1
|
Mardikasari SA, Katona G, Csóka I. Serum Albumin in Nasal Drug Delivery Systems: Exploring the Role and Application. Pharmaceutics 2024; 16:1322. [PMID: 39458651 PMCID: PMC11510880 DOI: 10.3390/pharmaceutics16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing drug solubility and stability, generating the desired controlled release profile, and developing favorable properties with respect to the challenges in nasal conditions, which, in this case, involves hindering rapid elimination due to nasal mucociliary clearance. Accordingly, considering the important role of serum albumin, in-depth knowledge related to its utilization in preparing nasal drug formulation is highly encouraged. This review aimed to explore the potential application of serum albumin in fabricating nasal drug formulations and its crucial role and functionality regarding the binding interaction with nasal mucin, which significantly determines the successful administration of nasal drug formulations.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| |
Collapse
|
2
|
Mardikasari SA, Katona G, Sipos B, Ambrus R, Csóka I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels 2023; 9:896. [PMID: 37998986 PMCID: PMC10670644 DOI: 10.3390/gels9110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Bovine serum albumin (BSA) has been used extensively as a suitable carrier system for alternative drug delivery routes, such as nasal administration. However, the optimization of BSA nanoparticles with respect to their nasal applicability has not been widely studied. The present study focuses on the characterization of BSA nanoparticles prepared using the desolvation method, followed by a gelation process to facilitate intranasal drug delivery. The results demonstrated that the ratio of BSA and the desolvating agent, ethanol, played a critical role in the nanoparticle characteristics of the BSA nanogel matrices (BSA-NGs). Based on the gelling properties, the formulations of BSA-NG 2, BSA-NG 4, and BSA-NG 6 were selected for further investigation. The Raman spectra confirmed that there were no specific changes to the secondary structures of the BSA. The mucoadhesion studies revealed moderately high mucoadhesive properties, with a mucin binding efficiency (MBE) value of around 67%, allowing the dose to avoid elimination due to rapid mucociliary clearance of the nasal passage. Via studying the nexus of the carrier system, BSA-NGs loaded with dexamethasone as a model drug were prepared and evaluated by differential scanning calorimetry (DSC) and thermal gravimetry (TG), ascertaining that no ethanol remained in the samples after the freeze-drying process. Furthermore, the viscosity measurements exhibited moderate viscosity, which is suitable for nasal liquid preparations. The in vitro release studies performed with a simulated nasal electrolyte solution (SNES) medium showed 88.15-95.47% drug release within 4 h. In conclusion, BSA nanoparticle gelling matrices can offer potential, value-added drug delivery carriers for improved nasal drug administration.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| |
Collapse
|
3
|
Abstract
Amyloid fibrils may serve as building blocks for the preparation of novel hydrogel materials from abundant, low-cost, and biocompatible polypeptides. This work presents the formation of physically cross-linked, self-healing hydrogels based on bovine serum albumin at room temperature through a straightforward disulfide reduction step induced by tris (2-carboxyethyl) phosphine hydrochloride. The structure and surface charge of the amyloid-like fibrils is determined by the pH of the solution during self-assembly, giving rise to hydrogels with distinct physicochemical properties. The hydrogel surface can be readily functionalized with the extracellular matrix protein fibronectin and supports cell adhesion, spreading, and long-term culture. This study offers a simple, versatile, and inexpensive method to prepare amyloid-based albumin hydrogels with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)Facultad de Ciencias ExactasUNLP – CONICETCC16 Suc 4 (1900)La PlataBuenos Aires1900Argentina
| | - Dimitris Missirlis
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| |
Collapse
|
4
|
Kong F, Mehwish N, Lee BH. Emerging albumin hydrogels as personalized biomaterials. Acta Biomater 2023; 157:67-90. [PMID: 36509399 DOI: 10.1016/j.actbio.2022.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Developing biomaterials-based tissue engineering scaffolds with personalized features and intrinsic biocompatibility is appealing and urgent. Through utilizing various strategies, albumin, as the most abundant protein in plasma, could be fabricated into sustainable, cost-effective, and potentially personalized hydrogels that would display enormous biological applications. To date, much of the albumin-based research is primarily engrossed in using albumin as a therapeutic molecule or a drug carrier, not much as a scaffold for tissue engineering. For this reason, we have come up with a detailed and insightful review of recent progress in albumin-based hydrogels having an emphasis on production techniques, material characteristics, and biological uses. It is envisioned that albumin-based scaffolds would be appealing and useful platforms to meet current tissue engineering needs and achieve the goal of clinical translation to benefit patients. STATEMENT OF SIGNIFICANCE: The creation of autologous material-based scaffolds is a potential method for preventing immunological reactions and obtaining the best therapeutic results. Patient-derived albumin hydrogels may consequently provide improved opportunities for personalized treatment due to their abundant supply and minimal immunogenicity. To provide a detailed and insightful summary on albumin-based hydrogels, this review includes latest comprehensive information on their preparation procedures, features, and applications in 3D printing and other biomedical applications. The challenges, along with the future potential for implementing albumin-based hydrogels in clinics, have also been addressed.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Nabila Mehwish
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Liang Jin, ; Bochu Wang,
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Liang Jin, ; Bochu Wang,
| |
Collapse
|
6
|
Nasir NSA, Deivasigamani R, Wee MFMR, Hamzah AA, Zaid MHM, Rahim MKA, Kayani AA, Abdulhameed A, Buyong MR. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. MICROMACHINES 2022; 13:mi13081308. [PMID: 36014230 PMCID: PMC9415755 DOI: 10.3390/mi13081308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 05/17/2023]
Abstract
Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.
Collapse
Affiliation(s)
- Nur Shahira Abdul Nasir
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Revathy Deivasigamani
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | | | - Aminuddin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Abdullah Abdulhameed
- Department of Electronics & Communication Engineering, Faculty of Engineering & Petroleum, Hadhramout University, Al-Mukalla 50512, Hadhramout, Yemen
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +60-12-385-2713
| |
Collapse
|
7
|
Facile Fabrication of Transparent and Opaque Albumin Methacryloyl Gels with Highly Improved Mechanical Properties and Controlled Pore Structures. Gels 2022; 8:gels8060367. [PMID: 35735711 PMCID: PMC9222780 DOI: 10.3390/gels8060367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
For porous protein scaffolds to be employed in tissue-engineered structures, the development of cost-effective, macroporous, and mechanically improved protein-based hydrogels, without compromising the original properties of native protein, is crucial. Here, we introduced a facile method of albumin methacryloyl transparent hydrogels and opaque cryogels with adjustable porosity and improved mechanical characteristics via controlling polymerization temperatures (room temperature and −80 °C). The structural, morphological, mechanical, and physical characteristics of both porous albumin methacryloyl biomaterials were investigated using FTIR, CD, SEM, XRD, compression tests, TGA, and swelling behavior. The biodegradation and biocompatibility of the various gels were also carefully examined. Albumin methacryloyl opaque cryogels outperformed their counterpart transparent hydrogels in terms of mechanical characteristics and interconnecting macropores. Both materials demonstrated high mineralization potential as well as good cell compatibility. The solvation and phase separation owing to ice crystal formation during polymerization are attributed to the transparency of hydrogels and opacity of cryogels, respectively, suggesting that two fully protein-based hydrogels could be used as visible detectors/sensors in medical devices or bone regeneration scaffolds in the future.
Collapse
|
8
|
Tang Z, He H, Zhu L, Liu Z, Yang J, Qin G, Wu J, Tang Y, Zhang D, Chen Q, Zheng J. A General Protein Unfolding-Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102557. [PMID: 34939355 PMCID: PMC8844490 DOI: 10.1002/advs.202102557] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Protein-based hydrogels have attracted great attention due to their excellent biocompatible properties, but often suffer from weak mechanical strength. Conventional strengthening strategies for protein-based hydrogels are to introduce nanoparticles or synthetic polymers for improving their mechanical strength, but often compromise their biocompatibility. Here, a new, general, protein unfolding-chemical coupling (PNC) strategy is developed to fabricate pure protein hydrogels without any additives to achieve both high mechanical strength and excellent cell biocompatibility. This PNC strategy combines thermal-induced protein unfolding/gelation to form a physically-crosslinked network and a -NH2/-COOH coupling reaction to generate a chemicallycrosslinked network. Using bovine serum albumin (BSA) as a globular protein, PNC-BSA hydrogels show macroscopic transparency, high stability, high mechanical properties (compressive/tensile strength of 115/0.43 MPa), fast stiffness/toughness recovery of 85%/91% at room temperature, good fatigue resistance, and low cell cytotoxicity and red blood cell hemolysis. More importantly, the PNC strategy can be not only generally applied to silk fibroin, ovalbumin, and milk albumin protein to form different, high strength protein hydrogels, but also modified with PEDOT/PSS nanoparticles as strain sensors and fluorescent fillers as color sensors. This work demonstrates a new, universal, PNC method to prepare high strength, multi-functional, pure protein hydrogels beyond a few available today.
Collapse
Affiliation(s)
- Ziqing Tang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
| | - Zhuangzhuang Liu
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jia Yang
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Gang Qin
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454003China
| | - Jiang Wu
- School of Pharmaceutical SciencesKey Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| | - Qiang Chen
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325000China
- Wenzhou Key Laboratory of Perioperative MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOH44325USA
| |
Collapse
|
9
|
Yoon H, Lee H, Shin SY, Jodat YA, Jhun H, Lim W, Seo JW, Kim G, Mun JY, Zhang K, Wan KT, Noh S, Park YJ, Baek SH, Hwang YS, Shin SR, Bae H. Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS OMEGA 2021; 6:33511-33522. [PMID: 34926900 PMCID: PMC8675023 DOI: 10.1021/acsomega.1c04292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.
Collapse
Affiliation(s)
- Heejeong Yoon
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Hanna Lee
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Seon Young Shin
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Yasamin A. Jodat
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hyunjhung Jhun
- Technical
Assistance Center, Korea Food Research Institute, Jeonbuk 55365, Republic of Korea
| | - Wonseop Lim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Wook Seo
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyumin Kim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Young Mun
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Kaizhen Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kai-Tak Wan
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Seulgi Noh
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Yeon Joo Park
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Sang Hong Baek
- Laboratory
of Cardiovascular Regeneration, Division of Cardiology, Seoul St.
Mary’s Hospital, The Catholic University
of Korea School of Medicine, Seoul 02841, Republic
of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Ryon Shin
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hojae Bae
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Ge Z, Yu H, Yang W, Liao X, Wang X, Zhou P, Yang J, Liu B, Liu L. Customized construction of microscale multi-component biostructures for cellular applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112599. [DOI: 10.1016/j.msec.2021.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
|
11
|
Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. COATINGS 2020. [DOI: 10.3390/coatings10100971] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The main aim of bone tissue engineering is to fabricate highly biocompatible, osteoconductive and/or osteoinductive biomaterials for tissue regeneration. Bone implants should support bone growth at the implantation site via promotion of osteoblast adhesion, proliferation, and formation of bone extracellular matrix. Moreover, a very desired feature of biomaterials for clinical applications is their osteoinductivity, which means the ability of the material to induce osteogenic differentiation of mesenchymal stem cells toward bone-building cells (osteoblasts). Nevertheless, the development of completely biocompatible biomaterials with appropriate physicochemical and mechanical properties poses a great challenge for the researchers. Thus, the current trend in the engineering of biomaterials focuses on the surface modifications to improve biological properties of bone implants. This review presents the most recent findings concerning surface modifications of biomaterials to improve their osteoconductivity and osteoinductivity. The article describes two types of surface modifications: (1) Additive and (2) subtractive, indicating biological effects of the resultant surfaces in vitro and/or in vivo. The review article summarizes known additive modifications, such as plasma treatment, magnetron sputtering, and preparation of inorganic, organic, and composite coatings on the implants. It also presents some common subtractive processes applied for surface modifications of the biomaterials (i.e., acid etching, sand blasting, grit blasting, sand-blasted large-grit acid etched (SLA), anodizing, and laser methods). In summary, the article is an excellent compendium on the surface modifications and development of advanced osteoconductive and/or osteoinductive coatings on biomaterials for bone regeneration.
Collapse
|