encompassing cancer, diabetes, and neurodegenerative disorders. While the therapeutic potential of GSK3β inhibition is widely recognized, there remains an unmet need for a rigorous, systematic analysis probing the theoretical inhibition dynamics of a comprehensive library of indirubin derivatives against GSK3β using advanced computational methodologies. Addressing this gap, this study embarked on an ambitious endeavor, leveraging indirubin-a renowned scaffold-as a template to curate a vast library of 1000 indirubin derivatives from PubChem. These were enriched with varied substitutions and modifications, identified via a structure similarity search with a Tanimoto similarity threshold of 85%. Harnessing a robust virtual screening workflow, we meticulously identified the top 10 contenders based on XP docking scores. Delving deeper, we gauged the binding free energy differentials (ΔGBind) of these hits, spotlighting the top three compounds that showcased unparalleled binding prowess. A comparative pharmacophore feature mapping with the reference inhibitor OH8, co-crystallized with GSK3β (PDB ID: 6Y9R), was undertaken. The binding dynamics of these elite compounds were further corroborated with 100 ns molecular dynamics simulations, underlining their stable and potent interactions with GSK3β. Remarkably, our findings unveil that these indirubin derivatives not only match but, in certain scenarios, surpass the binding affinity and specificity of OH8. By bridging this research chasm, our study amplifies the therapeutic promise of indirubin derivatives, positioning them as frontrunners in the quest for groundbreaking GSK3β inhibitors, potentially revolutionizing treatments for a myriad of ailments.
Collapse
Affiliation(s)
- Vamangi Pandya
- L. J. School of Applied Sciences, L. J. University, Sarkhej, Ahmedabad, 380051, India.
| | - Priyashi Rao
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
8
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Doan NQH, Nguyen NTK, Nguyen NB, Tran TT, Tran QN, Truong TN. Design, synthesis, in vitro and in silico evaluation of anti-colorectal cancer activity of curcumin analogues containing 1,3-diphenyl-1H-pyrazole targeting EGFR tyrosine kinase. Biochim Biophys Acta Gen Subj 2023:130414. [PMID: 37331408 DOI: 10.1016/j.bbagen.2023.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Recent studies have shown that monocarbonyl analogues of curcumin (MACs) and 1H-pyrazole heterocycle both demonstrated promising anticancer activities, in which several compounds containing these scaffolds could target EGFR. In this research, 24 curcumin analogues containing 1H-pyrazole (a1-f4) were synthesized and characterized by using modern spectroscopic techniques. Firstly, synthetic MACs were screened for cytotoxicity against human cancer cell lines such as SW480, MDA-MB-231 and A549, from which the 10 most potential cytotoxic compounds were identified and selected. Subsequently, the selected MACs were further screened for their inhibition against tyrosine kinases, which showed that a4 demonstrated the most significant inhibitory effects on EGFRWT and EGFRL858R. Based on the results, a4 further demonstrated its ability to cause morphological changes, to increase the percentage of apoptotic cells, and to increase caspase-3 activity, suggesting its apoptosis-inducing activity on SW480 cells. In addition, the effect of a4 on the SW480 cell cycle revealed its ability to arrest SW480 cells at G2/M phase. In subsequent computer-based assessments, a4 was predicted to possess several promising physicochemical, pharmacokinetic, and toxicological properties. Via molecular docking and molecular dynamics simulation, a reversible binding mode between a4 and EGFRWT, EGFRL858R, or EGFRG719S, remained stable within the 100-ns simulation due to effective interactions especially the hydrogen bonding with M793. Finally, free binding energy calculations suggested that a4 could inhibit the activity of EGFRG719S more effectively than other EGFR forms. In conclusion, our work would provide the basis for the future design of promising synthetic compounds as anticancer agents targeting EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Viet Nam.
| | - Ngan T K Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Viet Nam.
| | - Ngoc B Nguyen
- Quality Assurance, Hasan Dermapharm Joint Venture Co., Ltd., Lot B, Dong An Industrial Park, Binh Duong Province 75000, Viet Nam.
| | - Thi T Tran
- Faculty of Medicine and Pharmacy, Thu Dau Mot University, 06 Tran Van On Street, Phu Hoa Ward, Thu Dau Mot City, Binh Duong Province 75000, Viet Nam.
| | - Quang N Tran
- School of Chemical Engineering, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th Street, Corvallis, OR 97331, USA.
| | - Tuyen N Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City 70000, Viet Nam.
| |
Collapse
|
10
|
Fan CW, Li MS, Song XX, Luo L, Jiang JC, Luo JZ, Wang HS. Discovery of novel 2-oximino-2-indolylacetamide derivatives as potent anticancer agents capable of inducing cell autophagy and ferroptosis. Bioorg Med Chem 2023; 80:117176. [PMID: 36709571 DOI: 10.1016/j.bmc.2023.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
A series of 2-oximino-2-indolylacetamide derivatives were designed, synthesized and evaluated for their antitumour effects. Among them, 4d exhibited the most potent antiproliferative effect in vitro on the tested human cancer cells. Additionally, 4d significantly induced cell apoptosis, caused mitochondrial dysfunction, promoted Bax, cleaved-PARP and p53 expression and inhibited Bcl-2 expression in 5-8F cells. Moreover, 4d remarkably promoted autophagosome formation, leading to cell apoptosis. Further investigation indicated that 4d could trigger cell death through cell ferroptosis, including increased ROS generation and lipid peroxidation and decreased glutathione peroxidase 4 (GPx4) expression and glutathione (GSH) levels. More importantly, 4d induced 5-8F cell death by activating ROS/MAPK and inhibiting the AKT/mTOR and STAT3 signalling pathways. Interestingly, 4d significantly suppressed tumour growth in a 5-8F cell xenograft model without obvious toxicity to mice. Overall, these results demonstrate that 4d may be a potential compound for cancer therapy.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
11
|
Design, Synthesis, anticancer evaluation and in silico studies of 2,4,6-trimethoxychalcone derivatives. Saudi Pharm J 2023; 31:65-84. [PMID: 36685294 PMCID: PMC9845116 DOI: 10.1016/j.jsps.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chalcone, a common chemical scaffold of many naturally occurring compounds, has been widely used as an effective template for drug discovery due to its broad biological activities. In this study, a series of chalcone derivatives were designed and synthesized based on the hybridization of 1-(2,4,6-trimethoxyphenyl)butan-1-one with chalcone. Interestingly, most of the target compounds exhibited inhibitory effect of tumor cells in vitro. Especially, (E)-3-(5-bromopyridin-2-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (B3) revealed over 10-fold potency than 5-fluorocrail against the Hela and MCF-7 cells with IC50 values of 3.204 and 3.849 μM respectively. Moreover, B3 displayed low toxicity on normal cells. Further experiments indicated that B3 effectively inhibited the proliferation and migration of tumor cells, and promoted their apoptosis. The calculation and prediction of ADME showed that the target compounds may have good pharmacokinetic properties and oral bioavailability. Reverse molecular docking suggested that the possible target of B3 is CDK1. Taken together, these results suggested that B3 appears to be a promising candidate that merits further attention in the development of anticancer drugs.
Collapse
|
12
|
Jin L, Wang Q, Yang M, Zhang J, Liang H, Tan H, Liang Z, Ma X, Liu J, Li H, Cai X, Cui W, Zhao L. Indirubin-3′-monoxime-loaded PLGA-PEG nanoparticles for potential Alzheimer's disease treatment. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Nguyen HP, Tran QD, Nguyen CQ, Hoa TP, Duy Binh T, Nhu Thao H, Hue BTB, Tuan NT, Le Dang Q, Quoc Chau Thanh N, Van Ky N, Pham MQ, Yang SG. Anti-multiple myeloma potential of resynthesized belinostat derivatives: an experimental study on cytotoxic activity, drug combination, and docking studies. RSC Adv 2022; 12:22108-22118. [PMID: 36043105 PMCID: PMC9364358 DOI: 10.1039/d2ra01969h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma is a deadly cancer that is a complex and multifactorial disease. In the present study, 12 belinostat derivatives (four resynthesized and eight new), HDAC inhibitors, were resynthesized via either Knoevenagel condensation, or Wittig reaction, or Heck reaction. Then an evaluation of the antiproliferative activities against myeloma cells MOPC-315 was carried out. Amongst them, compound 7f was the most bioactive compound with an IC50 of 0.090 ± 0.016 μM, being 3.5-fold more potent than the reference belinostat (IC50 = 0.318 ± 0.049 μM). Furthermore, we also confirmed the inhibitory activity of 7f in a cellular model. Additionally, we found that the inhibitory activity of 7f against histone deacetylase 6 catalytic activity (HDAC6) is more potent than that of belinostat. Finally, we observed the strong synergistic interaction between the derivative 7f and the proteasome bortezomib inhibitor (CI = 0.26), while belinostat and bortezomib showed synergism with a CI value of 0.36. Taken together, the above results suggest that 7f is a promising HDAC inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Quang De Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Cuong Quoc Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Tran Phuong Hoa
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Tran Duy Binh
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| | - Huynh Nhu Thao
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Trong Tuan
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology Hanoi 10000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Nguyen Quoc Chau Thanh
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Nguyen Van Ky
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho 90000 Vietnam +84934527817
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine Incheon 22212 South Korea +82-32-890-1199 +82-32-890-2832
| |
Collapse
|
14
|
1,5-Benzothiazepine Derivatives: Green Synthesis, In Silico and In Vitro Evaluation as Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123757. [PMID: 35744881 PMCID: PMC9228089 DOI: 10.3390/molecules27123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a–2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3β, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives.
Collapse
|
15
|
Bui HTB, Nguyen PH, Pham QM, Tran HP, Tran DQ, Jung H, Hong QV, Nguyen QC, Nguyen QP, Le HT, Yang SG. Target Design of Novel Histone Deacetylase 6 Selective Inhibitors with 2-Mercaptoquinazolinone as the Cap Moiety. Molecules 2022; 27:2204. [PMID: 35408604 PMCID: PMC9000625 DOI: 10.3390/molecules27072204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4-37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (-7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.
Collapse
Affiliation(s)
- Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Phuong Hong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quan Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam;
- Faculty of Chemistry; Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ha Noi 100000, Vietnam
| | - Hoa Phuong Tran
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hosun Jung
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quang Vinh Hong
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quoc Cuong Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
16
|
Czapka A, Grune C, Schädel P, Bachmann V, Scheuer K, Dirauf M, Weber C, Skaltsounis AL, Jandt KD, Schubert US, Fischer D, Werz O. Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(D,L-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. J Nanobiotechnology 2022; 20:5. [PMID: 34983538 PMCID: PMC8725458 DOI: 10.1186/s12951-021-01179-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.
Collapse
Affiliation(s)
- Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christian Grune
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vivien Bachmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Karl Scheuer
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
- Division of Pharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
17
|
Heo K, Basu H, Gutnick A, Wei W, Shlevkov E, Schwarz TL. Serine/Threonine Protein Phosphatase 2A Regulates the Transport of Axonal Mitochondria. Front Cell Neurosci 2022; 16:852245. [PMID: 35370563 PMCID: PMC8973303 DOI: 10.3389/fncel.2022.852245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule-based transport provides mitochondria to distant regions of neurons and is essential for neuronal health. To identify compounds that increase mitochondrial motility, we screened 1,641 small-molecules in a high-throughput screening platform. Indirubin and cantharidin increased mitochondrial motility in rat cortical neurons. Cantharidin is known to inhibit protein phosphatase 2A (PP2A). We therefore tested two other inhibitors of PP2A: LB-100 and okadaic acid. LB-100 increased mitochondrial motility, but okadaic acid did not. To resolve this discrepancy, we knocked down expression of the catalytic subunit of PP2A (PP2CA). This long-term inhibition of PP2A more than doubled retrograde transport of axonal mitochondria, confirming the importance of PP2A as a regulator of mitochondrial motility and as the likely mediator of cantharidin's effect.
Collapse
Affiliation(s)
- Keunjung Heo
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Himanish Basu
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Amos Gutnick
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Wei Wei
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Evgeny Shlevkov
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Thomas L Schwarz
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Mandale V, Thomas A, Wavhale R, Chitlange S. In-silico Screening of Phytoconstituents on Wound Healing Targets-Approaches and Current Status. Curr Drug Discov Technol 2021; 19:e301121198426. [PMID: 34847843 DOI: 10.2174/1570163819666211130141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Over recent years, there has been tremendous research focused on the effective utilization of natural products in wound management. Natural or herbal products contain several phytoconstituents that may act on various stages in wound healing and thereby provide a multi-targeted approach especially in the treatment of chronic wounds. Currently, attempts have been made to screen the phytoconstituents present in herbs on various targets involved in wound healing. This review includes a systematic evaluation of scientific reports by various groups of researchers on the herbals evaluated for wound management, their phytochemical profiling, pre-clinical studies, and molecular modeling studies. Various wound targets discussed include Interleukin-1, Interleukin-6, Tumor necrosis factor-α (TNF-α), Thymosin beta-4 (Tβ-4) that regulate the early inflammatory stage and the novel T cell immune response cDNA 7(TIRC7) that regulates angiogenesis. Also, neuropeptides P and Y act on the inflammatory, migratory, and proliferation phases, and growth factors like vascular endothelial growth factor family (VEGF) and placental growth factor family (PGF) are involved in angiogenesis, while the role of Fibroblast growth factor in tissue remodeling is discussed. As many of the natural products include polyherbal systems, this approach can help in the judicious selection of a combination of herbs that will act on multiple targets in the wound healing process and provide a multi-factorial approach in wound management.
Collapse
Affiliation(s)
- Vijaya Mandale
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| |
Collapse
|
19
|
Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. RSC Adv 2021; 11:38495-38504. [PMID: 35493244 PMCID: PMC9044063 DOI: 10.1039/d1ra06534c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 novel coronavirus (SARS-CoV-2) worldwide has caused the coronavirus disease 2019 (COVID-19) pandemic. A hundred million people were infected, resulting in several millions of death worldwide. In order to prevent viral replication, scientists have been aiming to prevent the biological activity of the SARS-CoV-2 main protease (3CL pro or Mpro). In this work, we demonstrate that using a reasonable combination of deep-learning calculations and atomistic simulations could lead to a new approach for developing SARS-CoV-2 main protease (Mpro) inhibitors. Initially, the binding affinities of the natural compounds to SARS-CoV-2 Mpro were estimated via atomistic simulations. The compound tomatine, thevetine, and tribuloside could bind to SARS-CoV-2 Mpro with nanomolar/high-nanomolar affinities. Secondly, the deep-learning (DL) calculations were performed to chemically alter the top-lead natural compounds to improve ligand-binding affinity. The obtained results were then validated by free energy calculations using atomistic simulations. The outcome of the research will probably boost COVID-19 therapy.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Hung Pham
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center Cincinnati Ohio 45229 USA
| | - Dinh Minh Hiep
- Department of Agriculture and Rural Development Ho Chi Minh City 71007 Vietnam
| | | | - Duong Tuan Quang
- Department of Chemistry, Hue University, Thua Thien Hue Province Hue City Vietnam
| | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
20
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
21
|
Cao DT, Huong Doan TM, Pham VC, Minh Le TH, Chae JW, Yun HY, Na MK, Kim YH, Pham MQ, Nguyen VH. Molecular design of anticancer drugs from marine fungi derivatives. RSC Adv 2021; 11:20173-20179. [PMID: 35479875 PMCID: PMC9033662 DOI: 10.1039/d1ra01855h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the most potential targets in cancer therapy. We have demonstrated using a combination of molecular docking and fast pulling of ligand (FPL) simulations that marine fungi derivatives can be possible inhibitors, preventing the biological activity of Hsp90. The computational approaches were validated and compared with previous experiments. Based on the benchmark of available inhibitors of Hsp90, the GOLD docking package using the ChemPLP scoring function was found to be superior over both Autodock Vina and Autodock4 in the preliminary estimation of the ligand-binding affinity and binding pose with the Pearson correlation, R = -0.62. Moreover, FPL calculations were also indicated as a suitable approach to refine docking simulations with a correlation coefficient with the experimental data of R = -0.81. Therefore, the binding affinity of marine fungi derivatives to Hsp90 was evaluated. Docking and FPL calculations suggest that five compounds including 23, 40, 46, 48, and 52 are highly potent inhibitors for Hsp90. The obtained results enhance cancer therapy research.
Collapse
Affiliation(s)
- Duc Tuan Cao
- Hai Phong University of Medicine and Pharmacy Haiphong Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thi Hong Minh Le
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Jung-Woo Chae
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Min-Kyun Na
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University Daejeon Republic of Korea
| | - Minh Quan Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van Hung Nguyen
- Hai Phong University of Medicine and Pharmacy Haiphong Vietnam
| |
Collapse
|
22
|
Tam NM, Nam PC, Quang DT, Tung NT, Vu VV, Ngo ST. Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. RSC Adv 2021; 11:2926-2934. [PMID: 35424256 PMCID: PMC8694027 DOI: 10.1039/d0ra09858b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
SARS-CoV-2 rapidly infects millions of people worldwide since December 2019. There is still no effective treatment for the virus, resulting in the death of more than one million patients. Inhibiting the activity of SARS-CoV-2 main protease (Mpro), 3C-like protease (3CLP), is able to block the viral replication and proliferation. In this context, our study has revealed that in silico screening for inhibitors of SARS-CoV-2 Mpro can be reliably done using the monomeric structure of the Mpro instead of the dimeric one. Docking and fast pulling of ligand (FPL) simulations for both monomeric and dimeric forms correlate well with the corresponding experimental binding affinity data of 24 compounds. The obtained results were also confirmed via binding pose and noncovalent contact analyses. Our study results show that it is possible to speed up computer-aided drug design for SARS-CoV-2 Mpro by focusing on the monomeric form instead of the larger dimeric one.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Pham Cam Nam
- Department of Chemistry, The University of Danang, University of Science and Technology Danang Vietnam
| | | | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
23
|
Pham MQ, Le TTH, Do TL, Pham THM, Pham QL, Nguyen PH, To DC. Identification of Cytotoxic Constituents from the Whole Plant of Isodon ternifolius. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new oxygenated spiroketone, isodonspiroketone (1), and 4 known ones (2-5) were isolated from the whole plant of Isodon ternifolius (D.Don) Kudô. The structure of isodonspiroketone (1) was determined by nuclear magnetic resonance, mass spectroscopy, and circular dichroism spectral data. Compound 3 has not been previously isolated from I. ternifolius. Their cytotoxic activities were evaluated against A549, HepG2, and MDA-MB-231 cancer cell lines in vitro. New compound (isodonspiroketone, 1) showed moderate cytotoxic activities against A549, HepG2, and MDA-MB-231 cancer cell lines with half-maximal inhibitory concentration values of 23.84 ± 2.73, 27.77 ± 3.01, and 17.26 ± 1.61 μM, respectively; meanwhile, the others were inactive.
Collapse
Affiliation(s)
- Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi-Thuy-Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tien-Lam Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi-Hong-Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quoc-Long Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dao-Cuong To
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hoang Ngan, Cau Giay district, Hanoi, Vietnam
| |
Collapse
|