1
|
Joushomme A, Désilets A, Champagne W, Hassanzadeh M, Lemieux G, Gravel-Trudeau A, Lepage M, Lafrenière S, Froehlich U, List K, Boudreault PL, Leduc R. Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. J Enzyme Inhib Med Chem 2025; 40:2466841. [PMID: 39976239 PMCID: PMC11843629 DOI: 10.1080/14756366.2025.2466841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in respiratory virus cell entry. To date, no inhibitors have been specifically developed for this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling revealed important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further demonstrated the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights into their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - William Champagne
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Sabrina Lafrenière
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
2
|
Sun X, Liu Y, Chai L, Zhou J. PRELP regulated by GAS5/miR-3127-5p suppresses cisplatin resistance in oral squamous cell carcinoma. Cytotechnology 2025; 77:92. [PMID: 40309012 PMCID: PMC12037964 DOI: 10.1007/s10616-025-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Our previous study has identified that PRELP inhibits the progression of oral squamous cell carcinoma (OSCC). This study aimed to investigate the influence of PRELP on cisplatin (DDP) resistance in OSCC cells and to elucidate the underlying mechanism. The levels of PRELP, miR-3127-5p, and GAS5 in established DDP-resistant OSCC cell lines (CAL27/DDP and SCC-15/DDP) and parental cells were detected. Following transfection with PRELP overexpressing or silencing plasmids in DDP-resistant OSCC cells, DDP resistance was evaluated by the IC50 values, proliferation, apoptosis and ABCB1 expression. Bioinformatic analysis, dual-luciferase reporter assays, and rescue experiments were employed to explore the upstream miRNA and lncRNA of PRELP. Our results demonstrated that in both DDP-resistant cells, PRELP and GAS5 levels were decreased, while miR-3127-5p expression was increased compared with parental cells. PRELP overexpression reduced the IC50 of DDP and EdU-positive cell number, enhanced cell apoptosis, and suppressed ABCB1 expression in resistant cells. Conversely, PRELP silencing caused opposite effects. In the TCGA database, miR-3127-5p was highly expressed in HNSC, and patients with higher miR-3127-5p expression had shorter overall survival. A negative correlation was observed between miR-3127-5p and PRELP in HNSC. miR-3127-5p promoted DDP resistance in OSCC by targeting PRELP. GAS5 positively modulated PRELP expression by sponging miR-3127-5p. The alleviation of DDP resistance by GAS5 was attenuated by miR-3127-5p mimic and PRELP downregulation. In conclusion, PRELP, which is regulated by lncRNA GAS5/miR-3127-5p axis, suppresses DDP resistance in OSCC through decreasing ABCB1 expression. Targeting the GAS5/miR-3127-5p/PRELP axis may offer a promising strategy to overcome DDP resistance in OSCC. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00749-z.
Collapse
Affiliation(s)
- Xiaoni Sun
- Department of Stomatology, The Affiliated People’s Hospital of Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, 315040 Zhejiang Province China
| | - Yang Liu
- Department of Stomatology, The Affiliated People’s Hospital of Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, 315040 Zhejiang Province China
| | - Luyi Chai
- Department of Stomatology, The Affiliated People’s Hospital of Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, 315040 Zhejiang Province China
| | - Jianbo Zhou
- Department of Stomatology, The Affiliated People’s Hospital of Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, 315040 Zhejiang Province China
| |
Collapse
|
3
|
Sun X, Chai L, Wang B, Zhou J. PRELP inhibits the progression of oral squamous cell carcinoma via inactivation of the NF-κB pathway. Arch Oral Biol 2024; 167:106068. [PMID: 39151326 DOI: 10.1016/j.archoralbio.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the role and molecular mechanism of proline/arginine-rich end leucine-rich repeat protein (PRELP), a secreted protein in extracellular matrix, in oral squamous cell carcinoma (OSCC) progression. DESIGN PRELP expression in OSCC was analyzed in the Gene Set Enrichment (GSE) 138206, GSE37991, and GSE23558 datasets as well as cell lines. Also, PRELP expression and its relationship with prognosis and immune infiltration in head and neck squamous cell carcinoma (HNSCC) were confirmed by bioinformatics analysis. The proliferation, apoptosis, invasion, epithelial-to-mesenchymal transition (EMT) and NF-κB activation were detected after alteration of PRELP expression in OSCC cells using CCK-8, EdU, flow cytometry, Transwell, real-time PCR, immunofluorescence and Western blot. Additionally, an NF-κB inhibitor PDTC was used to confirm the regulation mechanism of PRELP. RESULTS The expression of PRELP in OSCC tissues, cells and in HNSCC samples was low. HNSCC patients with higher PRELP expression was associated with longer overall survival. A positive correlation between PRELP expression and immune cell infiltration was found in HNSCC. Upregulation of PRELP inhibited, whereas PRELP silencing promoted, the proliferation, invasion and EMT of OSCC cells. Also, overexpression of PRELP promoted cell apoptosis. Mechanistically, PRELP suppressed p65 phosphorylation and nuclear translocation. And PDTC treatment partially reversed the influences of PRELP knockdown on the malignant behaviors in OSCC cells. CONCLUSION PRELP suppressed OSCC progression via inactivation of the NF-κB pathway. Targeting PRELP may be a potential approach for OSCC treatment.
Collapse
Affiliation(s)
- Xiaoni Sun
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China.
| | - Luyi Chai
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Bingjie Wang
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Jianbo Zhou
- Department of Stomatology, the Affiliated People's Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| |
Collapse
|
4
|
Joushomme A, Désilets A, Champagne W, Hassanzadeh M, Lemieux G, Gravel-Trudeau A, Lepage M, Lafrenière S, Froehlich U, List K, Boudreault PL, Leduc R. Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609965. [PMID: 39257753 PMCID: PMC11383682 DOI: 10.1101/2024.08.28.609965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in cell entry of respiratory viruses. To date, no inhibitors have been specifically developed toward this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling, uncovered important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further show the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights of their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - William Champagne
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Malihe Hassanzadeh
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alice Gravel-Trudeau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Lepage
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sabrina Lafrenière
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
5
|
Morris E, Abreu A, Scordilis SP. Effect of Tamoxifen on Proteome Expression during In Vitro Myogenesis in Murine Skeletal Muscle C 2C 12 Cells. J Proteome Res 2023; 22:3040-3053. [PMID: 37552804 PMCID: PMC10476267 DOI: 10.1021/acs.jproteome.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/10/2023]
Abstract
Tamoxifen (TMX), a selective estrogen receptor modulator, is commonly used in the treatment of hormone-responsive cancers. However, the effects of TMX in anabolic tissues harboring estrogen receptors, such as skeletal muscle, are poorly understood. We report a tandem mass-tag approach to TMX-treated myogenesis in C2C12 cells, a well-characterized model of in vitro murine skeletal muscle differentiation. A longitudinal analysis of >10,000 proteins identified in untreated C2C12 myogenesis revealed a novel subset of 1,062 myogenically regulated proteins. These proteins clustered into five distinct longitudinal expression trends which significantly overlap those obtained in similar analyses performed in human myocytes. We document a specific functional enrichment for adiponectin-signaling unique to TMX-treated myogenesis, as well as a subset of 198 proteins that are differentially expressed in TMX-treated cells relative to controls at one or more stages of myogenesis, the majority of which were involved in steroid and lipid metabolism. Further analysis highlights metallothionein-1 as a novel target of TMX treatment at each stage of C2C12 myogenesis. Finally, we present a powerful, self-validating pipeline for analyzing the total proteomic response to in vitro treatment across every stage of muscle cell development which can be easily adapted to study the effects of other drugs on myogenesis.
Collapse
Affiliation(s)
- Emily
A. Morris
- Department
of Microbiology and Immunology, Geisel School
of Medicine at Dartmouth, Borwell Building 644E, Lebanon, New Hampshire 03756, United States
| | - Ahlenne Abreu
- Department
of Cancer Biology, Perelman School of Medicine,
University of Pennsylvania Medical School, 421 Curie Blvd. Room 612 BRB II/III, Philadelphia, Pennsylvania 19104, United States
| | - Stylianos P. Scordilis
- Department
of Biological Sciences, Smith College, Ford Hall 202 B, Northampton, Massachusetts 01063, United States
| |
Collapse
|
6
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Martin CE, Murray AS, Mackinder JR, Sala-Hamrick KE, Flynn MG, Lundgren JG, Varela FA, List K. TMPRSS13 zymogen activation, surface localization, and shedding is regulated by proteolytic cleavage within the non-catalytic stem region. Biol Chem 2022; 403:969-982. [PMID: 35796294 PMCID: PMC10642292 DOI: 10.1515/hsz-2022-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022]
Abstract
TMPRSS13 is a member of the type II transmembrane serine protease (TTSP) family. Here we characterize a novel post-translational mechanism important for TMPRSS13 function: proteolytic cleavage within the extracellular TMPRSS13 stem region located between the transmembrane domain and the first site of N-linked glycosylation at asparagine (N)-250 in the scavenger receptor cysteine rich (SRCR) domain. Importantly, the catalytic competence of TMPRSS13 is essential for stem region cleavage, suggesting an autonomous mechanism of action. Site-directed mutagenesis of the 10 basic amino acids (four arginine and six lysine residues) in this region abrogated zymogen activation and catalytic activity of TMPRSS13, as well as phosphorylation, cell surface expression, and shedding. Mutation analysis of individual arginine residues identified R223, a residue located between the low-density lipoprotein receptor class A domain and the SRCR domain, as important for stem region cleavage. Mutation of R223 causes a reduction in the aforementioned functional processing steps of TMPRSS13. These data provide further insight into the roles of different post-translational modifications as regulators of the function and localization of TMPRSS13. Additionally, the data suggest the presence of complex interconnected regulatory mechanisms that may serve to ensure the proper levels of cell-surface and pericellular TMPRSS13-mediated proteolysis under homeostatic conditions.
Collapse
Affiliation(s)
- Carly E. Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Andrew S. Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
- Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, NC, 27708, USA
| | - Jacob R. Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Kimberley E. Sala-Hamrick
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Environmental Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Michael G. Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
| | - Joseph G. Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Fausto A. Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
8
|
Zhang D, Hao W, Niu Q, Xu D, Duan X. Identification of the co-differentially expressed hub genes involved in the endogenous protective mechanism against ventilator-induced diaphragm dysfunction. Skelet Muscle 2022; 12:21. [PMID: 36085166 PMCID: PMC9461262 DOI: 10.1186/s13395-022-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. METHODS Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. CONCLUSION The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China.
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Qi Niu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Dongdong Xu
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| | - Xuejiao Duan
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi, 046012, China
| |
Collapse
|
9
|
Gatineau J, Nidercorne C, Dupont A, Puiffe ML, Cohen JL, Molinier-Frenkel V, Niedergang F, Castellano F. IL4I1 binds to TMPRSS13 and competes with SARS-CoV-2 spike. Front Immunol 2022; 13:982839. [PMID: 36131918 PMCID: PMC9483092 DOI: 10.3389/fimmu.2022.982839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, of which the protease activity participates in the cleavage of SARS-CoV-2 spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the spike protein and allow SARS-CoV-2 spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-CoV-2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.
Collapse
Affiliation(s)
| | | | | | | | - José L. Cohen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital H Mondor, CIC Biotherapies, Créteil, France
| | - Valérie Molinier-Frenkel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Departement d’Hematologie-Immunologie, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Florence Niedergang
- Université Paris Cité, CNRS, INSERM, Institut Cochin, CNRS, Paris, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Flavia Castellano
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Plateforme des Ressources Biologiques, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| |
Collapse
|
10
|
Ai F, Wang W, Liu S, Zhang D, Yang Z, Liu F. Integrative Proteo-Genomic Analysis for Recurrent Survival Prognosis in Colon Adenocarcinoma. Front Oncol 2022; 12:871568. [PMID: 35847888 PMCID: PMC9281446 DOI: 10.3389/fonc.2022.871568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022] Open
Abstract
Background The survival prognosis is the hallmark of cancer progression. Here, we aimed to develop a recurrence-related gene signature to predict the prognosis of colon adenocarcinoma (COAD). Methods The proteomic data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and genomic data from the cancer genomic maps [The Cancer Genome Atlas (TCGA)] dataset were analyzed to identify co-differentially expressed genes (cDEGs) between recurrence samples and non-recurrence samples in COAD using limma package. Functional enrichment analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was conducted. Univariate and multivariate Cox regressions were applied to identify the independent prognostic feature cDEGs and establish the signature whose performance was evaluated by Kaplan–Meier curve, receiver operating characteristic (ROC), Harrell’s concordance index (C-index), and calibration curve. The area under the receiver operating characteristic (ROC) curve (AUROC) and a nomogram were calculated to assess the predictive accuracy. GSE17538 and GSE39582 were used for external validation. Quantitative real-time PCR and Western blot analysis were carried out to validate our findings. Results We identified 86 cDEGs in recurrence samples compared with non-recurrence samples. These genes were primarily enriched in the regulation of carbon metabolic process, fructose and mannose metabolism, and extracellular exosome. Then, an eight-gene-based signature (CA12, HBB, NCF1, KBTBD11, MMAA, DMBT1, AHNAK2, and FBLN2) was developed to separate patients into high- and low-risk groups. Patients in the low-risk group had significantly better prognosis than those in the high-risk group. Four prognostic clinical features, including pathological M, N, T, and RS model status, were screened for building the nomogram survival model. The PCR and Western blot analysis results suggested that CA12 and AHNAK2 were significantly upregulated, while MMAA and DMBT1 were downregulated in the tumor sample compared with adjacent tissues, and in non-recurrent samples compared with non-recurrent samples in COAD. Conclusion These identified recurrence-related gene signatures might provide an effective prognostic predictor and promising therapeutic targets for COAD patients.
Collapse
Affiliation(s)
- FeiYan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenhao Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shaojun Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Decai Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fen Liu,
| |
Collapse
|
11
|
Wen JY, Fang YY, Chen G, He RQ, Huang HQ, Wang RS, Zeng DT, Huang WJ, Qin XG. Upregulation of the transmembrane protease serine 3 mRNA level in radioresistant colorectal cancer tissues. Biomark Med 2022; 16:693-715. [PMID: 35543030 DOI: 10.2217/bmm-2021-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the clinical role of transmembrane protease serine 3 (TMPRSS3) in radioresistance and prognosis of colorectal cancer (CRC). Methods: Standardized mean difference (SMD) and summary area under the curve (AUC) of TMPRSS3 were calculated by combining all available high-throughput data globally. The prognostic significance of TMPRSS3 was determined by Kaplan-Meier and Cox regression analyses. Results: TMPRSS3 was remarkably upregulated in 198 CRC radioresistant cases compared with nonradioresistance (SMD = 0.38, AUC = 0.71). Overexpression of TMPRSS3 was observed in 1601 CRC patients compared with control subjects without CRC. TMPRSS3 was a risk factor for disease-free survival of CRC with the summarized hazard ratio 1.28. Conclusion: TMPRSS3 contributes to the radioresistance and unfavorable prognosis of CRC.
Collapse
Affiliation(s)
- Jia-Ying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ye-Ying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - He-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin city, no. 1 Jinwang Rd, Yuzhou District, Yulin City, Guangxi Zhuang Autonomous Region, 537000, PR China
| | - Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin city, no. 1 Jinwang Rd, Yuzhou District, Yulin City, Guangxi Zhuang Autonomous Region, 537000, PR China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
12
|
GNG4 Promotes Tumor Progression in Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9931984. [PMID: 34691179 PMCID: PMC8536449 DOI: 10.1155/2021/9931984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Colorectal cancer is a common digestive system tumor, which lacks effective therapeutic targets and biomarkers to accurately determine the prognosis. Sequencing data, immunohistochemistry, and Kaplan–Meier analysis were used to explore GNG4 clinical significance in colorectal cancer. And, through in vitro experiments, the effects of GNG4 on cell behaviors were investigated. The results showed that the mRNA and protein expression levels of GNG4 in patients with colorectal cancer were significantly higher than in normal people. The patients with high GNG4 expression had a worse prognosis than patients with low GNG4 expression. The in vitro experiments presented that after downregulating the expression of GNG4, proliferation, migration, and invasion of SW-620 colon cancer cells were all significantly reduced, apoptosis was significantly increased, and the cell cycle was blocked in the S phase. In summary, GNG4 may be of importance in the therapy of the colorectal cancer; therefore, targeting GNG4 may have certain clinical value in the treatment of colorectal cancer.
Collapse
|
13
|
Martin CE, Murray AS, Sala-Hamrick KE, Mackinder JR, Harrison EC, Lundgren JG, Varela FA, List K. Posttranslational modifications of serine protease TMPRSS13 regulate zymogen activation, proteolytic activity, and cell surface localization. J Biol Chem 2021; 297:101227. [PMID: 34562451 PMCID: PMC8503615 DOI: 10.1016/j.jbc.2021.101227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022] Open
Abstract
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.
Collapse
Affiliation(s)
- Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA; Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Evan C Harrison
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|