1
|
Islam H, Tsai SH, Figueiredo C, Jackson GS, Marcotte-Chénard A, Bosak J, Moreno-Cabañas A, Lira FS, Little JP. Direct assessment of leukocyte signalling and cytokine secretion reveals exercise intensity-dependent reductions in anti-inflammatory cytokine action. J Physiol 2024; 602:2717-2736. [PMID: 38776176 DOI: 10.1113/jp286228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Circulating interleukin (IL)-6 and IL-10 concentrations are widely used to evaluate the anti-inflammatory effects of exercise but do not capture cytokine action at the cellular level. Whether and how acute exercise impacts anti-inflammatory cytokine action in humans is unknown. To determine how exercise intensity and pattern impact IL-6 and IL-10 action in blood leukocytes, 16 active adults (eight males/eight females; age: 30 ± 3 years; body mass index: 22.8 ± 2.3 kg/m2;V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ : 51 ± 6 mL/kg/min) completed a no-exercise control condition (CTL) or isocaloric bouts of cycling performed below (moderate continuous exercise; MCE) or above (heavy continuous or heavy intermittent exercise; HCE or HIE, respectively) lactate threshold. Venous blood (before, after, 30 min after and 90 min after exercise) was analysed for immune cell subpopulations, plasma cytokine concentrations, anti-inflammatory cytokine action and monocyte phenotype. Exercise induced rapid leukocytosis (P < 0.001) and increased plasma IL-6 (P < 0.001), IL-10 (P = 0.0145) and tumour necrosis factor-⍺ (TNF-⍺) (P = 0.0338) concentrations in an intensity-dependent manner (HCE and/or HIE vs. CTL). These systemic changes coincided with a diminished ability of IL-10/6 to phosphorylate STAT3 (P < 0.001) and inhibit TNF-⍺ secretion (P = 0.0238) in blood leukocytes following HCE and HIE. Monocyte polarization experiments revealed lower CD80 [MCE (P = 0.0933) and HIE (P = 0.0187) vs. CTL] and a tendency for higher CD163 expression (HCE vs. CTL, P = 0.0985), suggesting that hyporesponsiveness to anti-inflammatory cytokine action does not impede the ability of exercise to promote an anti-inflammatory monocyte phenotype. These findings provide novel insights into the immunomodulatory effects of exercise in humans and highlight the importance of directly measuring cellular cytokine action when evaluating the anti-inflammatory effects of exercise. KEY POINTS: Circulating cytokine concentrations are frequently used to evaluate the anti-inflammatory effects of exercise but may not capture changes in cytokine action occurring at the cellular level. We directly assessed anti-inflammatory cytokine action - measured using a combination of intracellular signalling and cytokine secretion ex vivo - in distinct immune cell subpopulations after acute calorie-matched exercise bouts differing in intensity and pattern. Anti-inflammatory cytokine action was blunted following higher intensity exercise despite corresponding increases in circulating cytokine concentrations and immune cell counts. Changes in cytokine action were not explained by changes in cytokine receptor expression on circulating immune cells. Our findings provide new insights into the immunomodulatory effects of exercise in humans and highlight the importance of directly measuring cellular cytokine action when evaluating the anti-inflammatory effects of exercise.
Collapse
Affiliation(s)
- Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Shun-Hsi Tsai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Caíque Figueiredo
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Garett S Jackson
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alexis Marcotte-Chénard
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Johannes Bosak
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Post-Graduation Program in Movement Sciences, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
- Centro de Investigação em Desporto e Atividade Física, University of Coimbra, Coimbra, Portugal
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
2
|
Vermeersch V, Léon K, Caillard A, Szczesnowski A, Albacete G, Marec N, Tissier F, Gilbert G, Droguet M, Marcorelles P, Giroux-Metges MA, Huet O. Moderate Exercise Modulates Inflammatory Responses and Improves Survival in a Murine Model of Acute Pneumonia. Crit Care Med 2024; 52:e142-e151. [PMID: 38193770 PMCID: PMC10876171 DOI: 10.1097/ccm.0000000000006166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVES An association between physical inactivity and worse outcome during infectious disease has been reported. The effect of moderate exercise preconditioning on the immune response during an acute pneumonia in a murine model was evaluated. SETTING Laboratory experiments. SUBJECTS C57BL6/j male mice. INTERVENTIONS Six-week-old C57BL/6J mice were divided in two groups: an exercise group and a control group. In the exercise group, a moderate, progressive, and standardized physical exercise was applied for 8 weeks. It consisted in a daily treadmill training lasting 60 minutes and with an intensity of 65% of the maximal theoretical oxygen uptake. Usual housing recommendation were applied in the control group during the same period. After 8 weeks, pneumonia was induced in both groups by intratracheal instillation of a fixed concentration of a Klebsiella pneumoniae (5 × 103 colony-forming unit) solution. MEASUREMENTS AND MAIN RESULTS Mice preconditioned by physical exercise had a less sever onset of pneumonia as shown by a significant decrease of the Mouse Clinical Assessment Severity Score and had a significantly lower mortality compared with the control group (27% vs. 83%; p = 0.019). In the exercise group, we observed a significantly earlier but transient recruitment of inflammatory immune cells with a significant increase of neutrophils, CD4+ cells and interstitial macrophages counts compared with control group. Lung tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-10 were significantly decreased at 48 hours after pneumonia induction in the exercise group compared with the control group. CONCLUSIONS In our model, preconditioning by moderate physical exercise improves outcome by reducing the severity of acute pneumonia with an increased but transient activation of the innate immune response.
Collapse
Affiliation(s)
- Veronique Vermeersch
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Karelle Léon
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Anais Caillard
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
| | | | - Gaëlle Albacete
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Nadege Marec
- LBAI, Inserm UMR1227, Université de Bretagne Occidentale, Brest, France
| | - Florine Tissier
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Mickael Droguet
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | | | - Marie-Agnes Giroux-Metges
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Explorations Fonctionnelles Respiratoires, Brest Teaching Hospital, Brest, France
| | - Olivier Huet
- Department of Anesthesia and Intensive Care Unit, Brest Teaching Hospital, Brest, France
- ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
- Australian and New Zealand Intensive Care research Center, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Moura E Silva VEL, Panissa VLG, Cholewa JM, Vieira MM, Antunes BM, Moura RC, Rossi PAQ, Santos MAP, Lira FS, Rossi FE. Ten weeks of Capsicum annuum L. extract supplementation did not change adipose tissue-derived hormones, appetite, body composition, and muscle strength when combined with resistance training in healthy untrained men: A clinical trial study. Nutr Res 2024; 122:33-43. [PMID: 38141553 DOI: 10.1016/j.nutres.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).
Collapse
Affiliation(s)
- Vilton E L Moura E Silva
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Valéria L G Panissa
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Jason M Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Matheus Mesquita Vieira
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Graduate Program in Movement Science, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Barbara M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Ensenada, México
| | - Rayane C Moura
- Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Priscila A Q Rossi
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Marcos A P Santos
- Department of Biophysics and Physiology, Federal University of Piaui, Campus Minister Petrônio Portela, Ininga, Teresina, Piaui, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA; Graduate Program in Movement Science, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
4
|
Olean-Oliveira T, Padilha CS, Figueiredo C, Dorneles GP, Marmett B, Peres A, Romão P, Abílio de Souza Teixeira A, Jabur Ribeiro JP, Dos Santos VR, Olean-Oliveira A, Teixeira MFS, Seraphim PM, Krüger K, Rosa-Neto JC, Lira FS. Central obesity is detrimental to anti-inflammatory, phenotype, and exhaustion markers in mononuclear cells - A cross-sectional study. Clin Nutr ESPEN 2023; 58:397-408. [PMID: 38057032 DOI: 10.1016/j.clnesp.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To investigate the role of central obesity on immunometabolic response in peripheral blood mononuclear cells (PBMCs) from normal weight and overweight/obese young men. METHODS Eighteen individuals were classified as normal weight (NW; n = 9 - age: 25 ± 5 and BMI: 21.4 ± 1.7) and overweight/obese (OW; n = 9 - age: 29 ± 7 and BMI: 29.2 ± 2.7). The body composition was evaluated by dual-energy x-ray absorptiometry (DXA), waist circumference, and visceral and subcutaneous fat depots by ultrasound. Physical activity levels, metabolic parameters, immune phenotypic characterization, cytokine production by lipopolysaccharide (LPS) -stimulated whole blood cells and LPS or phorbol 12-myristate 13-acetate (PMA)-stimulated PBMC, and mitochondrial respiration in PBMCs were evaluated. Expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR-4), hypoxia-inducible factor-1 alpha (HIF-1α), and adrenergic receptor beta 1 and 2 (AR-β1 and β2) genes were evaluated in cultured PBMC using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Individuals with overweight/obese (OW) presented higher glucose (P = 0.009) and leptin (P = 0.010) than individuals with normal weight (NW). PBMCs of OW under stimulation with LPS presented a lower production of interleukin-10 (IL-10) (P = 0.011) and macrophage inflammatory protein-1alpha (MIP-1α) (P = 0.048) than NW. Mitochondrial respiration rates were not different between NW and OW subjects. Cultured PBMCs in LPS-stimulated condition indicated higher gene expression of AR-β2 in OW, while PMA-stimulated PBMCs presented lower expression of AMPK (P = 0.002) and higher expression of NF-κB (P=<0.0001) than NW. OW presented higher numbers of CD3+CD4+ T cells (P = 0.009) and higher expression of programmed cell death protein 1 (PD-1) in CD8+ T cells (P = 0.001) than NW. CONCLUSION Central obesity promoted reductions in interleukin 10 production response and increase in AR-β2 expressions in mitogen-stimulated PBMCs. Furthermore, central obesity altered the phenotype of PBMCs, also increasing the expression of PD-1 exhaustion markers in young adults.
Collapse
Affiliation(s)
- Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Camila S Padilha
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Biology of Ageing Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Missenden Rd, NSW 2050, Sydney, Australia
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Marmett
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Abílio de Souza Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - José Procópio Jabur Ribeiro
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Vanessa Ribeiro Dos Santos
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Marcos F S Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Patrícia M Seraphim
- Department of Physiotherapy, School of Science and Technology, Sao Paulo State University (UNESP), Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, 35394 Giessen, Germany
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Centro de Investigação em Desporto e Atividade Física, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Silva BSDA, Pereira T, Minuzzi LG, Padilha CS, Figueiredo C, Olean-Oliveira T, dos Santos IVM, von Ah Morano AE, Marchioto Júnior O, Ribeiro JPJ, Dos Santos VR, Seelaender M, Teixeira AA, Dos Santos RVT, Lemos VDA, Freire APCF, Dorneles GP, Marmett B, Olean-Oliveira A, Teixeira MFS, Seraphim PM, Caseiro A, Pinho RA, Islam H, Little JP, Krüger K, Rosa-Neto JC, Coelho-E-Silva MJ, Lira FS. Mild to moderate post-COVID-19 alters markers of lymphocyte activation, exhaustion, and immunometabolic responses that can be partially associated by physical activity level- an observational sub-analysis fit- COVID study. Front Immunol 2023; 14:1212745. [PMID: 37753077 PMCID: PMC10518618 DOI: 10.3389/fimmu.2023.1212745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Aim This study aimed to evaluate if physical activity is associated with systemic and cellular immunometabolic responses, in young adults after mild-to-moderate COVID-19 infection. Methods Mild- to- moderate post-COVID-19 patients (70.50 ± 43.10 days of diagnosis; age: 29.4 (21.9- 34.9) years; BMI: 25.5 ± 4.3 kg m2 n = 20) and healthy age-matched controls (age: 29.3 (21.2 - 32.6) years; BMI: 25.4 ± 4.7 kg m2; n = 20) were evaluated. Physical activity levels (PAL), body composition, dietary habits, muscular and pulmonary function, mental health, sleep quality, metabolic parameters, immune phenotypic characterization, stimulated whole blood and PBMC culture (cytokine production), mRNA, and mitochondrial respiration in PBMCs were evaluated. Results The post-COVID-19 group exhibited lower levels of moderate to vigorous physical activity (MVPA) (p = 0.038); therefore, all study comparisons were performed with adjustment for MVPA. Post-COVID-19 impacted the pulmonary function (FEV1, FEV1%pred, FVC, and FVC %pred) compared with the control (p adjusted by MVPA (p adj) <0.05). Post-COVID-19 exhibited lower levels of serum IL-6 (p adj <0.01), whereas it showed higher serum IL-10, triglyceride, leptin, IgG, ACE activity, TNFRSF1A, and PGE2 (p adj <0.05) levels compared with controls. Post-COVID-19 presented a lower percentage of Treg cells (p adj = 0.03) and altered markers of lymphocyte activation and exhaustion (lower CD28 expression in CD8+ T cells (p adj = 0.014), whereas CD4+T cells showed higher PD1 expression (p adj = 0.037)) compared with the control group. Finally, post- COVID-19 presented an increased LPS-stimulated whole- blood IL-10 concentration (p adj <0.01). When exploring mitochondrial respiration and gene expression in PBMCs, we observed a higher LEAK state value (p adj <0.01), lower OXPHOS activity (complex I) (p adj = 0.04), and expression of the Rev-Erb-α clock mRNA after LPS stimulation in the post-COVID-19 patients than in the control (p adj <0.01). Mainly, PAL was associated with changes in IL-10, triglyceride, and leptin levels in the plasma of post-COVID-19 patients. PAL was also associated with modulation of the peripheral frequency of Treg cells and the expression of PD-1 in CD8+ T cells, although it abrogated the statistical effect in the analysis of TNF-α and IL-6 production by LPS- and PMA-stimulated PBMC of post-COVID-19 patients. Conclusion Young adults after mild-to-moderate SARS-CoV-2 infection appeared to have lower physical activity levels, which can be associated with clinical and immunometabolic responses in a complex manner.
Collapse
Affiliation(s)
- Bruna Spolador de Alencar Silva
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Telmo Pereira
- Polytechnic Institute of Coimbra, Coimbra Health School, Coimbra, Portugal
| | - Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Camila Souza Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ivete Vera Medeiros dos Santos
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ana Elisa von Ah Morano
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Osmar Marchioto Júnior
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - José Procópio Jabur Ribeiro
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Vanessa Ribeiro Dos Santos
- Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, LIM26-HC, FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula Coelho Figueira Freire
- Department of Health Sciences, Central Washington University, Ellensburg, WA, United States
- Physiotherapy Department, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Marcos F. S. Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Patrícia M. Seraphim
- Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Coimbra, Portugal
| | - Ricardo Aurino Pinho
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Parana, Curitiba, Brazil
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - José César Rosa-Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Manuel-João Coelho-E-Silva
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity (uid/dtp/04213/2020), Universidade de Coimbra, Coimbra, Portugal
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity (uid/dtp/04213/2020), Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Cardoso FJ, Victor DR, Silva JRD, Guimarães AC, Leal CA, Taveira MR, Alves JG. Physical fitness level and the risk of severe COVID-19: A systematic review. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:174-180. [PMID: 37753428 PMCID: PMC10518790 DOI: 10.1016/j.smhs.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
To verify systematically the association between the status of physical fitness and the risk of severe Coronavirus disease 2019 (COVID-19). This systematic review is in accordance with the Preferred Reporting Items for Systematic Review and Meta Analyses (PRISMA) statement and the eligibility criteria followed the Population, Intervention, Comparison, Outcomes and Study (PICOS) recommendation. PubMed, Embase, SciELO and Cochrane electronic databases were searched. All studies that explored the relationship between the pattern of physical fitness and COVID-19 adverse outcomes (hospitalization, intensive care unit admission, intubation, or mortality), were selected. The quality of the studies was assessed by the specific scale of the Newcastle-Ottawa Scale. A total of seven observational studies were identified in this systematic review; 13 468 patients were included in one case-control study, two cohort studies, and four cross-sectional studies. All studies reported an inverse association between high physical fitness and severe COVID-19 (hospitalization, intensive care admission, or mortality). Only some studies reported comorbidities, especially obesity and cardiovascular disorders, but the results remained unchanged after controlling for comorbidities. The quality of the seven studies included was moderate according to the Newcastle-Ottawa Quality Assessment Scale. The methodological heterogeneity of the studies included did not allow a meta-analysis of the findings. In conclusion, higher physical fitness levels were associated with lower risk of hospitalization, intensive care admissions, and mortality rates among patients with COVID-19.
Collapse
Affiliation(s)
- Fortunato José Cardoso
- Departament of Hepatology, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
| | | | - José Roberto da Silva
- Departament of Hepatology, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
| | | | - Carla Adriane Leal
- Departament of Hepatology, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
| | | | - João Guilherme Alves
- Departament of Hepatology, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
A Carnitine-Containing Product Improves Aspects of Post-Exercise Recovery in Adult Horses. Animals (Basel) 2023; 13:ani13040657. [PMID: 36830444 PMCID: PMC9951645 DOI: 10.3390/ani13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Strenuous exercise can cause tissue damage, leading to an extended recovery period. To counteract delayed post-exercise recovery, a commercial product containing L-carnitine (AID) was tested in adult horses performing consecutive exercise tests to exhaustion. Fit Thoroughbreds were administered an oral bolus of placebo (CON) or AID prior to performing an exercise test to exhaustion (D1). The heart rate (HR) and fetlock kinematics were captured throughout the exercise test. Blood was collected before, 10 min and 1, 4 and 6 h relative to exercise for the quantification of cytokine (IL1β, IL8, IL10, TNFa) gene expression and lactate concentration. Horses performed a second exercise test 48 h later (D2), with all biochemical and physiological measures repeated. The results demonstrate that the horses receiving AID retained a greater (p < 0.05) amount of flexion in the front fetlock on D2 than the horses given CON. The horses presented a reduced (p < 0.05) rate of HR decline on D2 compared to that on D1. The expression of IL1β, IL8 and IL10 increased at 1 h post-exercise on D1 and returned to baseline by 6 h; the cytokine expression pattern was not duplicated on D2. These results provide evidence of disrupted cytokine expression, HR recovery and joint mobility in response to consecutive bouts of exhaustive exercise. Importantly, AID may accelerate recovery through an undetermined mechanism.
Collapse
|
8
|
Padilha CS, Von Ah Morano AE, Krüger K, Rosa-Neto JC, Lira FS. The growing field of immunometabolism and exercise: Key findings in the last 5 years. J Cell Physiol 2022; 237:4001-4020. [PMID: 36052887 DOI: 10.1002/jcp.30866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
This perspective review highlights the impact of physical exercise on immunometabolic responses in the past 5 years. Understanding immunometabolism as a part of immunological research is essential. Furthermore, the roles of both acute and chronic effects of physical exercise on health, aging, and chronic diseases in immunometabolic changes should be elaborated. In immune cells, β2 adrenergic signaling stimulates the preferential mobilization of inflammatory phenotypes, such as CD16+ monocytes and CD8+ T cells, into the bloodstream after a physical exercise session. The mobilization of immune cells is closely related to the availability of energetic substrates for the cell and mechanisms associated with the uptake and oxidation of fatty acids and glucose. These cells, especially senescent T cells, are mobilized to the peripheral tissues and undergo apoptotic signaling, stimulating the creation of a "vacant space" where new cells will be matured and replaced in the circulation. This results in the upregulation of the expression and secretion of anti-inflammatory cytokines (IL-10 and IL-1ra), leading to increased regulatory immune cells that provide immunoregulatory properties. Thus, we suggest that a significant nutrient available to the cell will favor oxidative metabolism, augment ATP production, and consequently maintain the immune cells in their quiescent state, as well as promote rapid activation function. Therefore, based on the studies discussed in this perspective review, we highlight the importance of performing moderate-intensity continuous and high-intensity intermittent aerobic exercises, due to a higher magnitude of energetic demand and release of anti-inflammatory cytokines (IL-6 and IL-10).
Collapse
Affiliation(s)
- Camila S Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ana E Von Ah Morano
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Department of Physical Education, Post-Graduate Program in Movement Sciences, Laboratory of InVestigation in Exercise, Scientific Research Group Related to Physical Activity, Sao Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, Giessen, Germany
| | - José C Rosa-Neto
- Immunometabolism Research Group, E LIM-26, University of São Paulo, São Paulo-SP, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Gašparini D, Kavazović I, Barković I, Maričić V, Ivaniš V, Samsa DT, Peršić V, Polić B, Turk Wensveen T, Wensveen FM. Extreme anaerobic exercise causes reduced cytotoxicity and increased cytokine production by peripheral blood lymphocytes. Immunol Lett 2022; 248:45-55. [PMID: 35709930 DOI: 10.1016/j.imlet.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Exercise has many beneficial effects for our body, but can become detrimental at high intensity, especially for our immune system. Little is known about the underlying mechanism of impaired immune functionality under conditions of intense physical strain. Freedivers, people who dive to high depths on a single breath, perform extreme exercise under anaerobic conditions. In this study, we investigated the impact of freediving on the cytotoxic arm of the immune system. At rest, elite freedivers did not display changes in their immunological profile compared to non-diving controls. In contrast, after a freedive, granzyme B and IL-2 production were reduced, whereas IFNγ and TNF secretion were increased by cytotoxic immune cells. Using in vitro models mimicking freedive conditions, we could show that hypoxia in combination with stress hyperglycemia had a negative impact on Granzyme B secretion, whereas IL-2 production was inhibited by stress hormones. Our findings suggest that in response to extreme exercise, cytotoxic immune cells transiently change their functional profile to limit tissue damage.
Collapse
Affiliation(s)
- Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia; Center for Diabetes, Endocrinology and Cardiometabolism, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia
| | - Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia
| | - Igor Barković
- Center for Research and Education in Underwater, Hyperbaric and Maritime Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vitomir Maričić
- International Association for the Development of Apnea, Croatia
| | - Viktor Ivaniš
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia
| | - Dijana Travica Samsa
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Rehabilitation and Sports Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Viktor Peršić
- Clinic for Heart and Blood Vessels, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Rehabilitation and Sports Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia
| | - Tamara Turk Wensveen
- Center for Diabetes, Endocrinology and Cardiometabolism, Special Hospital for Medical Rehabilitation of Heart, Lung and Rheumatic Diseases Thalassotherapia Opatija, Opatija, Croatia; Department of Internal Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Endocrinology, Diabetology and Metabolic Diseases, Clinic for Internal Medicine, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka 51000, Croatia.
| |
Collapse
|
10
|
Information Collection, Analysis, and Monitoring System of Children’s Physical Training Based on Multisensor. Appl Bionics Biomech 2022; 2022:6455841. [PMID: 35600843 PMCID: PMC9119768 DOI: 10.1155/2022/6455841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
In order to obtain more children's physical training information and improve the accuracy of children's physical training monitoring, a multisensor-based children's physical training information collection, analysis, and monitoring system is proposed. In the process of physical training and sports training, people's physical training information collection is directly related to the level and effectiveness of physical training. With the combination of multisensor concept and sports training information collection, it can collect the key index data of sports mobilization in real time with the help of multiple sensors and information technology. Taking children's physical training as the object, this paper designs a multisensor physical training data information acquisition terminal, collects different training characteristic data with the help of multisensor equipment, and then comprehensively analyzes and monitors the physical information with the help of certain fusion technology, so as to construct a human posture recognition algorithm based on children's physical training information acquisition. Support vector machine and decision tree are used to classify children's different physical exercise states, and a relatively perfect algorithm architecture of human posture recognition is constructed. The results show that for two decision trees, each decision tree is trained with a total of 675 groups of data, and a total of 342 groups of data are verified and pruned. The two decision trees take 7.17 s and 7.32 s to complete the training process, respectively. It can be seen that when the number of training groups is equal, the training time of the two placement methods is close, so it can be considered that the two placement methods have little effect on the training speed of decision tree. The experimental data show that the design of children's physical training monitoring system in this paper has a certain market value.
Collapse
|
11
|
Giustina AD, Rodrigues JF, Bagio E, Bonfante S, Joaquim L, Zarbato G, Stork S, Machado RS, de Souza Goldim MP, Danielski LG, Mathias K, Dacoregio C, Cardoso T, Predroso GS, Venturini LM, Zaccaron RP, Silveira PCL, Pinho RA, Petronilho F. Lung-Brain Crosstalk in Sepsis: Protective Effect of Prophylactic Physical Exercise Against Inflammation and Oxidative Stress in Rats. Mol Neurobiol 2022; 59:3860-3872. [DOI: 10.1007/s12035-022-02823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
|
12
|
Padilha CS, Figueiredo C, Deminice R, Krüger K, Seelaender M, Rosa‐Neto JC, Lira FS. Costly immunometabolic remodelling in disused muscle buildup through physical exercise. Acta Physiol (Oxf) 2022; 234:e13782. [PMID: 34990078 DOI: 10.1111/apha.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying the immunometabolic disturbances during skeletal muscle atrophy caused by a plethora of circumstances ranging from hospitalization to spaceflight missions remain unknown. Here, we outline the possible pathways that might be dysregulated in such conditions and assess the potential of physical exercise to mitigate and promote the recovery of muscle morphology, metabolism and function after intervals of disuse. Studies applying exercise to attenuate disuse-induced muscle atrophy have shown a pivotal role of circulating myokines in the activation of anabolic signalling pathways. These muscle-derived factors induce accretion of contractile proteins in the myofibers, and at the same time decrease protein breakdown and loss. Regular exercise plays a crucial role in re-establishing adequate immunometabolism and increasing the migration and presence in the muscle of macrophages with an anti-inflammatory phenotype (M2) and T regulatory cells (Tregs) after disease-induced muscle loss. Additionally, the switch in metabolic pathways (glycolysis to oxidative phosphorylation [OXPHOS]) is important for achieving rapid metabolic homeostasis during muscle regeneration. In this review, we discuss the molecular aspects of the immunometabolic response elicited by exercise during skeletal muscle regeneration. There is not, nevertheless, consensus on a single optimal intensity of exercise required to improve muscle strength, mass and functional capacity owing to the wide range of exercise protocols studied so far. Despite the absence of agreement on the specific strategy, physical exercise appears as a powerful complementary strategy to attenuate the harmful effects of muscle disuse in different scenarios.
Collapse
Affiliation(s)
- Camila S. Padilha
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise Department of Physical Education Faculty of Physical Education and Sport State University of Londrina Londrina Brazil
| | - Karsten Krüger
- Institute of Sports Science Department of Exercise Physiology and Sports Therapy University of Giessen Giessen Germany
| | - Marília Seelaender
- Cancer Metabolism Research Group Department of Surgery LIM26‐HC Medical School University of São Paulo São Paulo Brazil
| | - José Cesar Rosa‐Neto
- Department of Cell and Developmental Biology University of São Paulo São Paulo Brazil
| | - Fabio S. Lira
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| |
Collapse
|
13
|
Muñoz-Vergara D, Schreiber KL, Langevin H, Yeh GY, Zhu Y, Rist P, Wayne PM. The Effects of a Single Bout of High- or Moderate-Intensity Yoga Exercise on Circulating Inflammatory Mediators: A Pilot Feasibility Study. Glob Adv Health Med 2022; 11:2164957X221145876. [PMID: 36583069 PMCID: PMC9793102 DOI: 10.1177/2164957x221145876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background There is a knowledge gap in the physiological effects of short-term yoga exercise interventions. Objective To evaluate the feasibility of a randomized controlled trial (RCT) assessing the acute effects of a yoga exercise protocol practiced at 2 intensities (high or moderate) on temporal responses of a battery of systemic circulatory cytokines in healthy yoga-naïve adults. Methods This study was a three-arm, pre-post pilot-RCT employing a single bout of yoga exercise intervention. Groups were high-intensity yoga (HY, n = 10), moderate-intensity yoga (MY, n = 10), and a sedentary, no-intervention control group (CON, n = 10). Blood samples were collected at baseline and post-intervention at 6 timepoints (0-, 30-, 60-, 120-, 180-minutes, and 24-hours post-intervention) and were processed with a pre-defined inflammatory panel of 13 cytokines. Heart rate (HR) was assessed with a Polar H10® device. The PROMIS Pain intensity Questionnaire was used to assess body soreness. Results We demonstrate feasibility of recruitment, randomization, and retention of participants based upon predetermined metrics, including: proportion of eligible to enrolled participants (55%); recruitment period (11-months); participant retention (97%); completion rate for questionnaires (99%); completion of physiological measures (98%); and adherence to the yoga exercise protocol (88%). Cytokine levels over time were heterogeneous within and between groups. Responses of a subset of cytokines were positively correlated with 1 another in high- and moderate-intensity yoga exercise groups but not in the control group. Median values for HR were 91 (IQR: 71-95) in the HY, 95 (IQR: 88-100) in the MY, and 73 (IQR: 72-75) in the CON. Pre-post changes in body soreness after the yoga exercise intervention were most evident in the HY group. Conclusion Along with observed trends in select cytokines, findings encourage a more definitive trial aimed at understanding the short-term effects of yoga exercise on inflammatory immune markers and pain in sedentary healthy adults. Clinicaltrials.gov ID# NCT04444102.
Collapse
Affiliation(s)
- Dennis Muñoz-Vergara
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Dennis Muñoz-Vergara, DVM, MS, MPH,
Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth
Ave, Boston, MA 02215, USA.
| | - Kristin L. Schreiber
- Department of Anesthesiology,
Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| | - Helene Langevin
- National Center for Complementary
and Integrative Health (NCCIH), National Institute of Health
(NIH), Bethesda, MD, USA
| | - Gloria Y. Yeh
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of General Medicine and
Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yehui Zhu
- Department of Radiology, A. A.
Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General
Hospital, Boston, MA, USA
| | - Pamela Rist
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| | - Peter M. Wayne
- Osher Center for Integrative
Medicine, Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
- Division of Preventive Medicine,
Harvard Medical School, Brigham and Women’s
Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Bertele S, Heitland I, Fraccarollo D, Stapel B, Bauersachs J, Westhoff-Bleck M, Kahl KG. Behavioral pathway to a broken heart: The link between adverse childhood experiences, depression, physical exercise and cardiovascular health. Front Psychiatry 2022; 13:1002143. [PMID: 36304562 PMCID: PMC9595725 DOI: 10.3389/fpsyt.2022.1002143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM Adverse childhood experiences (ACEs) are a major risk factor for unfavorable behavioral, mental and health outcomes later in life. However, the precise pathway via which ACEs convey these risks, in particular regarding health outcomes such as cardiovascular disease, remains unknown. Here, we combined psychiatric and cardiac methods to investigate the pathway via which childhood adversities may lead to adult adverse cardiovascular health, with a focus on epicardial adipose tissue (EAT) as a risk marker. METHODS 210 adult congenital heart disease outpatients (mean age 35.5 y, 43% female) completed a thorough cardiac and psychiatric evaluation. Psychiatric measurements included an expert interview, the childhood trauma questionnaire (CTQ), Beck's depression inventory II (BDI-II), quality of life and the global scale of functioning, amongst others. All patients completed a full cardiac workup including EAT assessment using echocardiography. We then computed bootstrapping mediation models using ACEs as a predictor, depression and physical activity as mediators and EAT as dependent variable in PROCESS. RESULTS CTQ scores had a significant indirect effect on EAT via a serial mediation of BDI and physical activity [a*b2*d = 0.0260, 95% BCa CI [0.0047, 0.0619]]. CONCLUSION Using mediation analyses, we show that adverse childhood events are linked to increased depressive symptoms, which are linked to decreased physical activity, which in turn are linked to a higher amount of epicardial adipose tissue. While other pathways most certainly exist and replication is needed, this suggests a meaningful pathway via which ACEs lead to adverse cardiovascular health, with several potential targets for health interventions across time.
Collapse
Affiliation(s)
- Sebastian Bertele
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Ivo Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Daniela Fraccarollo
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | - Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hanover Medical School, Hanover, Germany
| | | | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| |
Collapse
|
15
|
Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. Int J Mol Sci 2021; 23:ijms23010322. [PMID: 35008748 PMCID: PMC8745732 DOI: 10.3390/ijms23010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.
Collapse
|
16
|
Figueiredo C, Padilha C, Dorneles G, Peres A, Krüger K, Rosa Neto JC, Lira F. Type and Intensity as Key Variable of Exercise in Metainflammation diseases: A Review. Int J Sports Med 2021; 43:743-767. [PMID: 34902867 DOI: 10.1055/a-1720-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Monocyte and lymphocyte subpopulations exhibit functions that vary between the anti- and pro-inflammatory spectrum, such as classic CD16- and non-classical CD16+ monocytes, as well as T helper 2 lymphocytes (Th2), the Th1/Th17 lymphocytes ratio, and T regulatory lymphocytes (Treg). Metabolic disease-associated inflammation is accompanied by an imbalance in monocyte and lymphocyte phenotypes and functionality, as well as a stronger proportion of inflammatory subpopulations. These changes appear to be important for the development and progression of diseases like diabetes and cardiovascular disease. On the other hand, the regular practice of physical exercise is an important tool to restore the functionality of monocytes and lymphocytes, and to balance the subtypes ratio. However, key variables regarding exercise prescription, such as the type of exercise, intensity, and volume differentially impact on the acute and chronic immune response in individuals diagnosed with meta inflammation diseases. Here, we discuss the impact of different physical exercise protocols, acutely and chronically, on monocytes and lymphocytes of individuals with metabolic disease-associated inflammation. In this review, we focus on the best effects of different exercise protocols to dose the "exercise pill" in different inflammatory status.
Collapse
Affiliation(s)
- Caique Figueiredo
- Physical Education, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Presidente Prudente, Presidente Prudente, Brazil
| | - Camila Padilha
- Physical Education, Universidade Estadual de Londrina, Londrina, Brazil
| | - Gilson Dorneles
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Karsten Krüger
- Dept. of Sport Medicine, Institute of Sport Science, Giessen, Germany
| | | | - Fábio Lira
- Department of Physical Education, Unesp, Presidente Prudente, Brazil
| |
Collapse
|
17
|
Meidert AS, Buschmann D, Brandes F, Kanev K, Billaud JN, Borrmann M, Witte M, Kirchner B, Reithmair M, Pfaffl MW, Schelling G. Molecular RNA Correlates of the SOFA Score in Patients with Sepsis. Diagnostics (Basel) 2021; 11:diagnostics11091649. [PMID: 34573990 PMCID: PMC8468706 DOI: 10.3390/diagnostics11091649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The most common scoring system for critically ill patients is the Sequential Organ Failure Assessment (SOFA) score. Little is known about specific molecular signaling networks underlying the SOFA criteria. We characterized these networks and identified specific key regulatory molecules. We prospectively studied seven patients with sepsis and six controls with high-throughput RNA sequencing (RNAseq). Quantitative reverse transcription PCR (RT-qPCR) confirmation was performed in a second independent cohort. Differentially and significantly expressed miRNAs and their target mRNA transcripts were filtered for admission SOFA criteria and marker RNAs for the respective criteria identified. We bioinformatically constructed molecular signaling networks specifically reflecting these criteria followed by RT-qPCR confirmation of RNAs with important regulatory functions in the networks in the second cohort. RNAseq identified 82 miRNAs (45% upregulated) and 3254 mRNAs (50% upregulated) differentially expressed between sepsis patients and controls. Bioinformatic analysis characterized 6 miRNAs and 76 mRNA target transcripts specific for the SOFA criteria. RT-qPCR validated miRNA and mRNAs included IGFBP2 (respiratory system); MMP9 and PDE4B (nervous system); PPARG (cardiovascular system); AKR1B1, ANXA1, and LNC2/NGAL (acute kidney injury); GFER/ALR (liver); and miR-30c-3p (coagulopathy). There are specific canonical networks underlying the SOFA score. Key regulatory miRNA and mRNA transcripts support its biologic validity.
Collapse
Affiliation(s)
- Agnes S. Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
- Correspondence: ; Tel.: +49-89440081065
| | - Dominik Buschmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
- Division of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany; (K.K.); (B.K.); (M.W.P.)
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
| | - Kristiyan Kanev
- Division of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany; (K.K.); (B.K.); (M.W.P.)
| | | | - Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
| | - Matthias Witte
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany; (K.K.); (B.K.); (M.W.P.)
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, Technical University of Munich, 85354 Freising, Germany; (K.K.); (B.K.); (M.W.P.)
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.B.); (F.B.); (M.B.); (M.W.); (G.S.)
| |
Collapse
|
18
|
Kistner S, Döring M, Krüger R, Rist MJ, Weinert CH, Bunzel D, Merz B, Radloff K, Neumann R, Härtel S, Bub A. Sex-Specific Relationship between the Cardiorespiratory Fitness and Plasma Metabolite Patterns in Healthy Humans-Results of the KarMeN Study. Metabolites 2021; 11:463. [PMID: 34357357 PMCID: PMC8303204 DOI: 10.3390/metabo11070463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiorespiratory fitness (CRF) represents a strong predictor of all-cause mortality and is strongly influenced by regular physical activity (PA). However, the biological mechanisms involved in the body's adaptation to PA remain to be fully elucidated. The aim of this study was to systematically examine the relationship between CRF and plasma metabolite patterns in 252 healthy adults from the cross-sectional Karlsruhe Metabolomics and Nutrition (KarMeN) study. CRF was determined by measuring the peak oxygen uptake during incremental exercise. Fasting plasma samples were analyzed by nuclear magnetic resonance spectroscopy and mass spectrometry coupled to one- or two-dimensional gas chromatography or liquid chromatography. Based on this multi-platform metabolomics approach, 427 plasma analytes were detected. Bi- and multivariate association analyses, adjusted for age and menopausal status, showed that CRF was linked to specific sets of metabolites primarily indicative of lipid metabolism. However, CRF-related metabolite patterns largely differed between sexes. While several phosphatidylcholines were linked to CRF in females, single lyso-phosphatidylcholines and sphingomyelins were associated with CRF in males. When controlling for further assessed clinical and phenotypical parameters, sex-specific CRF tended to be correlated with a smaller number of metabolites linked to lipid, amino acid, or xenobiotics-related metabolism. Interestingly, sex-specific CRF explanation models could be improved when including selected plasma analytes in addition to clinical and phenotypical variables. In summary, this study revealed sex-related differences in CRF-associated plasma metabolite patterns and proved known associations between CRF and risk factors for cardiometabolic diseases such as fat mass, visceral adipose tissue mass, or blood triglycerides in metabolically healthy individuals. Our findings indicate that covariates like sex and, especially, body composition have to be considered when studying blood metabolic markers related to CRF.
Collapse
Affiliation(s)
- Sina Kistner
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Christoph H. Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany; (C.H.W.); (D.B.)
| | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany; (C.H.W.); (D.B.)
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Katrin Radloff
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
| | - Rainer Neumann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.)
| | - Sascha Härtel
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.)
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.D.); (R.K.); (M.J.R.); (B.M.); (K.R.); (A.B.)
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.)
| |
Collapse
|
19
|
Mendes BC, Copetti CLK, Panza VSP, Orssatto LBR, da Rosa JS, Diefenthaeler F, Dalmarco EM, Pietro PFD, Rieger DK. Effects of Euterpe edulis Martius on inflammatory responses to high-intensity intermittent exercise: Crossover randomized trial. Nutrition 2021; 91-92:111344. [PMID: 34273682 DOI: 10.1016/j.nut.2021.111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE High-intensity intermittent exercise (HIIE) may enhance the antiinflammatory status. The juçara fruit juice (JFJ) has well-established antioxidant and antiinflammatory properties. This study investigated the effect of JFJ consumption on the inflammatory response to HIIE in physically active subjects. METHODS In a randomized crossover design, 15 men were assigned to drink 250 mL of either JFJ or water (control) 1 h before a cycling HIIE session (seven sets of 60 s at 100% peak power output; 75 s recovery between sets). Blood samples were obtained before and at 0, 30, and 60 min post-HIIE, and the serum was analyzed for interleukin (IL)-6, IL-1β, IL-8, IL-10, tumor necrosis factor-α, and cortisol. RESULTS After HIIE, the IL-6 levels were higher than baseline (percent change) at 30 min (P = 0.041) and 60 min (P = 0.038) for the control, but were unaffected by JFJ. IL-10 was higher in the JFJ group than in the control at 30 min (d = ‒0.63). Tumor necrosis factor-α was lower than baseline at 30 min for the control (d = ‒0.71) and at 60 min for the JFJ group (d = ‒0.60). For control, cortisol increased to higher than the baseline at 30 and 60 min (d = 0.54 and d = 0.76, respectively). For the JFJ group, the cortisol levels were significantly higher than the baseline at 30 min (P = 0.022). Performance during sprints was higher in the JFJ group than in the control (P = 0.002). In the control group, performance was with both IL-6 (semipartial correlation; sr = -0.59, large effect size) and cortisol at 0 h (sr = -0.52, large effect size). CONCLUSIONS JFJ intake attenuated the antiinflammatory response to HIIE, possibly resulting from a lower degree of muscle stress.
Collapse
Affiliation(s)
- Bruna Cunha Mendes
- Nutrition Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | | | - Vilma Simões Pereira Panza
- Nutrition Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Julia Salvan da Rosa
- Pharmacy Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Fernando Diefenthaeler
- Physical Education Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Patricia Faria Di Pietro
- Nutrition Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Débora Kurrle Rieger
- Nutrition Postgraduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
20
|
Dorneles GP, Lira FS, Romão PRT, Krüger K, Rosa-Neto JC, Peres A, Antunes BM. Levels of cardiorespiratory fitness in men exerts strong impact on lymphocyte function after mitogen stimulation. J Appl Physiol (1985) 2021; 130:1133-1142. [PMID: 33630676 DOI: 10.1152/japplphysiol.01051.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Relationship between lymphocyte function and cardiorespiratory fitness (CRF) is well-documented at rest; however, upon mitogen stimulation the proliferation and cytokine production alters, but knowledge is incipient about lymphocyte responses after mitogen stimulus according to CRF. So, the purpose of the present study was to analyze the lymphocyte function according to the physical fitness status of healthy young men. The study is divided in two experiments being the first analyzing the lymphocyte phenotypes profile and the inflammatory responses, according to CRF, in lymphocyte cell cultures treated for 48 h with concanavalin A (ConA). The second experiment analyzed the proliferation, reactive oxygen species production, viability, and mitochondrial polarization state in lymphocytes treated with ConA in different concentrations, considering the CRF levels. The results showed a difference in the percentage of total lymphocytes expression between groups (P = 0.011) observing a lower lymphocytes T expression in the group with high maximal oxygen consumption (V̇o2max) when compared with the moderate V̇o2max group. When treated with ConA, the lymphocytes of the low V̇o2max group released higher TNF-α concentration (P = 0.032), reflecting an elevated TNF-α/IL-10 ratio (P = 0.055), parallel with lower IL-6 production (P = 0.027), mainly when compared with the moderate V̇o2max group. In addition, there is a positive relationship between V̇o2max and IL-6 production (r = 0.507; P = 0.016), whereas the percentage of total lymphocytes (LyT%) shows a negative trend with V̇o2max (r = -0.497; P = 0.060). Also, individuals with lower V̇o2max showed reduced absolute and relative ROS production, lower cell proliferation, and higher mitochondrial membrane depolarization. In conclusion, cardiorespiratory fitness degree exerts a strong impact on lymphocyte function after mitogen stimulation.NEW & NOTEWORTHY The innovation of the research is to elucidate the impact of different physical fitness status on metabolism, cell proliferation, and lymphocyte activity and, consequently, on the specific inflammatory response against a mitogen.
Collapse
Affiliation(s)
- Gilson P Dorneles
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| | - Pedro R T Romão
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Lab., Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Moura Antunes
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|