1
|
Wallace SJ, de Solla SR, Lavoie RA, Triffault-Bouchet G, King MD, Langlois VS. Physiological and molecular responses of the chorioallantoic membranes to diluted bitumen exposures in multiple bird species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:984-994. [PMID: 39965090 DOI: 10.1093/etojnl/vgae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025]
Abstract
Embryotoxicity is a well-known consequence of polycyclic aromatic compound (PAC) exposure, but the molecular mechanisms of action of PAC mixtures, especially for unconventional crude petroleum types such as diluted bitumen (dilbit), remain to be fully elucidated in birds. To explore the mechanism of action of PAC in birds, the egg-injection model was used. Eggs of domestic chicken (Gallus gallus), double-crested cormorant (Nannopterum auritum), and northern gannet (Morus bassanus) were injected with 0.5 μL/g of average species-specific egg weight of 1:10-1:10,000 dilutions of Clearwater or Cold Lake Blend dilbits into the air cell on embryonic Day 0 and were artificially incubated until the liver was formed. The injections of <0.16-335 ng total PAC/g egg were consistent with PAC concentrations measured in wild bird eggs and in embryos exposed to dilbit through eggshell oiling. Mortality and frequency of malformations were low across treatments. The expression of genes involved in xenobiotic detoxification in both liver and chorioallantoic membrane (CAM) differed among species in response to dilbit exposure. Cytochrome P450 1a (cyp1a) in the CAM of dilbit-exposed chickens was induced to a higher fold-change at a lower PAC concentration than the liver, but this pattern was not consistent in wild birds. The expression of additional genes involved in the aryl hydrocarbon receptor activation adverse outcome pathway were variable in the double-crested cormorant and northern gannet CAMs. Our study demonstrates the usefulness of CAM as a target tissue for PAC metabolism in embryotoxicity. Future studies should address the differential CAM physiology across bird species to better understand the variation of species responses to contaminants and consider the use of CAM in addition to liver.
Collapse
Affiliation(s)
- Sarah J Wallace
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Raphaël A Lavoie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Québec City, QC, Canada
| | - Gaëlle Triffault-Bouchet
- Centre d'Expertise en Analyse Environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC, Canada
| | - Mason D King
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Valérie S Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada
| |
Collapse
|
2
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
3
|
Clewell HJ, Fuchsman PC. Interspecies scaling of toxicity reference values in human health versus ecological risk assessments: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:749-764. [PMID: 37724480 DOI: 10.1002/ieam.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Risk assessments that focus on anthropogenic chemicals in environmental media-whether considering human health or ecological effects-often rely on toxicity data from experimentally studied species to estimate safe exposures for species that lack similar data. Current default extrapolation approaches used in both human health risk assessments and ecological risk assessments (ERAs) account for differences in body weight between the test organisms and the species of interest, but the two default approaches differ in important ways. Human health risk assessments currently employ a default based on body weight raised to the three-quarters power. Ecological risk assessments for wildlife (i.e., mammals and birds) are typically based directly on body weight, as measured in the test organism and receptor species. This review describes differences in the experimental data underlying these default practices and discusses the many factors that affect interspecies variability in chemical exposures. The interplay of these different factors can lead to substantial departures from default expectations. Alternative methodologies for conducting more accurate interspecies extrapolations in ERAs for wildlife are discussed, including tissue-based toxicity reference values, physiologically based toxicokinetic and/or toxicodynamic modeling, chemical read-across, and a system of categorical defaults based on route of exposure and toxic mode of action. Integr Environ Assess Manag 2024;20:749-764. © 2023 SETAC.
Collapse
|
4
|
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T. Advancing exposure assessment approaches to improve wildlife risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:674-698. [PMID: 36688277 DOI: 10.1002/ieam.4743] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.
Collapse
Affiliation(s)
- Christy Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Katharine Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Igor Eulaers
- FRAM Centre, Norwegian Polar Institute, Tromsø, Norway
| | - Frank Gobas
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | | | - Nico van den Brink
- Division of Toxicology, University of Wageningen, Wageningen, The Netherlands
| | - Ted Wickwire
- Woods Hole Group Inc., Bourne, Massachusetts, USA
| |
Collapse
|
5
|
Rauschkolb R, Bucher SF, Hensen I, Ahrends A, Fernández-Pascual E, Heubach K, Jakubka D, Jiménez-Alfaro B, König A, Koubek T, Kehl A, Khuroo AA, Lindstädter A, Shafee F, Mašková T, Platonova E, Panico P, Plos C, Primack R, Rosche C, Shah MA, Sporbert M, Stevens AD, Tarquini F, Tielbörger K, Träger S, Vange V, Weigelt P, Bonn A, Freiberg M, Knickmann B, Nordt B, Wirth C, Römermann C. Spatial variability in herbaceous plant phenology is mostly explained by variability in temperature but also by photoperiod and functional traits. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:761-775. [PMID: 38285109 DOI: 10.1007/s00484-024-02621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.
Collapse
Affiliation(s)
- Robert Rauschkolb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany.
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Katja Heubach
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, Germany
| | - Desiree Jakubka
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| | - Borja Jiménez-Alfaro
- Biodiversity Research Institute, IMIB (Univ.Oviedo-CSIC-Princ.Asturias), Mieres, Spain
| | - Andreas König
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, Germany
| | - Tomáš Koubek
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexandra Kehl
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Anzar A Khuroo
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Anja Lindstädter
- Institute of Biochemistry and Biology, Department of Biodiversity Research/Systematic Botany with Botanical Garden, University of Potsdam, Potsdam, Germany
| | - Faizan Shafee
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Tereza Mašková
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | | | - Patrizia Panico
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Christoph Rosche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Maria Sporbert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Flavio Tarquini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Sabrina Träger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vibekke Vange
- Ringve Botanical Garden, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Goettingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Freiberg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
| | | | - Birgit Nordt
- Botanic Garden Berlin, Freie Universität Berlin, Berlin, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
- Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
6
|
Kreitsberg R, Nääb L, Meitern R, Carbillet J, Fort J, Giraudeau M, Sepp T. The effect of environmental pollution on gene expression of seabirds: A review. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106067. [PMID: 37393763 DOI: 10.1016/j.marenvres.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
One of the biggest challenges for ecotoxicologists is to detect harmful effects of contaminants on individual organisms before they have caused significant harm to natural populations. One possible approach for discovering sub-lethal, negative health effects of pollutants is to study gene expression, to identify metabolic pathways and physiological processes affected by contaminants. Seabirds are essential components of ecosystems but highly threatened by environmental changes. Being at the top of the food chain and exhibiting a slow pace of life, they are highly exposed to contaminants and to their ultimate impacts on populations. Here we provide an overview of the currently available seabird-related gene expression studies in the context of environmental pollution. We show that studies conducted, so far, mainly focus on a small selection of xenobiotic metabolism genes, often using lethal sampling protocols, while the greater promise of gene expression studies for wild species may lie in non-invasive procedures focusing on a wider range of physiological processes. However, as whole genome approaches might still be too expensive for large-scale assessments, we also bring out the most promising candidate biomarker genes for future studies. Based on the biased geographical representativeness of the current literature, we suggest expanding studies to temperate and tropical latitudes and urban environments. Also, as links with fitness traits are very rare in the current literature, but would be highly relevant for regulatory purposes, we point to an urgent need for establishing long-term monitoring programs in seabirds that would link pollutant exposure and gene expression to fitness traits.
Collapse
Affiliation(s)
- Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia.
| | - Lisanne Nääb
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| |
Collapse
|
7
|
Grunst AS, Grunst ML, Fort J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163169. [PMID: 37003321 DOI: 10.1016/j.scitotenv.2023.163169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| |
Collapse
|
8
|
Sporbert M, Jakubka D, Bucher SF, Hensen I, Freiberg M, Heubach K, König A, Nordt B, Plos C, Blinova I, Bonn A, Knickmann B, Koubek T, Linstädter A, Mašková T, Primack RB, Rosche C, Shah MA, Stevens AD, Tielbörger K, Träger S, Wirth C, Römermann C. Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study. THE NEW PHYTOLOGIST 2022; 235:2199-2210. [PMID: 35762815 DOI: 10.1111/nph.18345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.
Collapse
Affiliation(s)
- Maria Sporbert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Desiree Jakubka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Martin Freiberg
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Katja Heubach
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Andreas König
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Birgit Nordt
- Botanic Garden Berlin, Freie Universität Berlin, Berlin, 14195, Germany
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | | | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Barbara Knickmann
- Core Facility Botanical Garden, University Vienna, Vienna, 1030, Austria
| | - Tomáš Koubek
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
| | - Anja Linstädter
- Institute of Biochemistry and Biology, Department of Biodiversity Research/ Systematic Botany with Botanical Garden, University of Potsdam, Potsdam, 14469, Germany
| | - Tereza Mašková
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | | | - Christoph Rosche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Sabrina Träger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Max-Planck-Institute for Biogeochemistry, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|